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Pentacyclic triterpenol methyl ethers (PTMEs), germanicol methyl ether (miliacin), 3-methoxyfern-9(11)-ene (arundoin), β-
amyrin methyl ether (iso-sawamilletin), and 3-methoxytaraxer-14-ene (sawamilletin or crusgallin) were characterized in surface
sediments of the Cross-River system using gas chromatography-mass spectrometry (GC-MS). Triterpenol esters (mainly α- and
β-amyrinyl acetates and hexanoates, and lupeyl acetate and hexanoate) were also found. These distinct compounds are useful
for assessing diagenesis that can occur during river transport of organic detritus. Poaceae, mainly Gramineae and Elaeis guineensis
higher plant species, are proposed as primary sources for the PTMEs and esters in the sediments. PTMEs are biomarkers of specific
higher plant subspecies, while the triterpenol esters are indicators of early diagenetic alteration of higher plant detritus.

1. Introduction

Pentacyclic triterpenoids have generally been utilized as
biomarkers to trace genetic sources of organic matter
in sedimentary environments, petroleum exploration, or
paleoenvironmental reconstructions of biome changes that
document climate change [1–4]. The oleananes, ursanes,
fernanes, lupanes, and their derivatives, widely distributed
mainly as the oxygenated forms in many varieties of
higher plant species, belong to this class of compounds
[4–10]. Their characterization in chemotaxonomic studies
can provide key information of flora changes [11]. Their
tendencies to also resist biodegradation and occurrence
in sediments suggest the potential application as specific
higher plant derived biomarkers [9, 10]. However, reports
of pentacyclic triterpenol methyl ethers (PTMEs) in sed-
imentary environments are limited to lakes [2, 4, 12].
Other reports have assessed sedimentary input of terrestrial
and/or planktonic organic matter with triterpenoid natural

products (e.g., [13–15]) and biomass source tracers to smoke
aerosols (e.g., burning of sugar cane [16]). Reports of
triterpenoid esters in sediments are also limited, because
typical extract analyses generally involved saponification as
a preparative step. Plant wax analyses without hydrolysis
do reveal triterpenol esters as part of the wax esters in
epicuticular waxes (e.g., [17, 18]).

Under aerobic conditions, the transformation of plant-
derived triterpenoids often involves oxidation, dehydration,
hydrolysis, decarboxylation, ring opening, and aromatiza-
tion reactions [19]. For instance, in coal forming environ-
ments, higher plant triterpenoids generally undergo arom-
atization starting from ring A, triggered by the elimination
of the oxygenated functionality at C-3 and proceeding
to rings D/E [20–22]. The PTMEs, which are natural
products, appear to be more resistant to environmental
alteration than the triterpenol esters and thus may be good
biomarkers. Triterpenol esters, on the other hand, may
be useful for assessing early diagenesis (i.e., hydrolysis) of
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terrestrial higher plant detritus during river transport. It
is the aim of this paper to report on the characterization,
occurrence, and sources of PTMEs and triterpenol esters
in surface sediments of the Cross-River system, Nigeria.
These are minor compounds occurring with the dominant
triterpenoids such as taraxerol, amyrin, and lupeol.

2. Locale Description

The characteristic features of the study area are summarized
in Table 1 and the sampling locations of surface sediments
are shown in Figure 1. The Cross-River system is one of
the largest estuaries located in the eastern edge of the Niger
Delta. The whole Cross-River system lies approximately
between longitudes 2◦ 03′ E and 10◦ 00′ E and latitudes
4◦ 00′ N and 8◦ 00′ N and covers an area of 54,000 km2, of
which 14,000 km2 lies in Cameroon and 39,000 km2 lies in
Nigeria. The river is formed from numerous tributaries aris-
ing from the western slopes of the Cameroon Mountains. It
flows southwest into the Atlantic Ocean with a discharge rate
between 879 and 2533 m3/sec [23]. The system is exposed
to temporal flooding depending on the tides and the season
(wet versus dry) and has large fluctuations in hydrographic
conditions [23]. The river system is characterized by the
interaction of an estuarine and freshwater-seawater frontal
system seaward of the river mouth (typical of a deltaic coastal
region) with tidal and wind-driven surface currents. Previous
studies focused mainly on fisheries [24], ecology [25], water
quality [26], hydrology of the lower Cross-River [23], and
hydrocarbons in sediments [27, 28].

