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Human clinical trials seek to ameliorate the disease states and symptomatic progression of illnesses that, as of yet, are largely
untreatable according to clinical standards. Ideally, clinical trials test “disease-modifying drugs,” i.e., therapeutic agents that
specifically modify pathological features or molecular bases of the disease and would presumably have a large impact on disease
progression. In the case of Alzheimer’s disease (AD), however, this approach appears to have stalled progress in the successful
development of clinically useful therapies. For the last 25 years, clinical trials involving AD have centered on beta-amyloid (Aβ)
and the Aβ hypothesis of AD progression and pathology. According to this hypothesis, the progression of AD begins following
an accumulation of Aβ peptide, leading to eventual synapse loss and neuronal cell death: the true overriding pathological feature
of AD. Clinical trials arising from the Aβ hypothesis target causal steps in the pathway in order to reduce the formation of Aβ
or enhance clearance, and though agents have been successful in this aim, they remain unsuccessful in rescuing cognitive
function or slowing cognitive decline. As such, further use of resources in the development of treatment options for AD that
target Aβ, its precursors, or its products should be reevaluated. The purpose of this review was to give an overview of how
human clinical trials are conducted in the USA and to assess the results of recent failed trials involving AD, the majority of
which were based on the Aβ hypothesis. Based on these current findings, it is suggested that lowering Aβ is an unproven
strategy, and it may be time to refocus on other targets for the treatment of this disease including pathological forms of tau.

1. The Challenges of Treating CNS Disorders

Before discussing recent clinical trials involving Alzheimer’s
disease (AD), it is important to highlight some of the chal-
lenges associated with treating CNS disorders. The challenges
specific to the CNS derive, at least in part, from the fact that
the scientific understanding of the brain is not as advanced as
some other physiological systems. In the majority of disor-
ders within the CNS, there remains minimal or, in some
cases, no understanding as to the pathophysiology of the
condition of interest. Thus, designing therapeutics whereby
molecular targets are not well defined is an obvious hurdle
that must be overcome. This has led to the cold reality that
despite the high and growing prevalence as well as the sub-
stantial economic burden, there are no disease-modifying
therapies for many neurological disorders and neurodegen-
erative diseases. In addition, compared to other systemic dis-

eases, failure rates in late stage clinical trials are high for
neurologic and psychiatric diseases due in part to the com-
plexity of the human brain [1]. This makes the development
process longer compared to other therapeutic areas and is
related possibly to greater safety risks for volunteers and
patients, particularly at early phases of clinical trials. Another
confounding subjective factor is the placebo effect, in which a
patient’s expectation of therapeutic benefit can interfere with
the response to drug administration [2]. Indeed, the placebo
effect pervades all clinical trials, particularly CNS trials [3].
For example, the failure of many recent neurological clinical
trials, such as those for pain, Parkinson’s disease, and schizo-
phrenia, is a direct result of high placebo effects [3].

A substantial proportion of CNS drug trials also rely on
subjective endpoints, which can increase the potential for
variability in the data. For example, many AD trials rely on
endpoints such as subjective memory improvement or the
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use of the Alzheimer’s Disease Assessment Scale-cognitive
(ADAS-cog) to capture changes in cognition as the primary
measures of efficacy. Clinicians and trial sites vary widely in
their experience in administrating assessment instruments,
leading to unintentional variability of data. In addition, clin-
ical assessments using scales to measure cognitive impair-
ment, disability, quality of life, or global disease severity are
affected by symptomatic effects of therapies and, in the short
term, cannot differentiate this effect from disease modifica-
tion. These factors combine to make it nearly impossible to
demonstrate proof of efficacy in phase II-III trials [4].

In addition to these subjective endpoints, there are other
barriers that have limited the success of developing thera-
peutics for CNS disorders. Unique challenges start at the
preclinical stage due to the complexity of the human brain
and the limited possibility to study drug candidates in the
relevant tissue environment. More importantly, the aspect
of the blood-brain barrier (BBB) creates multiple issues in
drug penetration. Therapeutic drugs that show early promise
during drug development often fail to successfully clear sub-
sequent clinical trials due in part to their inability to cross
the BBB. It has been estimated that more than 98% of small
molecule drugs and nearly 100% of large molecule drugs are
precluded from drug delivery to the brain as a result of the
BBB [5].

Probably one of the most surprising objective hurdles
that must be overcome in the treatment of CNS disorders is
the recruitment of patients. Recruitment is the slowest and
most expensive aspect of clinical trials and represents a major
barrier to clinical research progress. The challenge of patient
recruitment is due, at least in part, to poor public awareness
about many CNS diseases, which may result in delayed diag-
nosis. In AD, this has been a long-standing problem [6–8] for
reasons including that only approximately 20-25% of people
are eligible to participate in AD trials [9] and that trials are
seeking participants who are either in prodromal or asymp-
tomatic phases of the disease [10]. Figure 1 summarizes the
challenges associated with developing therapeutic agents for
the treatment of CNS disorders and diseases.

2. Brief Overview of FDA Clinical Trials

In the United States, clinical trials are regulated by the Food
and Drug Administration (FDA) to ensure that drugs reach-
ing the market are both efficacious in the treatment of the
intended disorder or illness and safe for the intended patient
population [11]. Having a molecular entity approved for the
treatment of a disease or disorder is no small feat: the process
for new drugs is divided into 2 sections (preclinical and clin-
ical) and typically spans 12-15 years at a cost of $2.6 billion
[12, 13]. Approximately 5 of 5,000 new drugs complete the
preclinical phase and advance to clinical trials in humans.
Of those five, one drug is typically approved by the FDA
and reaches the marketplace [14].

