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Weeds are unwanted plants that grow among crops. +ese weeds can significantly reduce the yield and quality of the farm output.
Unfortunately, site-specific weedmanagement is not followed in most of the cases.+at is, instead of treating a field with a specific
type of herbicide, the field is treated with a broadcast herbicide application.+is broadcast application of the herbicide has resulted
in herbicide-resistant weeds and has many ill effects on the natural environment.+is has prompted many research studies to seek
the most effective weed management techniques. One such technique is computer vision-based automatic weed detection and
identification. Using this technique, weeds can be detected and identified and a suitable herbicide can be recommended to the
farmers.+erefore, it is important for the computer vision technique to successfully identify and classify the crops and weeds from
the digital images. +is paper investigates the multiple classifier systems built using support vector machines and random forest
classifiers for plant classification in classifying paddy crops and weeds from digital images. Digital images of paddy crops and
weeds from the paddy fields were acquired using three different cameras fixed at different heights from the ground. Texture, color,
and shape features were extracted from the digital images after background subtraction and used for classification. A simple and
newmethod was used as a decision function in the multiple classifier systems. An accuracy of 91.36% was obtained by the multiple
classifier systems and was found to outperform single classifier systems.

1. Introduction

Computer vision often abbreviated as CV is defined as the
process of analyzing images and videos automatically to
obtain meaningful inference or measurements without
human intervention. It is a multidisciplinary field that in-
volves artificial intelligence (AI) and machine learning
concepts. +e goal of computer vision is to understand the
content of digital images and videos [1]. +is involves de-
veloping methods and techniques which attempt to repro-
duce the human capability of cognition and recognition.
Computer vision applications are being extensively used in
the agricultural domain for the discrimination of crops and
weeds, plant classification, crop disease identification, and so
forth. +e automatic weeding machine was proposed in [2],
which was based on computer vision techniques [3]. Au-
tomation of various agricultural tasks such as disease

detection in crops, precise spraying of pesticides, prediction
of crop yield, estimation of soil texture, automatic grading of
fruits, estimation of crop biomass, management of water
balance in the irrigation system, and monitoring plant
growth has been done using computer vision techniques
[4, 5]. In [6], diseased plant leaves were identified using
image processing and soft computing techniques. In [7],
discrimination of corn crop and weed species was done
using the C5 algorithm based on textural and spectral
features. Wireless sensor networks and wireless visual sensor
networks are contributing to sending the sensed data of the
field either in image or in text form to the remote machine
where it will be processed and analyzed for some kind of
decision-making [8]. In [9], a wireless sensor network was
used to predict the occurrence of bud necrosis virus in
groundnut crops. In [10], a wireless sensor network was
implemented to predict the water requirement in semi-arid

Hindawi
International Journal of Agronomy
Volume 2020, Article ID 6474536, 14 pages
https://doi.org/10.1155/2020/6474536

mailto:mamtha.bc@manipal.edu
https://orcid.org/0000-0003-2201-8730
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6474536


regions. Soft computing techniques along with wireless
sensor network technology are helping farmers and
agronomists to make the right decision at the right time. A
precision agriculture model resulted due to the advances in
wireless sensor networks and computer vision techniques
[11]. +is model can help to reorganize the entire farming
system with low input, high efficiency, and sustainable
farming.

Weeds can be defined as undesirable plants growing with
crops. Generally, they are referred to as plants out-of-space.
+ey compete with the crops for soil nutrients and water.
Here, the term competition can be referred to as weed plants
nourishing at the cost of rice [12]. +is competition usually
does not result in the death of the rice crop but definitely
leads to reduced yield. +e problem caused by weeds and the
importance of weed management is not recognized by the
general population and sometimes even by agriculturists.
One of the main reasons for agriculturists to ignore weeds is
high cost involving manual weeding and expensive herbi-
cides. Other than competing with rice plants for soil nu-
trients, water, and space, they also act as alternate hosts to
various pests, which in turn attack crops and destroy them.
Weeds are the main reason for heavy yield losses and
sometimes are responsible for complete crop failure [13]. It
is reported that annually India is incurring a loss of INR 1050
million because of weeds in paddy fields [14]. Classification
of weeds in rice fields is usually based on their life cycle, their
habitat, and their gross morphological features [15].+ey are
broadly categorized as sedges, grass, and broadleaved weed
[16], as shown in Figures 1(a)–1(c), respectively [17, 18].