3. Experimental Methods

Sampling stations were chosen to cover the characteristic
features of the river environment as summarized in Table 1.
Sediments were collected in January 1999 (dry season)
with a Van Veen grab sampler (0.1 m2), wrapped with
aluminum foil and stored frozen at −4◦C until analysis.
Freeze-dried sediments were grounded in a disc mill and
subsequently sieved to pass 230 mesh to obtain the <63 μm
fraction. Extraction and fractionation of the <63 μm fraction
were as previously reported by Ekpo et al. [29]. Briefly,
50 g dry samples were extracted in a Soxhlet apparatus
with dichloromethane and methanol (2 : 1). Extracts were
concentrated, desulfurized (activated Cu), and fractionated
by column chromatography on activated silica and alumina.
The saturated fraction (F1) was eluted with hexane, the aro-
matic fraction (F2) with dichloromethane, and the nitrogen-
sulfur-oxygen (NSO) containing polar fraction (F3) with
dichloromethane-methanol. All fractions were reduced in
volume and dried aliquots were weighed for quantitation.
Total organic carbon (TOC) analyses for all sediment
samples were obtained using an LECO C-S-444 analyser.

Gas chromatography-mass spectrometry (GC-MS) anal-
yses of the isolated fractions were performed on a Hewlett-
Packard Model 6890 GC coupled to a Hewlett-Packard
Model 5973 quadrupole MSD. Separation was achieved
on a DB5-MS column (30 m × 0.25 mm i.d., 0.25 μm film

thickness). The GC operating conditions were as follows.
Temperature holds at 65◦C for 2 minutes, increases from 65
to 300◦C at a rate of 6◦C min−1, and with final isothermal
holds at 300◦C for 20 minutes. Helium was used as carrier
gas. The sample was injected in the splitless mode with
the injector temperature at 300◦C. The mass spectrometer
was operated in the electron impact mode at 70 eV ion-
ization energy and scanned from 50 to 650 Dalton. Data
were acquired and processed using ChemStation software.
Compounds were identified by comparison with literature
data and interpretation of mass spectrometric fragmentation
patterns.

4. Results and Discussion

The analytical results are presented in Table 1. The percent-
age of total organic carbon (TOC) contents in the sediments
ranged between 1.3% and 4.6%, while the extractable organic
matter (EOM) ranged between 1.1 and 4.1 g/kg dry weight
(dw). The total hydrocarbons determined from F1 and F2
fractions showed the lowest concentration range in sedi-
ments from the upper river region (range 2–44 mg/kg dw),
a moderate concentration range in sediments from the
middle region (range 60–148 mg/kg dw), and the highest
concentration range in sediments from the lower deltaic
region of the estuary (185–511 mg/kg dw) (Table 1). The data
for the Upper Calabar River and Great Kwa River are given as
ranges and averages (Table 1).

4.1. Mass Spectrometry. Pentacyclic triterpenol methyl ethers
(PTMEs) in the bottom sediments were monitored with the
m/z 440 key ion (M.+) in the MS data. Examples are shown
in Figure 2 and the mass spectra of the major PTMEs are also
given. Their concentrations range from 0.02 to 2.4 mg/kg dw
(Table 1). The fragment ion at m/z 408 (M-32, minor) and
m/z 393 (M-15-32) indicates loss of the methoxy group as
methanol during fragmentation [30]. Compound 1 has a
base peak at m/z 189 and accompanying ions at m/z 177 and
204, which are characteristic for germanicol (olean-18-en-
3β-ol). Thus the mass spectrum fits with the methyl ether
of germanicol (miliacin). Compound 2 has a base peak at
m/z 204 which is from the D/E ring of taraxerene after
retro-Diels-Alder rearrangement [31]. The additional ions at
m/z 316, 301, 284, 269, 257, 218, and 189 are characteristic
for taraxerol methyl ether. Compound 3 exhibits a different
fragmentation pattern, with significant fragments at m/z 425
(base peak), 393, 273, 241, and 71. The prominent fragment
ion at m/z 393 (M-15-32) indicates loss of a methyl group
followed by methanol, and m/z 273 (M-167) fission of ring
C/D and loss of the ring E moiety with the isopropyl group,
typical of the fernene type and is assigned as fern-9(11)-en-
3β-ol methyl ether [32]. The mass spectrum of compound 4
has a base peak at m/z 218 and intense ions at m/z 191 and
203, which, with the M.+ at m/z 440 and the typical fragments
at m/z 425, 408, and 393 indicate 3β-methoxyolean-12-ene
(β-amyrin methyl ether or iso-sawamilletin). These mass
spectra are also good fits with those reported by Jacob et al.
[4].