Clinical trials consist of four distinct phases identified as
I-IV, as well as a preclinical phase, and a phase 0 trial repre-
senting an exploratory trial [13, 15] (Table 1). In its entirety,
the clinical trial process may take anywhere from 12-15 years

and, with 80% of clinical trials failing after phase I or II, offers
no guarantee of success [13].

Though much of the data obtained at each step of the
clinical trial process is available to the public through the
NIH clinical trials database (clinicaltrials.gov), this is still a
relatively new level of transparency, having come into place
in 2007. Now, over ten years later, it is important to note that
regulation and enforcement of timely reporting remain
somewhat lack luster, and therefore, not all clinical trial
information may be publicly available. This is still the case
even after a 2017 collaboration by the NIH and FDA to liti-
gate the so-called final rule meant to clarify and allow for
the enforcement of this such reporting [16].

2.1. Preclinical Phase. Clinical trials begin with preclinical
testing that typically lasts 6.5 years. The preclinical phase
aims at gathering information on the pharmacokinetics,
chemistry, manufacturing plan, and potential quality control
of the proposed drug [15]. At the preclinical stage, risk is
determined by conducting toxicity studies using in vitro
and in vivo models. For in vivo studies, at least two different
mammalian species are required (commonly mice and rats)
[11]. The use of mice as a model system in preclinical testing
may be a contributing factor to the high failure rate of AD tri-
als, as the findings derived from these studies do not always
translate to human neurophysiology [17].

2.2. Phase 0. Because only about 10% of IND applications
result in clinically approved drugs [18] and because drug
development is a lengthy, expensive, and risky proposition,
in some cases, early testing may be performed to assess
whether a drug engages with its expected target and is there-
fore more likely to have the anticipated clinical effect in
human subjects [19]. The main goal of phase 0 trials is to
acquire, in a relatively small group of subjects receiving non-
toxic doses of the drug, information that would aid in the
design and potential success of subsequent larger phase I-II
trials (Table 1). Another potential goal of a phase 0 trial is
to determine whether a mechanism of action defined in non-
clinical models can be achieved in humans [20]. Phase 0 can
eliminate drugs that do not measure up to even the most
rudimentary requirements and thus can save time and
money [21].

2.3. Phases I-IV and NDA. Following the approval of an IND
by the FDA or successful completion of a phase 0 trial, clin-
ical trials may begin in phase I. Unless a phase 0 trial has been
carried out, phase I clinical trials represent the first incidence
of human exposure to the drug candidate and therefore must
focus their efforts on testing in a small sample of healthy vol-
unteers, avoiding, for the time, adverse effects that may be
unique to, or more extreme in, a diseased population [11].
Phase I studies are primarily safety trials and are interested
in further elucidating the toxicity and pharmacokinetic fac-
tors associated with the treatment [22]. These are typically
single-blind studies that involve a small number of subjects
(Table 1) [13].

Phase II trials are controlled clinical studies evaluating
the effectiveness of the drug in a specific disease and defining
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an effective dose that provides the optimal benefit-risk profile
for the use of the drug [13]. In phase II, studies are conducted
at a larger scale (dozens to hundreds) on patients with the
disease that the drug is intended to treat. In addition to deter-
mining side effects, phase II studies begin to assess efficacy
[13]. The average duration is 2 years, and after phase II, the
FDA and drug sponsors collaborate on phase III study
designs [22]. It is noteworthy that 80% of all drugs tested
are abandoned by their sponsors after phase I or II because
of excessive toxicity or lack of efficacy [23].

Phases III and IV differ from the previously discussed
trial designs due largely to their magnitude and are the final
confirmation of safety and efficacy. Phase III studies are large
controlled trials involving thousands of people in the target

disease population. The trials evaluate effectiveness, monitor
side effects, and compare the drug with commonly used alter-
native therapies [15]. These studies continue to evaluate the
safety and efficacy of the proposed treatment, but at a large
enough scale to ensure that any observed results are statisti-
cally significant [11] [23]. A key aspect of phase III trials is
that they must include enough patients to have at least an
80% chance of finding a clinical effect if it really exists. This
is often referred to as the power of the study [23].

Upon the completion of phase III studies, a New Drug
Application (NDA) is submitted to the FDA [11]. This
interim period is sometimes referred to as the FDA approval
phase and typically lasts one to two years, during which all
previous data is validated by the FDA [11; 14]. The NDA is
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Figure 1: The challenges of treating CNS disorders. Both subjective and objective hurdles must be surpassed when developing
pharmaceuticals for the treatment of CNS disorders and diseases. Overcoming these hurdles has proven difficult leading to a minimum an
increase in time and cost for drug development and at a worse to many drug failures that would otherwise be realized for a systemic-
related disorder.

Table 1: Clinical trial phases as regulated by the FDA. Table detailing FDA-regulated clinical trial phases as a function of their length,
purpose, and test population. ∗IND is not a distinct phase of the clinical trial process but is a required application between the preclinical
phase and phases I-IV.