+e multiple classifier system (MCS) is a way of using
many classifiers to make a final decision in a classification
process. +e ensemble of different classifiers has been used
lately in pattern recognition to improve the performance and
aims at increasing the accuracy of the single classifier system
[19]. +e idea is that two or more diverse classifiers when
grouped help in negating the errors made by the individual
classifiers [20]. +ere are two types of decision functions that
are commonly used in the design of MCSs. +ey are classifier
fusion (combination-based) and classifier selection (selec-
tion-based) [21, 22]. In classifier fusion, the outputs of several
classifiers in theMCS or ensemble are fused to obtain the final
decision. Some of the classifier fusion techniques are majority
voting, sum rule, product rule, and so forth [23]. In classifier
selection, one classifier’s output is selected from the pool of
classifier members. An example of the classification selection
method is cross-validation accuracy (CVM). +e classifier
selection method can be static or dynamic. CVM is a static
classifier selection method. In [24], Kuncheva has proposed
clustering-based dynamic classifier selection methods.

In [25], an MCS was proposed for the classification of
leaves from the digital images based on texture and shape
features. Heterogeneous classifiers are made of SVM and
neural network classifiers with different texture features such
as local binary patterns, histogram features (HoG), and Zernike
moments. +e dataset was obtained from ImageCLEF. Results
show that improvement relative to the classification score
was reported in the literature for the ImageCLEF-2011 and
ImageCLEF-2012 datasets.

In [26], an SVM-based MCS was developed to recognize
diseased wheat leaves. +e MCS was designed as a two-level
structure. +ree SVM classifiers were trained with color
features, texture features, and shape features separately. At
level-0, the output of the individual three classifiers was fed
as training data to the level-1 classifiers. +is way the errors
made by level-0 classifiers are compensated and the direct
mapping limitation at level-0 was solved.

In [23], a review was made about the different topology
of MCSs. Also, different types of decision functions are
explained that can be used when implementing the MCS.
+e paper gives insight for the developers working onMCSs.

In [27], a review is made about MCSs as hybrid systems
for information fusion. +e paper explains the different
types of hybrid systems built using theMCS. In addition, this
paper explains different combinatorial functions to fuse the
results.

MCSs have been used widely in the field of biometrics.
Research favors the solutions where information about the
iris, voice, fingerprints as well as features are provided
through a combination of information rather than infor-
mation generated from a single source. MCSs are also used
in document analysis, remote sensing data analysis systems,
medical decision support systems, and so forth [28].
However, MCSs are less explored in the plant classification
domain. In this study, MCSs were designed to classify paddy
crops and weeds from digital images. +e main contribu-
tions of this study are as follows:

(i) Creation of a digital image dataset of paddy crops
and weeds. +e dataset contains around 1500 im-
ages taken under natural varying lighting condi-
tions. +e images were acquired using Sony
Cybershot (DSC-W220), Canon PowerShot SD3500
IS, and Raspberry Pi (RP-v5647) cameras. +e
dataset also contains annotated images.

(ii) Two selection-based MCSs were designed: one with
calibrated RF classifier and calibrated SVM classifier
called MCS-1; another with uncalibrated RF clas-
sifier and uncalibrated SVM called MCS-2. +e
performance of two MCSs is compared and
analyzed.

(iii) A new dynamic classifier selection method is
proposed.