International Journal of Analytical Chemistry 3
T

a
bl

e
1:

Se
di

m
en

t
sa

m
pl

es
,e

nv
ir

on
m

en
ta

lc
h

ar
ac

te
ri

st
ic

s,
an

d
tr

it
er

p
en

oi
d

m
ar

ke
rs

in
th

e
ex

tr
ac

ts
fr

om
th

e
C

ro
ss

-R
iv

er
es

tu
ar

y,
N

ig
er

ia
.

Z
on

es
I

II
II

I
IV

V

Sa
m

pl
e

co
de

C
R

-1
C

R
-2

C
R

-3
C

R
-4

C
R

-5
C

R
-6

C
R

-7
C

R
-8

C
R

-9
C

R
-1

0

U
C

R
1–

10
,

ra
n

ge
(a

ve
.)

G
K

R
1–

11
,

ra
n

ge
(a

ve
.)

L
oc

at
io

n
n

am
e

O
ro

n
be

ac
h

O
ku

Ib
ok

u
be

ac
h

It
u

be
ac

h
U

pp
er

C
al

ab
ar

R
iv

er

G
re

at
K

w
a

R
iv

er

Sa
m

pl
e

co
or

di
n

at
es

4◦
43

.9
61

N
8◦

21
.3

27
E

4◦
46

.5
31

N
8◦

18
.9

08
E

4◦
49

.9
27

N
8◦

15
.5

01
E

4◦
52

.6
75

N
8◦

12
.7

42
E

4◦
56

.8
79

N
8◦

09
.3

34
E

5◦
00

.4
37

N
8◦

07
.0

62
E

5◦
04

.3
18

N
8◦

06
.2

50
E

5◦
08

.1
98

N
8◦

04
.3

03
E

5◦
12

.7
26

N
8◦

03
.4

91
E

5◦
12

.2
58

N
8◦

00
.2

22
E

E
nv

ir
on

m
en

ta
lc

h
ar

ac
te

ri
st

ic
s

N
yp

a
fr

ut
ic

an
w

it
h

sp
ar

se
ly

di
st

ri
bu

te
d

E
la

ei
s

gu
in

ee
ns

is
an

d
A

nd
ro

po
go

ne
ae

R
iz

op
ho

ri
a

w
it

h
sp

ar
se

ly
di

st
ri

bu
te

d
E

la
ei

s
gu

in
ee

ns
is

an
d

A
nd

ro
po

go
ne

ae

A
vi

ce
nn

ia
w

it
h

sp
ar

se
ly

di
st

ri
bu

te
d

E
la

ei
s

gu
in

ee
ns

is
an

d
A

nd
ro

po
go

ne
ae

T
O

C
(%

)
4.

03
3.

64
4.

35
4.

56
4.

20
4.

38
2.

77
1.

27
2.

66
4.

26
n

a
n

a

E
O

M
(m

g/
kg

)
30

00
36

80
19

20
29

50
37

10
41

40
26

50
15

10
11

40
18

50
n

a
n

a

T
H

C
(m

g/
kg

)
32

9
51

1
22

7
18

5
14

8
60

99
44

16
2

n
a

n
a

C
om

po
u

n
ds

(m
g/

kg
dw

)
M

W
Fo

rm
u

la

Ta
ra

xe
r-

14
-

en
-3

-o
n

e
42

4
C

30
H

48
O

1.
9

2.
63

9.
6

1.
34

3.
8

1.
1

1.
05

0.
3

0.
39

1.
36

0.
3–

12
.8

(4
.9

)
0.

15
–2

1.
4

(1
0.

7)

Ta
ra

xe
r-

14
-

en
-3
β

-o
l

m
et

hy
le

th
er

44
0

C
31

H
52

O
0.

16
0.

21
0.

14
0.

18
0.

51
0.

18
0.

28
0.

26
0.

88
0.

97
0.

2–
1.

2
(0

.4
)

0.
1–

0.
6

(0
.2

5)

G
er

m
an

ic
ol

m
et

hy
le

th
er

44
0

C
31

H
52

O
0.

05
0.

11
0.

07
0.

06
0.

17
n

d
0.

42
0.

11
0.

40
0.

52
0.

3–
2.

