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Phosphorous (P) is a nonrenewable and one of the most important macronutrients for all living organisms. The formation of
complexes with cations such as Al, Fe, and Ca reduces the solubility of P leading to limiting the absorption of P by plants.
Therefore, we need to apply excessive amounts of P through conventional fertilizers. However, plants can use only a small portion
of P of these added fertilizers whenever those become unavailable. Therefore, utilizing excess amounts of phosphate as fertilizers
can lead to various environmental issues like eutrophication. Phosphate-solubilizing microorganisms (PSM) have the ability to
solubilize soil phosphate through the production of organic acids, inorganic acids, enzymes, protons, siderophores, and exo-
polysaccharides resulting in the absorption of P by plants. The application of PSM has the potential to be used as an efficient, eco-
friendly, and sustainable approach that can replace traditional fertilizers. This review aimed to give an overview of the diversity of
PSM, methods of P solubilization, current trends, and technological advances that can assist in using PSM to achieve Sustainable
Development Goals (SDGs).

1. Introduction

Phosphorous (P) is an essential macronutrient in biomass
[1-3] and is the 11" most abundant element in the Earth’s
crust, representing 0.12% of its composition [4, 5]. P is
available in organic and inorganic forms within P sources
[3, 6-8] which are nonrenewable [5, 9, 10]. Among soil,
clay, plant and animal matter, and other resources, rock
phosphate (apatite) is the best P source [5], and the one

which is commonly used for phosphate fertilizer pro-
duction [11]. The less bioavailability of phosphates is the
major issue to be used as fertilizer [11]. PSM has a huge
potential to develop and a gap to address in developing as
an efficient phosphate biofertilizer by increasing the bio-
availability other than the currently used products.
Therefore, the purpose of this review is to elaborate the
details of PSM and its potential usage as an effective agent
for sustainable utilization of phosphate.
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2. Functions of Phosphorous in Biomass

Phosphorous is involved in common biological functions for
all living organisms [2, 3, 12], as mentioned in Table 1. In
particular, P is the second most limiting macronutrient for
plant growth, representing 0.2% of plant dry weight [15, 18]
and acting as a key element in the animal body (7, 13, 16].
Therefore, P has become a critical and essential element for
the wellbeing of human beings [20].

The world population is expected to reach 9,400 million
in 2050 [21] and global food production needs to be in-
creased by 50% compared to the demand in 2012 [22]. Due
to the low solubility of phosphate, its use has been severely
limited [20]. Additionally, the wastage of phosphate that
plants and animals cannot utilize causes additional problems
such as eutrophication [14, 23]. Low bioavailability of
phosphate is directed to the high utilization, and the peak
extraction of phosphate will take place in 2030 [24].
Therefore, the sustainable utilization of phosphate is highly
required by increasing its bioavailability to avoid wastage of
phosphate [5, 24]. A new trend that is emerging is to use
microorganisms to solubilize the insoluble forms of phos-
phates and increase its bioavailability [6, 14, 25]. This review
is intended to provide a comprehensive description of the
occurrence of lower bioavailability of phosphate, phosphate
solubilizing potential of microorganisms and their diversity,
and isolation techniques and phosphate solubilizing
mechanisms of those microorganisms as well as future
trends.

3. Reasons for Lower Bioavailability of
Phosphate

Soil is a significant source of phosphate that contains around
400-1000 mg-kg ™" of total phosphates [26]. However, only
around 1.00-2.50% of phosphate is available for plants due
to the high insolubility of phosphate compounds [2, 26, 27].
Orthophosphate is the only soluble of the three types of
phosphates contained in the soil while the insoluble organic
phosphate and insoluble inorganic phosphates are un-
available for plants [4, 12, 14]. Therefore, orthophosphates
such as HPO;  and H,PO; can be absorbed by plants
[1, 14, 15, 17, 28, 29], while insoluble inorganic phosphates
(PO;") and insoluble organic phosphates are reserved in soil
without being absorbed by the plants [1]. Approximately
52.3 billion tons of phosphate-related fertilizers are added
annually to maintain the optimum soluble phosphate level in
soil. However, plants use approximately 0.2% of this vast
amount through absorption via roots [30]. Around 80% of
phosphates added into the soil are rapidly converted into an
insoluble state and fixed in the soil due to its adsorption,
precipitation, or conversion to organic compounds
[2, 15, 27, 30, 31]. Phosphorous is highly reactive and not
freely available in the elemental form [14]. Phosphate gets
immobilized through precipitation or sorption by reactions
with Fe** and AI’* in acidic soils and Ca** in calcareous soils
[2, 11, 14, 17, 21, 26, 28, 31] and forms ferrous phosphate
(FePO,), aluminium phosphate (AIPO,), and calcium
phosphate (Ca; (PO,),), respectively [14, 17, 31].
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Continuous addition of phosphates into the soil due to this
immobilization is not sustainable as it rapidly depletes the
natural phosphate resources [11] whilst causing environ-
mental problems such as soil fertility depletion and
eutrophication [14].