2. Materials and Methods

2.1. Dataset Creation. Two digital cameras (Canon Power-
Shot SD3500 IS) and Sony Cybershot (DSC-W220) were
used to acquire images from paddy fields around Manipal
region of Karnataka state in India. Images were acquired
under natural variable lighting conditions with the camera
fixed at different heights such as 0.61m, 0.91m, and 1.22m
from the ground. +e cameras were fixed on a tripod and
were facing down towards the ground. Images were also
acquired from the Raspberry Pi (RP ov5647) camera in-
stalled in the paddy field. +e weeds and crops of varying
canopy sizes were selected for acquisition to increase the
difficulty of identification. +e dataset contains paddy plants
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and weeds from the early growth stage (1-leaf seedling stage)
to the flowering stage. +ese growth stages are very critical
because the effect of weed will be maximum [29]. Both
transplanted and direct-seeded rice fields were selected for
acquisition.+e images were stored in RGB color space in JPG
format. +e MATLAB R2018a was used to process the images.
While working in MATLAB, images were resized to 1296 X
966. +e dataset consists of 1517 images. Figure 2(a) shows an
image acquired from the Canon camera fixed at a distance of
0.61m from the ground. Figure 2(b) shows Figure 2(a) after
background subtraction. Figure 3(a) shows the image acquired
from the Canon camera fixed at a distance of 1.22m from the
ground and Figure 3(b) is its background subtracted image.
Similarly, Figures 4(a) and 5(a) show images taken from the
Sony camera fixed at a distance of 0.61m and 1.22m from the
ground, respectively, and Figures 4(b) and 5(b) are its back-
ground subtracted images. Figure 6(a) shows the image ac-
quired by the Raspberry Pi camera and Figure 6(b) is its
corresponding background subtracted image.

2.1.1. Feature Extraction and Feature Selection. +e soil and
water background was removed to retain only green vege-
tation. Connected component algorithm and successive
erosion and dilation [30] were used to remove possible
overlapping and to extract individual plants for feature
extraction as shown in Figures 7 and 8. +e images with too
heavy overlapping were not considered and left out from
classification. Color features were extracted using the
methods explained in [31]. Two different types of shape
features were extracted, namely, size independent features

and Hu’s moments using the method as explained in [8].
Texture features were extracted using the Laws’ texture
masks [32] using the method explained in [33]. Ninety-three
features were extracted. From these, seventy-one best-per-
forming features were selected using the feature selection
method based on analysis of variance (ANOVA) [34, 35].
Table 1 gives information about the number of samples
classwise used in the classification task.

2.2. Design of Multiple Classifier Systems. Multiple classifier
systems (MCSs) can be built using two ormore same types of
classifiers or different types of classifiers whose outputs are
then fused to determine the final class. +e individual
classifiers can be trained on the same data, or with different
data partitions or data with different feature subsets. If the
participating classifiers are trained with different partitions,
then techniques such as bagging and boosting can be used
[36]. Since the decision support system is built on either
homogenous or heterogeneous models, MCSs are the sub-
category of hybrid intelligent systems.

2.2.1. Diversity Metric. MCSs can show improved perfor-
mance than single classifier systems provided very diverse
classifiers be used in the design of MCSs [37]. +erefore,
before designing the MCS, the diversity metric was calcu-
lated for different pairs of classifiers. +ere are many di-
versity metrics such as entropy, double fault, correlation,
and Yule’s statistic [38]. In this study, Yule’s statistic was
used to calculate the diversity of two classifiers based on the

(a) (b)

(c)

Figure 1: Commonly found weeds in paddy fields. (a) Sedges (Cyperus difformis), (b) grass (Echinochloa crus-galli), and (c) broadleaved
weed (Monochoria vaginalis).
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pairwise diversity metric [39]. If the value of Yule’s statistic is
nearer to zero, then the classifiers are more diversified. +e
Yule’s statistic Q is given by

Qi,j �
(a × d − a × b)

(a × d + a × b)
, (1)

where a, b, c, and d are given in Table 2.

Steps in finding Yule’s Statistic:

(1) Take sample data (300) and split into training data
and test data

(2) Fit the two models on training data.
(3) Predict on test data.
(4) Calculate the diversity metric using Yule’s statistic

(a) (b)

Figure 2: (a) Image taken at a distance of 0.16m from the ground using the Canon camera and (b) the corresponding background
subtracted image.

(a) (b)

Figure 3: (a) Image taken at a distance of 1.22m from the ground using the Canon camera and (b) the corresponding background
subtracted image.