1
(0

.7
)

0.
04

–1
.0

7
(0

.2
9)

β
-A

m
yr

in
m

et
hy

le
th

er
44

0
C

31
H

52
O

0.
12

0.
17

0.
04

0.
06

0.
04

0.
08

0.
32

0.
18

0.
22

0.
36

n
d

0.
26

–1
.8

0
(0

.4
4)

Fe
rn

-9
(1

1)
-

en
-3
β

-o
l

m
et

hy
le

th
er

44
0

C
31

H
52

O
0.

30
0.

32
0.

31
0.

38
0.

21
0.

22
n

d
0.

12
0.

38
0.

94
0.

4–
2.

2
(1

.1
)

0.
01

–2
.3

5
(0

.6
8)

α
β

-A
m

yr
in

yl
ac

et
at

es
46

8
C

32
H

52
O

2
0.

57
4.

73
1.

60
0.

06
0.

15
0.

02
0.

59
0.

31
3.

12
0.

97
0.

8–
2.

1
(0

.9
)

0.
13

–1
.0

5
(0

.2
3)

Lu
p

ey
l

ac
et

at
e

46
8

C
32

H
52

O
2

0.
19

1.
31

n
d

n
d

n
d

n
d

n
d

n
d

3.
05

n
d

n
d

n
d

G
er

m
an

ic
yl

ac
et

at
e

46
8

C
32

H
52

O
2

0.
11

0.
86

0.
05

n
d

n
d

n
d

n
d

n
d

0.
18

0.
02

n
d

n
d

α
β

-A
m

yr
in

yl
h

ex
an

oa
te

s
52

4
C

36
H

60
O

2
n

d
0.

32
0.

48
0.

03
n

d
n

d
n

d
n

d
0.

21
0.

03
n

d
n

d

Lu
p

ey
l

h
ex

an
oa

te
52

4
C

36
H

60
O

2
n

d
0.

02
0.

07
0.

01
n

d
n

d
n

d
n

d
0.

02
n

d
n

d
n

d

A
bb

re
vi

at
io

n
s:

E
O

M
:e

xt
ra

ct
ab

le
or

ga
n

ic
m

at
te

r;
T

H
C

:t
ot

al
hy

dr
oc

ar
bo

n
s;

n
d:

n
ot

de
te

ct
ed

(m
in

im
u

m
de

te
ct

io
n

lim
it
=

0.
00

2
m

g/
kg

);
n

a:
n

ot
an

al
yz

ed
.



4 International Journal of Analytical Chemistry

C
al

ab
ar

Inua Abasi

Atlantic ocean

Atlantic ocean

D
is

ta
le

st
ua

ry

M
id

dl
e

es
tu

ar
y

U
pp

er
es

tu
ar

y

Itu

Oron

Mbo river

Cro
ss

riv
er

es
tu

ar
y

G
re

at
K

w
a

ri
ve

r

0510 10 km

Nigeria

Study area

Niger delta complex

Warri

Owerri

Ibadan

Benin
Enugu

Port Harcourt

10

9

8
7

6

5

4

3

2

1

9◦8◦7◦6◦

6◦

5◦

5◦

4◦

4◦

8◦00′E 8◦20′E

Figure 1: Map of the southeastern part of the Niger Delta of Nigeria showing the sampling locations in the Cross-River estuary.

Examples of MS data for the triterpenol esters are
shown in Figure 3. The mass spectra of the esters are quite
simple, reflecting the fragmentation pattern of the triterpane
skeleton with minor ions from the additional acid moiety
[33]. Thus, the key ion for the amyrin esters is m/z 218 and
the mass spectrum of β-amyrinyl acetate consists of the M.+

at m/z 468, loss of CH3 to m/z 453, and loss of the acetic acid
after H transfer to m/z 408 (Figures 3(a) and 3(b), resp.). The
amyrinyl hexanoates (e.g., Figure 3(c) for 3β-isomer) have
M.+ at m/z 524, followed by loss of CH3 or the acid moiety
to m/z 509 and 408, respectively. The mass spectra of lupeyl
acetate (Figure 3(d)) and lupeyl hexanoate (Figure 3(e)) also
exhibit the dominant fragmentation pattern of the lupene
skeleton and the acid moiety is reflected in the M.+, M-CH3,
and M-acid ions. The mass spectrum of germanicyl acetate
(Figure 3(f)) has the characteristic fragments for oleana-
2,18-diene with significant M.+ at m/z 468, and M-CH3

to m/z 453 and a minor loss of acetic acid to m/z 408.
The concentrations of the triterpenol esters range from not
detectable to a total of 7.2 mg/kg (Table 1).