4. Phosphate Solubilizing Potential of
Microorganisms

At present, P management is a necessity to minimize
phosphate loss and increase agricultural production [2].
Using microorganisms to solubilize phosphate is cost-
effective and eco-friendly compared to chemical and
physical methods [31]. According to Shin et al., 2015 [32],
chemically synthesized organic acids such as salicylic, citric,
phthalic, and oxalic leach the phosphates from the mineral
sources. That potential also holds microorganisms, which
secrete organic acids [13, 33], such as citric, gluconic,
ketogluconic, oxalic [31, 32] acetic, lactic, tartaric, succinic
[31] phthalic, salicylic, and malic [32]. For example, Jones
and Oburger, 2011 [34] explain that Gluconacetobacter
diazotrophicus can immobilize phosphate because it pro-
duces gluconic and ketogluconic acids. However, the mutant
strain of Gluconacetobacter diazotrophicus is unable to
solubilize phosphate because those mutations would cause
a loss of production of organic acids. Jones and Oburger,
2011 [34] reported that tricarboxylic anions such as citrate
(salt of citric acid) have a higher potential to immobilize
phosphate than dicarboxylic acids such as oxalate and
gluconate (salts of oxalic and gluconic acids). Furthermore,
various enzymes such as phytase [35] and phosphatase
[2, 33, 35] that are secreted by microorganisms induce the
PSM to produce exopolysaccharides under stress conditions
such as phosphorous deficiency. Exopolysaccharides have an
ability to form metal complexes (order of potential of ions to
form complexes is AI’* > Cu** > Zn** > Fe’* > Mg** > K*) in
the soil and to induce the release of phosphates [34]. This
phosphate solubilizing potential of microorganisms converts
the insoluble phosphates into soluble form through bio-
chemical processes such as mineralization and trans-
formation [11, 36]. Phosphate solubilizing potential is
affected by the applications of organic amendments in-
cluding composts, plant residue, and animal manure
through accelerating the phosphate immobilization process
[31, 34] and promoting the phosphate absorption and
growth of plants [12, 21, 29, 35].

Furthermore, this phosphate solubilizing potential of
microorganisms is naturally applied in mineral weathering
[35] and remediation of polluted sites such as heavy metal-
contaminated water and soil [33, 37]. In addition, the
phosphate-solubilizing potential of microorganisms is more
important in the natural phosphorus cycle [33].

5. Diversity of Phosphate Solubilizing
Microorganisms (PSM)

The basal habitat of PSM is soil [7, 14]. The average bacteria
number in 1 gram of fertile soil is 101 to 1010 cells and their
live weight may exceed 2,000 kg-ha™" [14, 38]. The highest
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number of PSM accumulates at the rhizosphere of plants,
and those organisms are metabolically very active [14, 38].
The soil properties such as phosphate content, chemical/
physical properties, and organic matter affect the population
of the phosphate solubilizing bacteria [7, 38]. Those
phosphate-solubilizing bacteria are coccus, bacillus, or
spirillum in shape, while the bacillus is the most abundant
and the spirillum is the least abundant form [7, 38]. In
addition, phosphate-solubilizing bacteria represent 1-50%
and phosphate-solubilizing fungi represent 0.1-0.5% of the
whole population of PSM in the soil [14, 38]. However, there
is a high diversity of PSM in the soil. Among these microbial
species; Bacillus and Pseudomonas are the most abundant
bacterial genera and Penicillium and Aspergillus are the
notable fungal genera. The foremost PSM and the countries
for relevant research studies are listed in Table 2.

6. Isolation and Characterization of Phosphate
Solubilizing Microorganisms

6.1. Culture Media. Isolation of PSM is required for the
sustainable utilization of phosphates. The two major culture
media that are currently being used for the isolation process
are known as the Pikovskaya (PVK) medium and National
Botanical Research Institute Phosphate (NBRIP) medium
(4, 15].