(a) (b)

Figure 4: (a) Image taken at a distance of 0.16m from the ground using the Sony camera and (b) the corresponding background subtracted
image.
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From Table 3, the combination of RF and SVM has the
lowest Qi,j. +e value of a for this combination was 0.8334.
+erefore, these two classifiers were selected to design a
selection-based MCS. In selection-based MCSs, for each
input sample (test), the output of one classifier among many
classifiers will be selected dynamically based on a selection
mechanism. Since heterogeneous classifiers were used in this
study, it is important to evaluate the quality of individual
classifiers and use them for a proper classifier selection.
+erefore, the weights of each class for each classifier was
obtained. To do this, the whole dataset was divided into two

sets called Train set-1 and Test set in the ratio 80 : 20.
Trainset-1 was again divided into two sets in the ratio 80 : 20
as Train set-2 andWeight set. After fitting the classifiers with
Train set-2 data, it was tested by Weight set. +e weight for
each class of each classifier was obtained by dividing the
number of Weight set samples belonged to each class that
was correctly classified by the classifier by the total number
of Weight set samples. +is procedure is summarized in
Algorithm 1. For the final class selection, the probability of
the sample belonging to each class is taken and summed with
the corresponding weight. +e class that has the highest
value is selected as the final class. +e final class selection by
MCS-2 is summarized in Algorithm 2.

2.2.2. Designing of MCS with Calibrated Classifiers

(1) Calibrating SVM and RF Classifiers. +ere are many ways
of calibrating the classifiers. +e most commonly used
methods are platt scaling and isotonic regression [40, 41].

(2) Platt Scaling. +is type of scaling is used when the
distortion in the predicted probabilities is in the sigmoid
shape. +e outputs of the classification system (scores) are
passed through the sigmoid function, where parameters

(a) (b)

Figure 5: (a) Image taken at a distance of 1.22m from the ground using the Sony camera and (b) the corresponding background subtracted
image.

(a) (b)

Figure 6: (a) Image acquired by the Raspberry Pi camera and (b) the corresponding background subtracted image.

Paddy plants

Grass weed

Figure 7: Paddy crops and grass weed.
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(a) (b)

Figure 8: Individual plants extracted for feature extraction. (a) Grass weed. (b) Rice plant.

Table 1: Dataset description.

Serial no. Class Number of images
1 Class 0 (broadleaved weed) 419
2 Class 1 (grass) 685
3 Class 2 (paddy) 1300
4 Class 3 (sedges) 421

Table 2: Reference for pairwise diversity metrics, from [39].

Classifier j is correct Classifier j is incorrect
Classifier i is correct a b
Classifier i is incorrect c d

Table 3: Yule’s statistic for different classifier pairs.

Serial no. Classifier pair Yule’s statistic
1 SVM and RF 0.00074
2 RF and gradient boosting (GB) 0.06
3 RF and K-nearest neighbor (KNN) 0.0792
4 RF and logistic regression (LR) 0.129
5 RF and näıve Bayes (NB) 0.1
6 SVM and GB 0.03
7 SVM and KNN 0.055
8 SVM and LR 0.08
9 SVM and NB 0.015
10 GB and KNN 0.11
11 GB and LR 0.141
12 GB and NB 0.069
13 KNN and LR 0.079
14 KNN and NB −0.014
15 LR and NB 0.057
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A and B are fitted using maximum likelihood estimation
from a fitting training set and is given by

P(y � 1 | f) �
1

(1 + exp(A × f + B))
. (2)

+is fitting is done by gradient descent [42] to reduce

argminA,B − 􏽘
i

yilogpi + 1 − yi( 􏼁log 1 − pi( 􏼁
⎧⎨

⎩

⎫⎬

⎭, (3)

where pi � 1/1 + (exp(A × f + B)).

(3) Isotonic Regression. Let fi be the prediction from the
classifier and the corresponding actual target be yi, then the
isotonic regression can be defined as

yi � m fi( 􏼁 + εi, (4)

where m is a nondecreasing function.
+e isotonic regression will show superior performance

when there are large data (beyond 1000). In this study,
isotonic regression was used for calibrating the classifiers.
Cross-validation is helpful to solve the problem of over-
fitting. In this research work, 5-fold cross-validation was
used. In this, the base estimator (RF and SVM) was fit on the
train set of the cross-validation generator, and the test set is
used for calibration. +e probabilities for each of the folds
are then averaged for prediction. Algorithm 3 summarizes
the design of the MCS using calibrated classifiers.