Length of phase (years) Purpose Test population

Preclinical 6.5 Toxicity studies Nonhuman animals

IND∗ N/A
Successful completion of phase I

Allows for clinical trial to be commenced
N/A

Phase 0 7 days
To show whether a drug’s pharmacokinetics and
pharmacodynamics warrant continued exploration

10-15 healthy volunteers

Phase I 1
Toxicity

Pharmacokinetics
20-80 healthy volunteers

Phase II 2
Pharmacokinetics

Efficacy
Major side effects

100-300 patient volunteers

Phase III 3
Safety
Efficacy

1,000-3,000 patient volunteers

FDA 1-2
Reviews NDA
Validates data

N/A

Phase IV N/A Postmarketing surveillance trial Public, entire population (prescribed treatment)

3International Journal of Alzheimer’s Disease



a formal request for the FDA to evaluate the safety of a drug
and approve it for sale in the United States [22]. According to
the Office of Federal Register, the application fee in 2019 for
an NDA that requires clinical data is $2,588,478 [24]. After
submission of an NDA, the FDA has 60 days to file the appli-
cation for review. Accordingly, the FDA reviews and acts on
at least 90% of NDAs within 10 months for standard drugs,
and within 6 months for priority drugs [22].

If the NDA is approved, the drug can go to market and
potentially undergo a phase IV trial to evaluate long-term
safety and side effects in the general public to whom the drug
has been prescribed [23]. Because phase IV research is con-
ducted over a long period on large populations, long-term
and unique effects can be identified and tabulated. For exam-
ple, phase IV studies are more likely to detect adverse reac-
tions because of the larger population and presence of
comorbidities [22, 25]. (See Table 1 for a summary of FDA
clinical trials as well as the estimated time for each phase).

3. Clinical Presentation of Alzheimer’s Disease

AD is a progressive disorder in which the sequelae of pathol-
ogy occurring within the brain may start decades before
memory loss and other cognitive symptoms appear. This
stage is referred to as preclinical AD, and patients typically
are symptom-free in this stage though pathological changes
are taking place in the brain, particularly in the medial tem-
poral lobe memory circuit. This network, which includes
the hippocampal formation, suffers significant atrophy in
AD brains. Additionally, this circuit shows reduced activity
during recall tasks in AD patients [26]. The early disease pro-
cess also effects the default mode network executive function
circuit. This circuit includes the posterior cingulate cortex
(PCC) and shows reduced activity in early AD patients com-
pared to healthy participants [27]. The severe and early
effects of AD on these regions is held in contrast to the rela-
tive protection seen in other regions, such as the cerebellum,
which appears to be somewhat spared through the disease
process [28]. Diagnosis of the preclinical stage and pharma-
cological treatment of this phase are essential to slowing the
progression of the disease [29]. The preclinical phase is
followed by three main stages of symptoms: mild, moderate,
and severe, each characterized by an increasing severity of
cognitive impairment. Thus, in the mild, early stage, symp-
toms include namely memory loss and problems with con-
centration. In the moderate, middle stage, which represents
the longest stage, symptoms may include trouble remember-
ing events, difficulty engaging in successful problem-solving
thought and action, impulsive behavior, shortened attention
span, language difficulties, and potential restlessness and/or
agitation. In the severe, late stage, patients cannot communi-
cate and are completely reliant on others for their care. AD is
inexorably progressive and fatal within 5 to 10 years [30].
Recently, a new earlier stage of AD has been proposed and
has been designated the prodromal period of AD. This tran-
sition stage of AD is also referred to as mild cognitive impair-
ment (MCI) where the symptoms include evidence of
episodic memory loss, delayed recall, decrease in executive
abilities, and behavior issues most notably depression, anxi-

ety, and sleep disturbances [31]. Interesting, with regard to
depression, studies have indicated a 20-25% of AD patients
suffer from a major depressive episode and another 20-30%
of patients experience symptoms of minor depression [32].

4. The Pathology of AD: Neurofibrillary Tangles
and Aβ Plaques

4.1. Neurofibrillary Tangles. Neurofibrillary tangles (NFTs)
are intracellular lesions that represent an essential hallmark
feature characteristic to AD pathology [33, 34]. NFTs are
protein aggregates that show marked cellular toxicity and
through this toxicity contribute to cell-wide signaling dys-
function and neuronal death [33–35]. In addition to the cyto-
skeletal effects of tau pathology, there is potential toxicity
associated with posttranslationally modified tau and the
aggregates it forms. When hyperphosphorylated tau detaches
from the microtubule, it arranges into fibrous structures
referred to as paired helical filaments (PHFs) [34, 36]. These
fibrous and insoluble PHFs are thought to be the main com-
ponents of NFTs [34, 37, 38]. Phosphorylated tau, as well as
the aggregates it produces, contributes to disruptions of cell
signaling and axonal transport [34, 39].

Though the toxic effects of NFTs appear to be sufficient
to cause localized neuronal death, the true pathogenicity of
NFTs and hyperphosphorylated tau lies in a propensity for
“prion-like” spread of tangle pathology throughout the brain
[40–42]. Postmortem tissue samples of AD brains show a
direct correlation between confluence and location of tangle
pathology with symptom progression and severity reported
prior to death [40, 42]. Due to this correlation, it is believed
possible that the spread of NFTs is responsible for symptom
progression and characteristic Braak staging seen in AD [40,
42]. Additionally, findings of soluble tau in brain regions
that, at the time of death, showed no NFTs, particularly as
would have correlated with linearly progressive Braak staging
had the patient lived, suggest that tau (and not the tangles
themselves) is the mobile feature that allows for the spread
of NFT pathology through the brain [43]. Finally, immuno-
histological studies of primary neurons in culture have
shown that the presence of aggregated tau is sufficient to
induce further misfolding of tau and therefore supports a
“prion-like” method of tau and NFT spread through the
AD brain [42].