6.2. Isolation of PSM. The pour plate or spread plate methods
on PVK or NBRIP media can be used in isolation [2, 13, 41].
The incubation period and temperature vary with research
expectations and requirements whilst usually a temperature
of 30°C [3, 21, 39] and 7 days incubation period are used
[2, 13, 15, 27]. PSM form a clear zone (halo zone) by sol-
ubilizing phosphate around their colonies, reflecting their
basic function [2-4, 21, 39, 41, 63]. Isolated halo zone-
forming microorganisms can be picked and purified on
solid media for several rounds to obtain purified sole mi-
crobial colonies [13].

6.3. Evaluation of the Phosphate-Solubilizing Ability.
Qualitative and quantitative methods are used to evaluate
the phosphate solubilizing ability of PSM. Qualitative
evaluation is based on HD/CD value (13, 27, 64] and sol-
ubilization index (SI) [2, 3, 15, 16, 27, 41, 52, 63, 65]; while
the measurement of phosphate concentration is a quantita-
tive approach [2, 13, 23, 39, 41, 52, 64, 65].

6.3.1. Qualitative Evaluation

(1) HD/CD Value. The phosphate solubilizing ability of PSM
is evaluated using the ratio between HD (halo zone di-
ameter) and CD (colony diameter) [13, 27, 64]. If HD/
CD=>1.5, it indicates a strong ability. The HD/CD value
between 1.0 and 1.5 indicates a weak ability to solubilize
phosphate [13].
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(2) Solubilization Index (SI). The ratio between the total
diameter and colony diameter (Colony diameter + Halo
diameter/Colony diameter) is also used in the evaluation of
phosphate solubilizing ability [2, 3, 15, 16, 27, 41, 52, 63, 65].

6.3.2. Quantitative Evaluation

(1) Measuring the Phosphate Concentration. The phospho
molybdate blue method is usually used to measure the
solubilized phosphate concentration. Autoclaved NBRIP or
PVK broth media are inoculated with PSM, and those broths
that were not inoculated are used as controls. Broth media
are incubated by shaking, while the usual incubation period
and temperature are 7 days and 28+2°C, respectively
[2, 31, 41, 52, 64]. Each test and control broths are centri-
fuged at 10000 rpm for 15min [23, 31] to obtain the su-
pernatant, which is used to measure solubilized phosphate.
The colorimetric method (molybdenum blue method) is
used to measure optical density by using UV-VIS spectro-
photometer [2, 31, 41, 52, 64]. In addition, ICP-MS and
ICP-OES methods are used to measure the solubilized
phosphate concentrations [66].

6.4. Identifying Isolated Strains

6.4.1.  Morphological ~ Characterization. Morphological
identification is the basic step to characterize PSM
[15, 21, 23, 67]. It is achieved by assessing the shape, color,
edge, and elevation of the colony. Furthermore, the Gram
staining test was used to observe the microbial cells [21, 63].

6.4.2. Biochemical Characterization. Biochemical tests such
as Gram staining, starch hydrolysis capability, gelatin hy-
drolysis, catalase activity, IMViC test, casein hydrolysis,
oxidase, carbohydrate fermentation (glucose and sucrose),
urease activity, Hugh-Leifson (O/F) reaction, H,S pro-
duction, NO;™ reduction, gelatine liquefaction, and growth
at 5% NaCl are important in the characterization process of
PSM, and the motility test is also required [3, 21, 67]. A
combination of the results of all biochemical tests charac-
terizes the microorganism up to a particular taxonomic level
[21, 67]. The Bergey’s Manual of Determinative Bacteriology
is used for biochemical identification and morphological
characterization [23].

6.4.3. Molecular Characterization. 16s rRNA gene se-
quencing technique is used to characterize and identify the
exact bacterial species [3, 21, 23, 31, 41], and ITS sequence
analysis is used for the characterization of fungal species [68]
of PSM. Universal primers are used for the gene amplifi-
cation [3, 39]. Agarose gel electrophoresis is used to check
the amplified PCR product [3, 13, 21]. Sequencing of the
PCR products of the genes is needed to compare the sim-
ilarity levels with other reference sequences using BLAST to
identify the PSM species [2, 3, 13, 31].
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7. Phosphate Solubilizing Mechanisms of
Microorganisms

Due to the high reactivity of phosphorous, it is available in
the soil as organic and inorganic compounds that are un-
available for plants [69]. Microorganisms immobilize these
insoluble phosphates through solubilizing via secreting
complex compounds such as protons, organic acid anions,
exopolysaccharides, siderophores, and hydroxyl ions, se-
creting extracellular enzymes, or releasing the phosphates by
the degradation of substrates [70] (Figure 1). The phosphate-
solubilizing mechanism can be discussed under two major
forms, namely, inorganic phosphate solubilization and or-
ganic phosphate solubilization based on the substrate [4].