3. Results and Discussion

3.1. Evaluation Using Confusion Matrix. Table 4 shows the
multiclass confusion matrix, and the diagonal element gives
you the true positives (TP) of respective classes. Here, we
have a four-class confusion matrix. According to [43], to
evaluate the performance of the classifier in a multiclass
classification case, for each separate class Ci, TPi, true
negative (TNi), false positives (FPi), false negative (FNi),
Accuracyi, Recalli, and Specificityi can be calculated from the

counts, counti from each class Ci. +e performance of the
classifier is calculated in two ways, one using macro-
averaging and another microaveraging. In the case of
macroaveraging, an evaluation parameter is the average of
the same parameter, but in the case of microaveraging,
cumulative sum of counts to get the cumulative values of TP,
TN, FP, and FN is obtained, and then evaluation parameters
are calculated. In this study, macroaveraging was used. +e
calculation of evaluation parameters for multiclass classifi-
cation is as shown in Table 5 where l is the number of classes.

3.2. Evaluation Using Area Under Curve. +e receiver op-
erating characteristics (ROC) curve is used in machine
learning to depict the performance of a classifier visually. It is
a graph of the false-positive rate (FPR) against the true-
positive rate (TPR).+e area under the ROC curve commonly
referred to as AUC is another measure used to assess the
performance of the given classifier [44, 45]. It gives us the
discriminative ability of the given classifier. +at is, it gives us
the probability with which the classifier will rank a randomly
chosen positive instance. For example, if we get an AUC value
as 0.8, then it means that a randomly chosen positive instance
has a higher score than for a negative instance 80% of the
time. If most of the time classifier cannot clearly distinguish
between the groups, we have AUC as 0.5, for a random
classifier. For the best classifier, we have AUC as 1. +us, this
area gives us the predictive accuracy of a classifier model.
Higher the value of AUC, the better the model is. Figures 9
and 10 show AUC for MCS-1 and MCS-2. +e value of AUC
for all the class types in both theMCSs is above 0.95 indicating
the excellent performance of the MCSs.

Cohen’s kappa [46, 47], calculated for different partitions
of the train and test data, is shown in the box plot in
Figure 11.

Tables 6–8 show the classification results obtained by
MCS-1, MCS-2, and single classifiers (RF and SVM), re-
spectively. +e following are the observations made from
this study.

(1) Input
(2) Train set-1 Train data set with class labels
(3) Test-set Test data
(4) k Number of classes
(5) n Number of classifiers
(6) Output
(7) W[n][k] Weight of each class of each classifier
(8) X_train, X_⟵weight divide the Train set-1 into two sets in the ratio of 80 : 20
(9) len⟵ length of X_weight
(10) for i 1⟵ to n do
(11) Train Ci on X_train
(12) Predict using Ci on X_weight
(13) for j⟵ 0 to k− 1 do
(14) W[i][j]⟵ (number of samples that belong to j class that were correctly classified by classifier Ci)/len
(15) end for
(16) end for

ALGORITHM 1: Algorithm for calculating weights of each class of each classifier.
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(1) Accuracy of 91.36% is obtained in classifying paddy
crops and three types of weeds. Even though it is
difficult to compare the result of this study with other
related works due to a different field and other
conditions, three studies [48–50] have been selected
for comparison. Even though the method described
in [50] achieved better results when compared to this
study, the work was carried out on a single image,
and we believe that, it cannot be considered as a
model for rice and weed discrimination. In [49], the
work has been performed to detect the rice plant
based on rice ears, while the proposed method works
for different crop and weed sizes. +e work carried
out in [48] achieved a slightly better result than this

study, but it is computationally intensive and re-
source-intensive.

4. Case Study

+e methodology of feature extraction and classification of
this research work was applied to the rice and weed dataset
created by [48]. Table 9 shows the classification result ob-
tained on this dataset.

+e result in Table 9 shows that the feature set extracted
has the potential for effective feature vector representation
of paddy crop and weed images for the classification
process.