4.2. Aβ Pathology. Senile plaques are extracellular lesions
characteristic of AD. These plaques are largely composed of
Aβ protein aggregates that owe a significant portion of their
longevity, stability, and consequent toxicity, to a beta-sheet
secondary structure that proves difficult to degrade through
normal microglial clearance processes [44, 45]. The Aβ pro-
tein fragment is a product of enzymatic secretase cleavage of
the amyloid precursor protein (APP) [46, 47]. The proteo-
lytic enzymes responsible for the cleavage of the precursor
protein include α-, β-, and γ-secretase. The α-secretase is
responsible for the “good pathway,” in which the Aβ protein
fragment itself is cleaved at an extracellular scission site [48,
49]. This cleavage within the Aβ protein fragment prevents
subsequent γ-cleavage from producing an intact Aβ peptide
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and thus prevents neurotoxic aggregation [46, 47, 49]. The
amyloidogenic pathway requires successive cooperativity of
both the β- and γ-secretases to produce an intact Aβ frag-
ment fully freed from the cytoplasmic carboxyl terminus, as
depicted in Figure 2 [47, 50, 51]. Following enzymatic cleav-
age by both β- and γ-secretase, lipid soluble Aβ1-40/42 may
exert neurotoxic effects in either oligomeric or fibrillar forms
[52]. In AD brains, a balanced regulation of Aβ1-40 and Aβ1-
42 is disrupted such that the majority of secreted Aβ is the
fibril-prone 1-42 fragment [52, 53]. This is in contrast to
Aβ secretion in normally aged brains, in which 90% of Aβ
is the highly soluble 1-40 fragment which adopts a fibrillar
form at rates slow enough to allow for moderate clearance
of the protein [52–54].

5. Clinical Trials Involving Disease-Modifying
Therapies Targeting Aβ

5.1. The Aβ Hypothesis. For more than 25 years, the Aβ
hypothesis (or amyloid cascade hypothesis) has been a cen-
tral theory in the field of AD, positing that Aβ is the primary
cause of AD, which promotes tau aggregation into NFTs,
ultimately triggering neuronal death [55]. The assumption
is that when Aβ aggregates (into fibrils or more specifically
into oligomers), it triggers neurodegenerative processes that
lead to the loss of memory and cognitive ability in AD. Strong
support of this hypothesis comes from the knowledge that all
known mutations that lead to early-onset AD have the over-
all effect of increasing the levels of Aβ [56]. Therefore, if the
progression of AD is believed to align with the Aβ hypothe-
sis, it follows that pharmaceutical intervention aimed at any

discrete step along the hypothesis with regards to oligomer
or plaque formation or persistence should function to retard
both Aβ load and cognitive decline. This framework provides
a logical backbone for the development of pharmaceuticals
aiming at targeting the pathogenic mechanisms of AD, as
opposed to the consequent cognitive symptoms characteristic
to the dementia. These pharmaceutical approaches include
those targeting the initial pathogenic processing of APP by
β- and γ-secretase, as well as those concerned with the prod-
ucts of this enzymatic cleavage (see Figure 2).