7.1. Inorganic Phosphate-Solubilization Mechanisms. The
inorganic phosphates solubilizing process involves organic
acids, inorganic acids, siderophore and exopolysaccharide
production. and proton extrusion by the PSM [4]. These
mechanisms can be described as follows:

7.1.1. Organic Acid Production. Secretion of the organic
acids that result from the metabolic activities of PSM is the
key mechanism of phosphate solubilization [4, 38]. These
organic acids decrease the pH and chelate the cations (such
as AI’*, Fe’*, Ca®") bound to phosphate ions to release the
phosphate [4, 38, 45]. Here, organic acids compete with the
phosphate-binding sites of the medium and allow phos-
phates to be available in free form (as HPO?2™ and HPO,?
[14, 17]. Among the all-organic acids released by PSM,
gluconic acid is the most prominent one [4, 14, 17, 38, 69].
Most common organic acids secreted by PSM are listed in
Table 3.

7.1.2. Inorganic Acid Production. Some PSMs act as nitri-
fying and sulfur-oxidizing bacteria that produce inorganic
acids such as sulfuric acid, nitric acid, carbonic acid [4], and
hydrochloric acid [38] in the process of phosphate solubi-
lization. Nitric acid-producing bacteria such as Nitro-
somonas, Nitrobacter, Nitrosovibrio, Nitrosospira [75], and
sulfuric acid-producing bacteria such as Thiobacillus thio-
oxidans [76] may have a considerable ability to solubilize
phosphate. Further studies on these abilities are highly
warranted. The released inorganic acids may cause the
acidification of the media and H" substitution reactions to
release the phosphates by converting insoluble phosphates to
soluble form [38]. However, the effectiveness of phosphate
immobilization by inorganic acids is lower than the effi-
ciency of organic acids [4, 38, 45].

7.1.3. Proton Extrusion. Solubilization of the phosphate
without the secretions of acids is also a possibility [4]. In
excretion of H* through H,CO5 production, NH*" assim-
ilation and liberation of organic acid anions are other op-
tions for the solubilization of phosphates by acidifying the
media [4, 14, 38, 45]. Pseudomonas fluorescens [77], Pseu-
domonas sp., Bacillus sp., and Azospirillum sp. [78]

significantly exhibit this mechanism of proton extrusion in
the process of phosphate solubilization.

7.1.4. Exopolysaccharide Production. Microorganisms re-
lease exopolysaccharides under stress conditions that exhibit
an ability to promote the phosphate solubilization [4, 79].
Exopolysaccharides bind with the metal ions in the soil,
which formed the complexes with phosphates and sub-
sequently resulted in the release of those phosphates. Exo-
polysaccharide concentration has a positive correlation with
the rate of phosphate solubilization [4].

7.1.5. Siderophore Production. Siderophore production is
a common ability of microorganisms, although it is used by
PSM as the another alternative method to solubilize the
phosphates [4, 14, 17, 45]. Siderophores have a strong af-
finity with chelated iron and release phosphate. Further-
more, it contributes to the release of phosphates from
organic phosphates [4].

7.2. Mechanisms of Organic Phosphate Solubilization

7.2.1. Enzyme Production. Organic compounds in the soil
such as phosphonates, phytic acid, polyphosphonates, sugar
phosphates [4], phosphomonoesters, phosphodiesters,
phosphotriesters [45], and phospholipids and nucleic acids
[4, 45] are high molecular-weight compounds and are re-
sistant to chemical hydrolysis. Therefore, these organic
phosphates should be converted into a soluble form by
a biological method such as microbial solubilization [45].
PSM secretes the enzymes to solubilize the organic
phosphate [45]. There are three groups of enzymes that are
secreted by PSM [4, 45, 69, 70]. These enzymes are as follows:

(1) Nonspecific phosphatases
(2) C-P Lyases and Phosphonatases
(3) Phytases

Phosphatase enzymes cause the hydrolysis of ester
phosphate bonds and convert high-molecular-weight or-
ganic phosphates into low-molecular-weight compounds to
ease off the release of phosphate ions. Phytic acid or myo-
inositol phosphate compounds are hydrolyzed by phytase
enzyme while ester bonds of phosphonates (e.g., phos-
phoenolpyruvate, phosphonoacetate) are hydrolyzed by
phosphonatase and CeP lyase to form phosphate ions
[4, 45, 70].