(1) Input
(2) Train set-1 Train data set with class labels
(3) Test-set Test data
(4) k Number of classes
(5) n Number of classifiers
(6) W [n] [k] Weight of each class of each classifier
(7) Output
(8) Y [ ] Class labels
(9) len⟵ length of Test set
(10) Y [ ]⟵NULL
(11) for i⟵ 1 to n do
(12) Train Ci on Train set-1
(13) end for
(14) for i⟵ 1 to len do
(15) p Predict probability of classes for sample Si using C1, where Si Є Test-set
(16) q Predict probability of classes for sample Si using C2, where Si Є Test-set
(17) end for
(18) for i⟵ 1 to len do
(19) for j⟵ 0 to k− 1 do
(20) p[i] [j]⟵W [1][j] + p[i][j]
(21) q[i][j]⟵W[2][j] + q[i][j]
(22) end for
(23) end for
(24) for i⟵ 1 to len do
(25) max1⟵ 0
(26) max2⟵0
(27) index1⟵ 0
(28) index2⟵ 0
(29) for j 0 to k− 1 do
(30) if p[i][j]>max1 then
(31) max1⟵ p[i][j]
(32) index1⟵ j
(33) end if
(34) if q[i][j]>max2 then
(35) max2 q[i][j]
(36) index2 j
(37) end if
(38) end for
(39) if max1>max2 then
(41) Y [i]⟵ index1
(42) else
(43) Y [i]⟵ index2
(44) end if
(45) end for

ALGORITHM 2: Algorithm for the selection of final Class for MCS-2.
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Table 4: Confusion matrix for the multiclass classification problem.

True class
Predicted class

Class 0 (broadleaved weed) Class 1 (grass) Class 2 (paddy) Class 3 (sedges)
Class 0 (broadleaved weed) Count 1 Count 2 Count 3 Count 4
Class 1 (grass) Count 5 Count 6 Count 7 Count 8
Class 2 (paddy) Count 9 Count 10 Count 11 Count 12
Class 3 (sedges) Count 13 Count 14 Count 15 Count 16

(1) Input
(2) Train set-1 Train data set with class labels
(3) Test-set Test data
(4) k Number of classes
(5) n Number of classifiers
(6) W [n] [k] Weight of each class of each classifier
(7) Output
(8) Y [ ] Class labels
(9) len⟵ length of Test-set
(10) Y [ ]⟵NULL
(11) for i⟵ 1 to n do
(12) Fit calibrated Ci using isotonic regression on Train set-1
(13) end for
(14) for i⟵ 1 to len do
(15) p Predict probability of classes for sample Si using C1, where Si Є Test-set
(16) q Predict probability of classes for sample Si using C2, where Si Є Test-set
(17) end for
(18) for i⟵ 1 to len do
(19) for j⟵ 0 to k− 1 do
(20) p[i] [j]⟵W [1][j] + p[i][j]
(21) q[i][j]⟵W [2][j] + q[i][j]
(22) end for
(23) end for
(24) for i⟵ 1 to len do
(25) max1⟵0
(26) max2⟵ 0
(27) index1⟵ 0
(28) index2⟵ 0
(29) for j 0 to k− 1 do
(30) if p[i][j]>max1 then
(31) max1⟵ p[i][j]
(32) index1⟵ j
(33) end if
(34) if q[i][j]>max2 then
(35) max2⟵ q[i][j]
(36) index2⟵ j
(37) end if
(38) end for
(39) if max1>max2 then
(40) :
(41) Y [i]⟵ index1
(42) else
(43) Y [i]⟵ index2
(44) end if
(45) end for

ALGORITHM 3: Algorithm for the selection of final class for MCS-1.

International Journal of Agronomy 9



Table 5: Evaluation parameters for the multiclass classification problem.

Evaluation
parameter Formula Description

Accuracy 􏽐
l
i(TPi + TNi/TPi + TNi + FPi + FNi)/l Average per-class effectiveness of the classifier

Recall o 􏽐
l
i(TPi/TPi + FNi)/l An average per-class effectiveness of a classifier to identify class labels

Precision 􏽐
l
i(TPi/TPi + FPi)/l

An average per-class agreement of the data class labels with those of
classifiers

F1-score 􏽐
l
i(2∗TPi/(2∗TPi + FPi + FNi))/l Relates the real positives with those given by the classifier based on per-

class average
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Figure 9: Area under the curve for MCS-1.
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Figure 10: Area under the curve for MCS-2.
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SVM-uncalibrated

SVM-calibrated

RF-calibrated

RF-uncalibrated

MCSs

MCS-2

MCS-1

0.80 0.82 0.84 0.86 0.88 0.90 0.92

Kappa statistic

Figure 11: Kappa statistic.