5.2. Methods. The following review of clinical trial data aims
at being inclusive and well-rounded, but not an exhaustive
list of all previous clinical trials involving AD. The very
nature of the Aβ hypothesis and its logically resultant enzy-
matic and immunological therapies allows for investigation
into any and every discoverable discrete target that may affect
Aβ. The depth of this field has therefore led to a vast capacity
for redundancy, such that a large majority of related but tech-
nically different pharmaceuticals result in similar clinical dis-
appointment, with unique findings serving as the exception
to the idiomatic rule. To combat this propensity for redun-
dancy and to maintain the efficacy of this review as a whole,
the trials cited were chosen for their ability to serve as repre-
sentative publications within their discrete groups. Recency
of publication was not used as a strict guideline in database
searches; however, a majority of chosen citations were within
15 years old. This may be due to the pace of clinical trials in
general, neurologically focused clinical trials specifically, or
to the relative novelty of the Aβ hypothesis in the entire
scheme of AD clinical intervention.
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Figure 2: The Aβ cascade and potential therapeutics that have recently failed in human clinical trials. A highly schematic drawing illustrating
the main steps involved in Aβ production and deposition as thought to occur in the AD brain. Production begins following cleavage of APP
by β- or γ-secretases followed by the formation of oligomers and fibrils that eventually deposit into extracellular plaques. Broadly,
therapeutics shown are targeted to either Aβ formation or clearance mediated by microglia. In addition, the connection of Aβ to eventual
synapse loss and cell death is linked through tangle development.
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5.3. Clinical Trial Results. Enzymatic cleavage of APP to Aβ
relies on sequential processing of the precursor protein by
the enzymes β-site APP cleaving enzyme 1 (BACE-1) and
γ-secretase [49, 50]. As the release of the Aβ protein frag-
ment from APP requires cleavage at both the β- and γ-sites,
the inhibition of either site-specific enzyme is sufficient to
prevent accumulation of Aβ in the extracellular space [47,
48, 50]. Drug candidates developed in this scheme include
inhibitors of BACE-1 and γ-secretase. Evidence as to the
pharmacologic engagement of BACE-1 inhibitors is often
inferred from a reduction in Aβ concentrations subsequent
to treatment with such an inhibitor, as determined by amy-
loid positron-emission tomography (amyloid PET) or immu-
noassay analysis [57, 58]. A 2017 study conducted by
Villarreal et al., using a murine model of advanced age,
showed reduction of plasma Aβ1-40 by 98% and Aβ1-42 by
90% upon treatment with BACE-1 inhibitor verubecestat.
Additionally, this study found reduced levels of Aβ1-40 and
Aβ1-42 (62% and 68% reduction, respectively) in cerebrospi-
nal fluid (CSF) [59]. Human studies have shown similar
results concerning the reduction of Aβ levels in response to
treatment with BACE-1 inhibitor atabecestat. Results of a
placebo-controlled phase I study in patients with early AD
showed an up to 95% reduction of toxic Aβ levels in the
CSF upon treatment with atabecestat [58]. With these prom-
ising results of reduced Aβ levels, severe ascription to the Aβ
hypothesis would logically conclude parallel reductions in
cognitive impairment. However, results of multicenter phase
III studies of verubecestat in mild-moderate AD showed
worsened cognition (similar to that observed in the placebo
condition) as defined by the Alzheimer’s Disease Assessment
Scale-cognitive (ADAS-cog) and the Alzheimer’s Disease
Cooperative Study Activities of Daily Living inventory scale
(ADCS-ADL) in low- and high-dose treatment conditions
(12mg/day vs. 40mg/day) [57]. Additionally, both low- and
high-dose treatment groups showed statistically significant
incidences of severe adverse effects as compared to the pla-
cebo group, including elevated liver enzymes [57]. Moreover,
studies of verubecestat in prodromal AD showed worsened
cognition as defined by the Clinical Dementia Rating Scale-
Sum of Boxes (CDR-SB) in high-dose treatment groups
(40mg/day) compared to placebo conditions, as well as con-
tinued increased incidences of adverse effects in the treat-
ment groups [60]. Preliminary ad-hoc statistical analysis of
phase II-III atabecestat studies show similar incidences of
adverse events, as well as declines in measures of cognition
unique from ongoing decline observed in placebo groups
[61]. More recently, the BACE-1 inhibitor, lanabecestat, was
abandoned by sponsors when an independent assessment of
a phase III clinical trial indicated that the drug was unlikely
to meet the primary endpoints [62]. Finally, adding to these
failures was the recent disclosure by Novartis that it was dis-
continuing the investigation of the BACE-1 inhibitor, umibe-
cestat, in two phase II-III studies due to worsening in some
measures of cognitive function during a preplanned interim
analysis. The sponsors concluded that the potential benefit
for participants in the studies did not outweigh the risk [63].

In addition to clinical attempts at inhibition of rate-
limiting β-secretase cleavage of APP, γ-secretase is also

looked at as a potential target for both the reduction of Aβ
and rescue of cognitive function. Similar to trials of BACE-
1 inhibition, target engagement is inferred from a reduction
of Aβ levels. A 2009 study of γ-secretase inhibitor semagace-
stat found a dose-dependent reduction of Aβ production up
to 84% upon oral dosing of 240mg [64]. Despite promising
reductions of Aβ levels, a subsequent 2013 phase III trial
found a worsened cognitive functioning as assessed by the
ADAS-cog and ADCS-ADL, upon high-dose treatment as
compared to placebo [65]. Additionally, significant adverse
events, including increased incidence of nonmelanoma skin
cancer, weight loss, and syncope, were found to be associated
with treatment. These adverse effects associated with high-
dose treatment (140mg/day) resulted in higher levels of
treatment discontinuation compared to the placebo (30%
vs. 11%). Moreover, fatality rates were found to be higher
in the treatment group receiving 140mg compared to the
placebo group (14 vs. 9 patients) [65]. Avagacestat, an addi-
tional γ-secretase inhibitor, was found to result in less signif-
icant reduction of Aβ1-40 and Aβ1-42 levels (10-15% and 5-
9%, respectively) compared to the previously discussed drug
candidates [66]. Additionally, avagacestat was shown to
increase brain atrophy as measured by volumetric magnetic
resonance imaging (MRI) significantly when compared to pla-
cebo [66]. Phase II studies of avagacestat showed incidences of
serious adverse events at high doses (125mg/day), similar to
those observed in other γ-secretase inhibitors, as well as unfa-
vorable cognitive changes as measured by ADAS-cog in high-
dose treatments (100mg/day and 125mg/day) compared to
placebo [67]. However, it does not appear that the decline in
cognitive function observed in the phase II study was corre-
lated with the observed increase in brain atrophy [67].

In addition to inhibition of the enzymes responsible for
the amyloidogenic processing of APP, pharmaceutical
attempts have been made to directly target the products of
β- and γ-secretase cleavage. This class of Aβ-targeting drugs
is typically monoclonal antibodies to Aβ in various states of
solubility and aggregation [68]. For all drugs of this type, tar-
get engagement is assumed to result in either increased clear-
ance or reduced deposition of Aβ and thus can be assessed
through Aβ-specific PET analysis and immunoassay. Adher-
ence to the Aβ hypothesis would expect decreases in Aβ con-
centrations to be mirrored by reductions in cognitive decline.