8. Current Trends and Advances Related to
Phosphate Solubilizing Microorganisms

Due to the potential to solubilize organic and inorganic
phosphates, there is a trend to use and improve PSM as
biofertilizers [7, 14, 45]. Biofertilizers are microbiologically
active, eco-friendly, low-cost products, and are applied to
soil for growth promotion of plants [14, 17]. Though cur-
rently used chemical fertilizers fulfill the phosphate re-
quirement of plants, it damages the soil health and fertility.
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Nevertheless, the PSM increases the available phosphates in
the soil without harming its biochemical composition
[14, 17]. Furthermore, these biofertilizers are not crop-
specific and can be used for any type of plant, expecting
the increment of growth, yield, and crop quality through the
high phosphate absorption [14].

According to Satyaprakash [17], biofertilizers can sub-
stitute 50% of chemical fertilizers without any reduction of
the yield. However, some other studies report that bio-
fertilizers sometimes increase the yield. For example, it was
reported that there was a 12.6% yield increment of sugarcane
and 30% increment of wheat with Azotobacter and Bacillus
inoculants [14]. Furthermore, the combinations of PSM with
other PSMs give a better output of the yield. For example,
there was a 10-20% yield increment with the combination of
Bacillus megaterium and Azotobacter chroococcum. The
Bacillus circulans, Bacillus megaterium, Bacillus subtilis, and
Pseudomonas striata have been recognized as common and
effective biofertilizers [14].

The utilization of biofilm inoculants and nano-bio in-
oculants are the newest techniques in the biofertilizer for-
mulation technology. Biofilm inoculants are a combination
of two microorganisms; one microorganism (usually used
bacteria) colonizes over the other microorganism (bacteria
or fungi can be used). The second microorganism can be
a biotic surface to the first microorganism to form a meta-
bolically enhanced biofilm rather than to a single culture
[4, 80]. The density of these biofilms is very low in the soil,
although it affects high phosphate solubilization and pro-
motes growth in plants [4, 81]. Therefore, utilization of these
biofilms as biofertilizers through artificial formulation is
beneficial in agriculture [4]. Bahu et al., 2017 explained that

Pleurotus ostreatus, Xanthoparmelia mexicana, and Peni-
cillium spp. could be used in biofilms to achieve a significant
output.

PSM integrates with nanoparticles or nanostructures to
form nano-bio inoculants that can be regarded as another
novel technique in the production of biofertilizers. PSM
encapsulating with micronutrient nanoparticles or nano-
particles used as delivery agents is the strategy that is used in
the formulation of nano-bio inoculants. These nano for-
mulations resist UV inactivation, heat, and desiccation,
which allow an efficient application [4]. Silver, copper, gold,
platinum, iron, and lead are the commonly used nano-
particles to formulate nano-bio inoculants [4, 82].
According to Shukla et al. [82], significant growth pro-
motion is exhibited by the nano-bio inoculants using gold
nanoparticles with Pseudomonas putida, Pseudomonas flu-
orescens, Paenibacillus elgii, and Bacillus subtilis.

Another remarkable trend of PSM is the ability to utilize for
bioremediation and phytoremediation. Phytoremediation is an
efficient, eco-friendly and economical method that removes
metal contaminations from soil [4]. PSMs such as Enterobacter,
Pseudomonas, and Klebsiella have an ability to bioremediate
metals by phytostabilization or by phytoextraction in metal
contaminated soil [83]. Using a consortium of PSM than single
cultures is more efficient in bioremediation. During the process
of bioremediation, PSM produces organic acids, protons,
siderophore, and exopolysaccharides [4, 84].

PSM has the potential to be used as biological substances
to promote plant growth, yield, and crop quality and to be
used for bioremediation. Therefore, the development and
the application of these eco-friendly biological methods are
required to limit the usage of chemical fertilizers and other
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TaBLE 3: Organic acid secreting PSM.

11

Organic Acid

PSM

Reference

Lactic Acid

E. freundii, A. niger, Penicillium sp., P. trivialis
Escherichia freundii, Aspergillus niger, Penicillium sp., Bacillus megaterium,
Pseudomonas sp., Bacillus subtilus, Arthrobacter sp., Bascillus sp., Bacillus firmus B-
7650, Bacillus amyloliquefaciens, B. licheniformis, B. atrophaeus, Penibacillus
macerans, Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, E.
taylorae, E. asburiae, Kluyvera cryocrescens, Pseudomonas aerogenes, Chryseomonas
luteola, P.trivialis

(7]

Glycolic

Aspergillus niger, Penicillium sp.
Aspergillus, Penicillium sp.