4.2. Sources and Fate. The detection of these PTMEs in
relatively few sedimentary environments may be linked to
variation in environmental conditions such as seasonal and
environmental differences that determine the biosynthesis
of these compounds in specialized tissues of certain species
of higher plants [4]. Nevertheless, the PTMEs are natural
products introduced directly to the river in organic detritus,
probably in leaf litter. The primary sources of PTMEs in this

estuary may be from monocotyledonous plants belonging to
the Gramineae, on the basis of taxonomic identifications in
the vicinity of the study area. According to Jacob et al. [4]
plants belonging to the Poaceae produce iso-sawamilletin,
miliacin, arundoin, and sawamilletin and thus could also
contribute to the sources of PTMEs in these sediments. For
instance, the occurrence of nine PTMEs from numerous
species of Gramineae has been reported (e.g., [30, 34]) and
arundoin was found in palm trees, Elaeis guineensis [35], and
most Poaceae reviewed by Jacob et al. [4].

The persistence of these PTMEs in this estuary may
reflect their relative stability to aerobic degradation. We see
no evidence that these PTMEs have undergone diagenetic
transformations to the 3α-PTMEs [4] in the sediments.
Taraxerone also reported for reference (Table 1) was detected
at almost all the sampling stations. It is a product from
the aerobic oxidation of taraxerol from mainly a mangrove
origin and a major natural product in most of these samples
(Table 1) (e.g., [6, 36–38]). Thus, the relative capacity of
these PTMEs to resist biodegradation may enhance their
utility as biomarkers for source correlations of specific higher
plant subspecies in environmental samples.

The triterpenol esters in these sediments are mainly
acetates and lesser amounts of hexanoates (Table 1). How-
ever, based on previous studies of triterpenoid esters in
vegetation and sediments (palmitates, stearates, etc., [17,
18]), it is possible that there are even higher molecular weight
esters present in these sediments. They are known to elute at
much higher GC temperatures and are not detectable by this
analytical protocol. The concentrations of the esters are low
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Figure 2: Examples of GC-MS data for triterpenoid methyl ethers in sediment extracts: (a) m/z 440 mass fragmentogram for sample GKR-
08, (b) m/z 440 mass fragmentogram for sample GKR-02, (c) mass spectrum of sawamilletin, (d) mass spectrum of miliacin, (e) mass
spectrum of iso-sawamilletin, and (f) mass spectrum of arundoin.

compared to their parent triterpenols, so a mass balance is
not feasible. Nevertheless, their presence in certain sediments
may indicate a close input source to that locale, because
acetates, like the wax esters, are susceptible to hydrolysis
during river transport. The concentrations of the acetates
are always 2 to 10 times greater than the hexanoates (e.g.,
Figure 3(a), Table 1). The highest amounts are observed in
the upriver locales and the lowest amounts downriver and in
the mangrove bounded estuary. Thus, their source is likely
in litter and terrestrial detritus from the grasslands and the
deciduous forests and not the mangrove stands.

5. Conclusion

Pentacyclic triterpenol derivatives, as the methyl ethers
(PTMEs) and alkanoates, were characterized in the sedi-
ments of the Cross-River system. The PTMEs that were
characterized included germanicol methyl ether (miliacin),
3β-methoxyfern-9(11)-ene (arundoin), β-amyrin methyl
ether (iso-sawamilletin), and 3β-methoxytaraxer-14-ene
(sawamilletin), while the alkanoates consisted mainly of
α- and β-amyrinyl and lupeyl acetates and hexanoates.
These distinct biomarkers are readily extractable from
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Figure 3: Examples of GC-MS data for triterpenoid esters in sediment extracts: (a) m/z 218 mass fragmentogram for amyrinyl esters, (b)
mass spectrum of β-amyrinyl acetate, (c) mass spectrum of β-amyrinyl hexanoate, (d) mass spectrum of lupeyl acetate, (e) mass spectrum
of lupeyl hexanoate, and (f) mass spectrum of germanicyl acetate.

river sediments using polar solvent extraction techniques
and are identifiable with routine GC-MS analysis by their
characteristic mass spectrometric fragmentation pattern.
Pentacyclic triperpenol natural products, their derivatives,
and degradation products are excellent chemical metrics for
extrapolating the impacts that the river/estuary environment
imparts on higher plant organic matter.
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