Antibodies specific to Aβ prior to the generation of
fibrillar forms include aducanumab, solanezumab, and cre-
nezumab. These antibodies target oligomeric, soluble, and
protofibrillar Aβ. The antibody aducanumab showed moder-
ate success in various substages of phase I trials [68]. This
success included statistically significant stabilization of cog-
nitive decline according to the Mini-Mental State Examina-
tion (MMSE) [68]. This trial was originally ended in phase
III for futility, meaning that the observed effect on cognition
was not replicated to statistical power in a larger trial popula-
tion [69]. The interpretation of these phase III findings is
held in contrast to initial studies of aducanumab which con-
firmed the ability of the antibody to reduce the deposition of
Aβ plaques [68]. This discrepancy between apparent target
engagement and clinical results may, as noted previously,
indicate that Aβ is an ineffective target. However, as of
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October 2019, Biogen has announced that a reevaluation of
this futility analysis revealed 23% less cognitive decline in a
high-dose treatment group of aducanumab (10mg/kg) com-
pared to placebo as assessed by CDR-SB [70, 71]. This reas-
sessment was made in response to the availability of
additional data not used in the original futility analysis, and
changes in outcomes were seen only in the high-dose treat-
ment group with no additional benefit seen with other dos-
ing, or as assessed in other subgroups of the trial [70–72].
This stark outcome discrepancy between subgroup reanalysis
has sparked some doubt as to the validity of this reevaluated
futility analysis in Biogen’s return to seek regulatory FDA
approval for aducanumab [73].

Results of phase III studies of solanezumab, an antibody
targeting soluble Aβ peptides, were not able to show a signif-
icant decrease in cognitive decline when assessed by MMSE
and ADAS-cog in treatment groups compared to the placebo
[74]. Incidences of adverse events, including vitamin D defi-
ciency and spinal osteoarthritis, did not differ significantly
between the treatment and placebo groups (84.5% vs.
83.4%) [74]. In addition to discretely targeting soluble and
insoluble forms of Aβ, it is possible to target the transition
between the two, with the administration of crenezumab.
Results of a phase II trial for crenezumab showed no sig-
nificant stabilization or slowing of cognitive decline as
assessed by the ADAS-cog or CDR-SB at either a low dose
(300mg/day) or high dose (15mg/kg) [75]. Incidences of
adverse events were found to be similar among low dose,
high dose, and placebo conditions and are thus unlikely
related to the administration of the drug [75]. Despite this
apparent lack of effect, the high-dose treatment group was
found to have significantly increased levels of CSF Aβ1-42.
This increase in Aβ is difficult to interpret, as it may suggest
either the reduced clearance of Aβ (unwanted effect) or
increased mobilization of Aβ in response to reduced deposi-
tion (desired effect). A post hoc statistical analysis of this phase
II trial suggests that there may be cognitive benefits derived
from high-dose treatment with crenezumab as assessed by
ADAS-cog (results not seen in reassessment of CDR-SB). This
may suggest increased efficacy contingent on earlier and
higher dose treatment with crenezumab [75].

Pharmaceutical intervention aimed at the fibrillar forms
of Aβ includes the drugs bapineuzumab and gantenerumab.
Results of a phase I trial of bapineuzumab show an increase
in plasma Aβ levels upon high-dose treatment (5mg/kg)
[76]. This may be due to the reduced clearance of Aβ, or
increased mobilization as a result of decreased deposition.
Despite this uncertainty, phase III results, confirming the
reduction of fibrillar Aβ in response to treatment with bapi-
neuzumab, would suggest increased mobilization of Aβ as
the mechanistic cause of the observed transient increase in
Aβ levels [77]. However, despite the confirmed reduction of
fibrillar Aβ levels, results of phase III trials showed no signif-
icant differences in cognitive decline between placebo and
treatment groups as assessed by the ADAS-cog and the Dis-
ability Assessment for Dementia (DAD) [78]. Significant
adverse events recorded in response to bapineuzumab
include the presence of asymptomatic amyloid-related imag-
ing abnormalities [78]. Finally, phase III studies of fibril tar-

geting gantenerumab were stopped early for futility due to a
lack of statistical significance between treatment (high dose:
225mg; low dose: 105mg) and placebo groups in measures
of brain atrophy (as measured by volumetric MRI), CSF Aβ
concentrations, cognitive decline (as measured by CDR-SB,
MMSE, and ADAS-cog), and incidences of treatment or dis-
ease related adverse events [79]. Table 2 summarizes findings
from recent clinical trials targeting the beta-amyloid cascade.

Though the Aβ hypothesis lends itself well to the enzy-
matic and immunological therapies previously discussed,
these strategies do not describe all Aβ-focused treatment.
The Alzheimer’s Management By Albumin Replacement
(AMBAR) study is an ongoing multicenter trial currently in
phases II-III. AMBAR involves plasma exchange treatment
with albumin replacement in an effort to increase Aβ mobi-
lization. The primary trial outcome is cognitive change as
assessed by the ADAS-cog and ADCS-ADL [80].

A brief discussion of the current tau-targeted trials is war-
ranted, as more focus than ever begins to be placed on targets
other than Aβ. Similar to the immunotherapeutic strategies
attempting to target Aβ, many current trial attempts focus
on passive immunization to both pathological and native
forms of tau [81, 82]. C2N 8E12 is a passive immunotherapeu-
tic approach to targeting tau. This antibody is specific to aggre-
gated tau as it exists extracellularly in NFT pathology. Phase I
of this trial focused not on AD but on supranuclear palsy and
found that the drug itself was safe at dosages from 2.5 to
50mg/kg. This trial is currently in phase II with randomized
dosage to determine efficacy [82]. RO7105705, or semorine-
mab, is another passive immunization against extracellular
tau and targets a phosphorylated serine residue of patholog-
ical tau. Phase I of this trial found no serious adverse events
related to drug administration and a bioavailability of 70%
when administered subcutaneously [83, 84]. This trial is cur-
rently in phase II and plans to use the ADAS-cog and ADCS-
ADL as the primary endpoints to measure cognitive change
over the course of treatment [81, 83, 84].