Citric

Penicillium rugulosum, Arrhrobacter, Enterobacter, P. trivialis, Aspergillus flavus, A.
niger, Penicillium canescens, A. niger FS 1, Penicillium canescens FS23, Eupenicillium
ludwigii FS 27, Penicillium islandicum FS 30
Aspergillus niger, Penicillium sp., Arthrobacter sp., Bascillus sp., Bacillus firmus B-
7650, Aspergillus sp., Chaetomium nigricolor, A. japonicus, A. foetidus, Enterobacter
agglomerans, Penicillium rugulosum, Aspergillus flavus, Penicillium canescens,
P.fluorescens
Bacillus sp., Pseudomonas sp., Proteus sp., Aspergillus sp., Azospirillum sp.,
Penicillium sp.

(71]

[18, 72-74]

Gluconic

Penicillium rugulosum, Enterobacter intermedium, Aspergillus flavus, A. niger,
Penicillium canescens, P. fluorescens, Arrhrobacter, Enterobacter, Enterobacter sps Fs
11, A. niger FS 1, Penicillium canescens FS23, Eupenicillium ludwigii FS 27,
Penicillium islandicum
Aspergillus niger, Penicillium sp., A. japonicus, A. foetidus, P. radicum, Penicillium
rugulosum, Aspergillus flavus, Penicillium canescens, P.fluorescens, B.pumilus var.2,
B.subtilis var.2, Actinomadura oligospora, Citrobacter sp.

Bacillus sp., Pseudomonas sp., Proteus sp., Aspergillus sp., Azospirillum sp.,
Penicillium sp., Erwinia herbicola

(7]

[71]

[18, 72-74]

2-Keto Gluconic

Enterobacter intermedium
Enterobacter intermedium, Aspergillus sp., Penicillium sp., Chaetomium nigricolor
Pseudomonas, Erwinia herbicola

(7]
(71]
(18, 71, 74]

Oxalic

Aspergillus flavus, A. niger, Penicillium canescens, A. niger FS 1, Penicillium
canescens FS23, Eupenicillium ludwigii FS 27, Penicillium islandicum
Aspergillus niger, Penicillium sp., Aspergillus sp., Chaetomium nigricolor, A.
japonicus, A. foetidus, Enterobacter agglomerans, Aspergillus flavus, Penicillium
canescens, B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp.
Aspergillus sp., Penicillium sp.

(7]

(71]

[18, 72]

Succinic

Aspergillus flavus, A. niger, Penicillium canescens
Aspergillus niger, Penicillium sp., Aspergillus sp., Chaetomium nigricolor, A.
japonicus, A. foetidus, Aspergillus flavus, Penicillium canescens, B.pumilus var.2,
B.subtilis var.2, Actinomadura oligospora, Citrobacter sp.
Bacillus sp. , Pseudomonas sp., Proteus sp., Aspergillus sp., Azospirillum sp.,
Penicillium sp.

(7]

(71]

(18, 72-74]

Malic

P. fluorescens, Arrhrobacter sp., Enterobacter sps Fs 11
Bacillus megaterium, Pseudomonas sp., Bacillus subtilus, P.fluorescens
Bacillus sp. , Aspergillus sp., Penicillium sp.

(7]
[71]
(18, 72, 73]

Tartaric

Funaric

P. trivialis, Arrhrobacter, Enterobacter
A. japonicus, A. foetidus, P.fluorescens
Bacillus sp.

Enterobacter

(7]
[71]
(18, 73]
(7]

Formic

Indole Acetic Acid

Acetic

Isobutyric

P. trivialis
P.trivialis, B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp.
Psedomonas nitroreducens

Bacillus amyloliquefaciens, B. licheniformis, B. atrophaeus, Penibacillus macerans,
Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, E. taylorae, E.
asburiae, Kluyvera cryocrescens, Pseudomonas aerogenes, Chryseomonas luteola

Bacillus amyloliquefaciens, B. licheniformis, B. atrophaeus, Penibacillus macerans,
Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, E. taylorae, E.
asburiae, Kluyvera cryocrescens, Pseudomonas aerogenes, Chryseomonas luteola

(7]
(71]
(7]

(71]

[71]
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TaBLE 3: Continued.