Table 9: Confusion Matrix of classification of paddy crops and weeds of the dataset by [48].

Actual class
Predicted class

Paddy crop Weed
Paddy crop 46 1
Weed 2 34
Macroaverage result
Accuracy Precision Recall F1-score
0.963 0.964 0.961 0.93

Table 6: Classification result of MCS-1.

True class
Predicted label

Support
Broadleaved Grass Paddy Sedges

Broadleaved weed 73 2 5 0 80
Grass 0 129 10 2 141
Paddy 1 13 253 5 272
Sedges 1 4 7 60 72
Macroaverage result
Accuracy Precision Recall F1-score
0.913 0.92 0.90 0.91

Table 7: Classification result of MCS-2.

True class
Predicted label

Support
Broadleaved Grass Paddy Sedges

Broadleaved weed 71 4 4 1 80
Grass 0 126 13 2 141
Paddy 0 10 261 1 272
Sedges 1 4 11 56 72
Macroaverage result
Accuracy Precision Recall F1-score
0.909 0.92 0.878 0.900

Table 8: Classification result of a single classifier system.

Sl. no. Classifier
Noncalibrated Calibrated

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1 SVM 0.881 0.868 0.873 0.870 0.884 0.865 0.878 0.872
RF 0.874 0.875 0.861 0.867 0.869 0.864 0.859 0.861
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(1) +e two MCSs designed outperformed the single
classifier systems. +is result indicates that the MCS
can help in improving crop and weed classification
task and has to be explored with different designs.

(2) +e MCS designed with calibrated classifiers per-
formed slightly better than the MCS designed with
uncalibrated classifiers. +erefore, this study sup-
ported the claim made by the [51] that the calibrated
classifier does not degrade the performance of the
classification task.

(3) +e misclassification of paddies is found to be more
in MCS-1 and it is misclassified as grass. +is could
be attributed to the fact that features of paddies and
grass are more or less the same [52, 53]. Hence, the
chances of the true probability values of paddy class
(class 2) matching with grass class (class 1) are largely
resulting in misclassification. +is could be reduced
by increasing the number of samples of grass weeds
with different growth sizes.

(4) Kappa between two MCSs around 0.929 indicates
that two MCSs agree with each other greatly.

(5) +e extracted features are good enough to dis-
criminate paddy crops and weeds. +e method is
device-independent. +is is the first dataset of paddy
crops and three types of weeds to the best knowledge
of authors.

5. Conclusion

In this study, two MCSs were designed and assessed for the
classification of paddy crops and weeds from the digital
images. +e approach was first to create digital images of
paddy crops and weeds from paddy fields using digital
cameras, and the Raspberry Pi camera was fixed at different
heights from the ground to make the method device-in-
dependent. +e soil and water background was removed.
Texture, color, and shape features were extracted. Two se-
lection-based MCSs were designed, one with calibrated
random forest and calibrated SVM classifiers called as MCS-
1 and another MCS with uncalibrated random forest clas-
sifier and uncalibrated SVM classifier called as MCS-2.
MCS-1 and MCS-2 outperformed the single classifier sys-
tems. In addition, it was found that the MCS designed with
calibrated classifiers performed slightly better than the MCS
designed with uncalibrated classifiers. +e features extrac-
tion and classification process proposed in this research
work were applied on a publicly available paddy crop and
weed dataset and results obtained are very promising. +e
study showed that the extracted features are good enough to
classify paddy crops and weeds. +is work could be used to
recommend suitable herbicide for a particular type of weed
based on the classification results to avoid broadcast ap-
plication of the herbicides. +is could lead to the reduction
of herbicide-resistant weeds, contamination of the
groundwater, and other ill effects of overuse of the
herbicides.

In the next phase of this research, we intend to expand
the paddy crop and weed digital image dataset. We intend to

design different types of MCSs for the classification of paddy
crops and weeds and analyze the performance. In addition,
we intend to carry out extended research to develop a
general crop and weed discrimination model using a se-
lection based-MCS.

Data Availability

+e datasets are not made public yet. However, interested
readers can get the sample images upon request from the
corresponding author through e-mail: mamtha.bc@
manipal.edu.
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