5.4. Potential Causes of Trial Failure. Nearly consistent trial
failures cast significant doubt on the validity of the Aβ
hypothesis. However, there may be issues with the methods
commonly used in AD clinical trials that complicate attempts
to appropriately analyze results of these trials. These issues
should be considered and addressed in moderate isolation
from the growing concerns about hypothesis validity. For
example, potential weaknesses of trial design begin with the
designation of clinically meaningful endpoints identified by
the protocols put forth in the IND. Achievement of end-
points signifies success of the trial and presumes replicable
results in a large consumer-patient population. In AD trials,
the most clinically significant (direct) endpoints are cognitive
improvement and rescued brain activity [85]. In addition to
direct endpoints, the meeting of indirect endpoints such as
changes to biomarkers may also be used in the trial process
due to the relative ease and reduced cost of these assess-
ments. In AD trials, the biomarkers in question are CSF con-
centrations of Aβ42, total tau, and p-tau. Automated
immunoassays (such as ELISA) available to quantify concen-
trations of these biomarkers can be useful in the diagnosis of
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AD, even at very early stages [86–88]. However, despite use-
fulness as a diagnostic tool, reliance on these biomarkers (and
changes in biomarker characteristic over the course of a clin-
ical trial) as endpoints is not sufficient [85]. This is seen to be
the case in the previously discussed trials of verubecestat, ata-
becestat, and semagacestat [58, 61, 64]. Trials of these drugs
show promising findings of reduced Aβ concentrations with
worsened or unchanged cognition. In addition to immunoas-
says, Aβ-specific PET scans can be conducted to assess
changes in concentration of this protein. Unfortunately, this
measure falls prey to the same issues as seen with immunoas-
says in that decreases of a target presumed to be a causative
peptide in the disease process, though promising, mean very
little if not mirrored by cognitive improvement. In contrast
to these subjective endpoints, PET scans can be used to show
changes in metabolic activity as a result of trial intervention
[89, 90]. Specifically, PET scans would look for increased
activity in the posterior cingulate and temporoparietal
regions, which show significantly lessened metabolism in
the AD brain when compared to a healthy control [89, 90].
Additionally, the use of biomarker reduction as an indicator
of target engagement, though superficially logical, is particu-
larly inadequate when concerning Aβ-targeting immuno-
therapies, due to the potential for antibody cross-reactivity
(though cross-reactivity is much less likely in clinically useful
monoclonal strategies than other antibody-based therapeu-
tics) [91, 92]. In other words, the reduction of toxic Aβ in
response to treatment with a monoclonal antibody does not
summarily imply the binding of such antibody to Aβ itself
or to the correct epitope [91–93]. The antibody may in fact
be binding to an unintended target that, due to a secondary
mechanism, results in the reduction of Aβ. However, any
unintended binding may have additional side effects that
complicate trial results [91, 93].

Rescue or stabilization of cognition is the ultimate aim
of all AD trials. As such, cognitive testing is often used as a
direct endpoint to assess the efficacy of the drug as it
relates to this overarching goal. However, the administra-
tion of these tests is subjective and can vary significantly
between testers, as well as between trial sites. To point, a
2008 study of the ADAS-cog showed that variation in tester
procedure resulted in significantly unreliable scoring [94].
Additionally, a 2015 study of the ADAS-cog showed low
reliability for measurement of cognitive change between
administrations of testing in the same patient, though reli-
ability for discrete testing was adequate [95]. If this lack of
reliability for measuring change in cognition is correct,
then any study which uses ADAS-cog (including the previ-
ously discussed trials of verubecestat, semagacestat, avaga-
cestat, solanezumab, crenezumab, and bapineuzumab) in
this manner may not be reporting accurate findings on
cognitive impairment, the most important aim of clinical
AD intervention.

A final reason clinical trials in AD may be not reaching
predesigned endpoints is the analysis of the placebo-
controlled group especially if the sample size is insufficient.
For example, unusual improvement in the placebo group
limits the ability to determine if the drug is indeed effective.
On the other hand, a rapid decline in the placebo group
may be misleading in suggesting an overly strong benefit
from the therapeutic. This in turn might falsely convince
sponsors to under-power a subsequent trial expecting a sim-
ilarly robust effect [96].

6. Future Directions

As the plight of AD grows in magnitude and cost unmet by
definitively effective Aβ-based treatment, more emphasis is

Table 2: Recent clinical trial failures involving the beta-amyloid hypothesis.