Organic Acid

PSM Reference

Bacillus amyloliquefaciens, B. licheniformis, B. atrophaeus, Penibacillus macerans,

Itaconic Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, E. taylorae, E. [71]
asburiae, Kluyvera cryocrescens, Pseudomonas aerogenes, Chryseomonas luteola
Bacillus amyloliquefaciens, B. licheniformis, B. atrophaeus, Penibacillus macerans,
Isovaleric Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, E. taylorae, E. [71]
asburiae, Kluyvera cryocrescens, Pseudomonas aerogenes, Chryseomonas luteola
Propionic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Valeric B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Isovaleric B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Heptonic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Caproic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Isocaproic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Oxalacetic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Malonic B.pumilus var.2, B.subtilis var.2, Actinomadura oligospora, Citrobacter sp. [71]
Fumaric Bacillus sp., Pseudomonas sp., Proteus sp., Azospirillum sp. (18, 73, 74]

remediating chemicals as well as to promote the sustainable
utilization of available phosphates on Earth [17].

9. Drawbacks in Using PSM

The major drawback that can occur in the usage of PSM as
biofertilizers is competition with native microbial species
and reduction of PSM population in biofertilizers. Among
other constraints, there are insufficient nutrient amounts in
the soil to produce adequate amounts of organic acids and
enzymes, incompatible nature around the rhizosphere that is
specific to particular plant species, the survival of PSM in
biofertilizers [85], and necessity of aseptic conditions during
packaging of manufactured biofertilizers [86]. Though the
microorganisms perform well under laboratory and
greenhouse conditions, it would not be performed in the
field due to the harsh environmental conditions [30, 87].

Furthermore, the poor quality and less consistency are
other issues of biofertilizers. Most of the biofertilizers are
local productions, and information of the production pro-
cess is rare. The production cost of biofertilizers also must be
competitive compared to chemical fertilizers [30].

Several particular minerals associated with natural
phosphate resources also mobilize parallelly with phosphate
during the solubilization process. Among those minerals, F~,
Cl, AI**, and Ca** limit the solubilization of phosphate and
naturally decrease the rate of phosphate solubilization [66].

Gluconic acid has a major responsible role in phosphate
solubilization. However, recovery and purification of glu-
conic acid in conventional production methods are big
challenges [88]. Not only that, undesirable by-products and
unsatisfactory yields result in chemical methods are even
under carefully controlled and optimized conditions [89].

Phytoremediation is an additional advantage of PSM.
However, there are some drawbacks in practical applications.
Limitations of stress tolerating [90], slow and seasonally ap-
plicable treatment due to the changing environmental con-
ditions [91], and limitations of applicable compounds
according to the degradation ability are some of them [90].

10. How to Improve PSM

There are various PSM that are found in the soil. In order to
utilize the resource at the maximum level, it is necessary to
explore phosphate-solubilizing ability by wusing bio-
technology. At present, the scientific knowledge of phosphate
solubilization is limited. Thus, it is essential to conduct new
studies to explore this area. It is believed that several genes are
related to phosphate solubilization. Thus, it is necessary to
characterize these genes by genetic engineering and molecular
biotechnological studies to obtain highly efficient PSM. At the
initial stages, the napA phosphatase gene was transferred to
Burkholderia cepacia 1S-16 strain from Morganella morganii
strain to produce an effective biofertilizer [92].

As previously described, gluconic acid is the frequently
produced organic acid by PSM, which performs the major
phosphate solubilizing mechanism. Oxidative glucose, cat-
alyzed by glucose dehydrogenase enzyme, results in gluconic
acid when pyrroloquinoline quinine (PQQ) acts as a cofactor
[85]. Thus, there is a potential to clone the gene that causes
the synthesis of PQQ and transfer to other microbial strains
to produce highly efficient PSM with the ability to produce
gluconic acid. Especially, most abundant microorganisms
associated with the rhizosphere are able to be used for this
gene transformation, because those strains are the most
competent organisms (Rhizobium spp., Pseudomonas spp.)
around the rhizosphere which decrease the phosphate sol-
ubilization of applied biofertilizers in some cases. Improving
the phosphate solubilizing ability of PSM by using bio-
technology needs to be essentially focused, because pesticide
usage in agriculture has also been limited by microbial
biotechnology [92]. In addition, the microorganisms, ex-
pected to be used as biofertilizer must have vast potential to
tolerate harsh environmental conditions in the field appli-
cation. Selecting the most tolerable PSMs for harsh condi-
tions and improving the gene compositions to increase the
phosphate solubilizing ability is far better to obtain expected
outcomes. The genes responsible for phosphate solubilizing
enzymes and organic acids have to be considered here.
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FIGURE 2: SDG related to Phosphate solubilization.

Further research studies are open to developing stress tol-
erating, which is highly efficient PSMs.

Selecting a carrier material that provides required nutrients
and a favorable environment for the PSM while producing
biofertilizers would enhance effectiveness up to the expected
higher outcomes. In addition, it will strengthen the PSM to
compete with native microorganisms and reflect the result of
high-quality biofertilizers [30, 86]. High quality and low-cost
phosphate biofertilizers still have a huge gap to fulfil in the
international market [30]. An internationally recognized strong
quality control framework has to be established to improve the
quality of phosphate biofertilizers to achieve the economic goals.

Furthermore, parallel solubilization of associated minerals
that decrease the phosphate solubilization has to be declined
or to mask those minerals. Further research studies are
needed to investigate a method to solubilize only phosphate or
limit the solubilization of other interfering minerals.

Moreover, some essential macro and micronutrients for
plants such as Mg, K, Cu Mn, and Zn parallelly mobilize
during the phosphate solubilization process [12, 30]. This
added advantage has to be considered in the biofertilizer
production and price decision process.

Aspergillus sp., Penicillium sp, and Gluconobacter sp.
[89, 93, 94] are adaptable to commercial production of gluconic
acid as phosphate biofertilizer due to their huge potential for the
natural synthesis of gluconic acid. There is a gap in developing
a method to synthesize gluconic acid with high purity by using an
eco-friendly and cost-effective substrate. Abovementioned mi-
crobial species have a huge opportunity to represent the frontline.

As the option for the issues of phytoremediation,
a combination of other remediation methods with phy-
toremediation may give a significant positive outcome, and
this also needs to be studied further.

11. Contribution of PSM for Achieving
Sustainable Development Goals (SDG)

Increasing bioavailability of phosphate by microorganisms
contributes towards sustainable development in a broad

range of key areas (Figure 2). Proper plant growth, food
security, industrial growth, environmental sustainability,
and water security are directly affecting key areas with the
microbial solubilization of phosphate [95].

Continuous addition of phosphate fertilizers to provide
optimum requirement of phosphate for crops due to the low
bioavailability is not the proper way and it is a waste of the
resource [96]. Potential of PSM to solubilize available
phosphate in soil makes responsible consumption of the
resource (SDG 12). It creates the pathway to reduce the
addition of excess phosphate with associated other chemicals
as fertilizers to soil and contribute to build up sustainable
terrestrial ecosystems with reverse land degradation to halt
biodiversity loss (SDG 15) [85, 97]. On the other way, excess
addition of phosphate to soil causes eutrophication by
disrupting valuable aquatic resources and polluting the
water [98]. Development of PSM as bio fertilizers by re-
ducing the excess utilization of phosphate fertilizers ensures
the sustainable conservation of aquatic resources (SDG 14)
and of sustainable management of available clean water
(SDG 06) [99]. Bioavailability of phosphate accelerates the
proper growth of plants with sufficient production of food
[100]. Contribution of PSM for food security through sus-
tainable agriculture promotes public nutrition and end
hunger (SDG 02) [101]. Development of crop production by
PSM promotes the sustainable agricultural industry (SDG
09) which ensures the sustainable economic growth (SDG
08) with moving forward to reduction of poverty (SDG 01)
[102]. Economically developed society with less poverty,
zero hunger, and better living environment promotes sus-
tainable peaceful society, which provides access to justice
(SDG 16) [103]. In this context, PSM contributes signifi-
cantly to achieve SDG directly and indirectly within the
framework of the 2030 agenda of the United Nations.

12. Conclusion

The application of PSM to solubilize phosphate is an efficient
and eco-friendly method. Bacillus and Pseudomonas are the
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frequent bacterial genera while Penicillium and Aspergillus
are the major fungal genera of PSM. A consortium of PSM
other than single cultures improves the output significantly.
Among the different solubilizing methods followed by PSM,
organic acid production is notable, and gluconic acid is the
foremost organic acid involved in the phosphate immobi-
lization process. Because of this potential, there is a new
trend to use more diverse and much more potent PSM for
the formulation of biofertilizers. Genetic engineering and
molecular biotechnology can be used to develop the
phosphate solubilization of PSM. These applications and
developments in methods would sustainably enhance the
utilization of phosphate. Therefore, PSM contributes directly
and indirectly to achieve the SDG, especially the goals of no
poverty, zero hunger, clean water and sanitation, decent
work and economic growth, industry innovation and in-
frastructure, responsible consumption and production, life
below water, life on land and peace justice, and strong
institutions.
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