Agent
Target/mechanism
[relevant references]

Trial phase Reasons for failure Comments

Gamma secretase inhibitors

Semagacestat [65] III Toxicity and lack of efficacy Worsens cognition

Avagacestat [66] II Toxicity and lack of efficacy

Monoclonal antibodies to Aβ
or its oligomers or fibrils

Bapineuzumab [78] III Lack of efficacy
Asymptomatic amyloid-related

imaging Aβ normalities

Aducanumab [68, 69] III Futility analysis
Prediction that trials would not

improve cognition

Solanezumab [74] III Lack of efficacy Also tested on prodromal AD

Gantenerumab [79] II Lack of efficacy

Crenezumab [75] II Lack of efficacy

BACE-1 inhibitors

Verubecestat
[57] III Lack of efficacy Worsens cognition

[60] III Lack of efficacy Tested on prodromal AD

Atabecestat [61] III Toxicity Worsens cognition

Lanabecestat [62] III Lack of efficacy Worsens cognition
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being placed on the discovery of new targets and formulation
of accurate hypotheses of disease progression. Additionally,
trial failures provoke introspection into the validity of
methods and procedures. Beginning with the use of animal
models to predict efficacy and toxicity in preclinical research,
there may be room for improvement. Though animal models
provide undeniably important data in research, these studies
are able to predict human toxicity correctly in only 70% of
cases [97, 98]. Because these animal toxicity studies are done
early in the trial process, this may allow for a significant pro-
portion of drugs with potential toxicity in humans to unduly
continue in the trial process. Take for instance the trial results
of the initial BACE-1 inhibitor studies, in which liver toxicity
was not noted in preliminary mouse models despite being a
driving force in the termination of the trials [57, 99]. This is
not to say that the complete removal of animal studies in
the clinical trial process is warranted or prudent, only that
caution needs to be exerted when extrapolating results from
mouse models to humans, particularly in AD research. One
methodology that might help mitigate the impact of relying
on animal models is the use of induced pluripotent stem cells
(iPSC) derived from humans with AD. The use of these cells
would allow for investigation into tissue- and cell-specific
toxicity of human cells and, more importantly, human cells
with potential unknown modifications that are found in
AD [100]. Additionally, the cost of generating and validating
a research-grade cell line of iPSCs ranges from $10,000 to
25,000, presenting a nominal price increase in the entire
scheme of drug manufacturing [101]. However, no method
is without fault, and the use of iPSCs finds its flaw in a poten-
tial lack of ability to accurately phenocopy the behavior of a
pharmaceutical in a complex 3-dimensional structure such
as is found in the brain with over 100 billion neurons and tril-
lions of synapses, as opposed to the 2-dimensional structures
found in cell culture [102, 103].

Future attempts at targeted AD treatment may involve
the use of antisense oligonucleotides (ASO) to alter target
expression. These strategies may be especially useful against
tau pathology, as murine models have already shown
improved learning and memory in shock avoidance tasks in
response to ASO treatment against GSK-3β, one of the pri-
mary kinases responsible in the hyperphosphorylation and
subsequent dysfunction of tau [104]. Additionally, this same
study showed decreased markers of oxidative stress, typically
found in tissues affected by tau pathology, in response to
treatment with RNA interference [104]. However, despite
these promising results, the use of ASOs in clinical treatment
of neurodegenerative disorders has historically been expen-
sive to the point of inaccessibility, even for patients with
health insurance [105, 106]. Additionally, ASOs find limita-
tions in their ability, or relative lack thereof, to cross the
BBB and interact with the appropriate targets [107].

In the face of Aβ hypothesis-driven clinical failure,
even given the potential success of aducanumab, there is
increasing interest in the discovery of new biomolecular
targets for AD treatment. Both proteomic and transcrip-
tomic approaches may be used to identify new potential
targets, as well as to examine the effects of specific treat-
ments on these targets [108, 109].

7. Conclusions

Alzheimer’s disease (AD) is a progressive and fatal neurode-
generative disorder that primarily affects older adults and is
the most common cause of dementia [110]. Currently, it
afflicts 5.5 million Americans, and that number is expected
to triple by 2050. To date, AD is the third leading cause of
death behind heart disease and cancer, with 700,000 Ameri-
cans age > 65 years estimated to suffer from AD when they
die [111]. In addition, the cost of the disease is substantial
with $259 billion healthcare dollars going to manage the dis-
ease currently, and by the middle of the century, costs are
predicted to soar over $1.2 trillion, which will completely
bankrupt the healthcare system in the USA [112]. It is clear
from these data that effective disease-modifying medications
are urgently needed for patients. Current FDA-approved
medications including cholinesterase inhibitors and NMDA
agonists provide symptomatic relief and have low efficacy.
Indeed, a study of cholinesterase inhibitors and NMDA
recently concluded that these drugs have weak beneficial
effects on cognitive function [113]. In addition, a significant
investment into clinical trials targeting different aspects of
the Aβ hypothesis has proven futile up to this point. To date,
the pharmaceutical industry has spent over $3.5 billion in
Alzheimer’s research and development in the last 4 years
with a 99.6% failure rate [96]. It is often said we learn more
from our failures than successes and if that is indeed true,
we should accept that Aβ may be an effect not a cause of
dementia. Therefore, it is our opinion that the Alzheimer’s
field should continue to examine Aβ strategies (particularly
in light of Biogen’s preemptive submission to the FDA for
aducanumab’s approval) but also focus on other potential
drug targets including but not limited to pathological forms
of tau, antisense oligonucleotides (ASOs), or other genetic
approaches including CRISPR. In addition, other potential
targets that are seeing early success in clinical trials include
those targeting telomerase, MAOB, nuclear receptors, neuro-
genesis, and p38a inhibitors [114]. Clinical efforts should also
double down on pathological forms of tau particularly in
light of two recent articles suggesting that tau far surpasses
amyloid in predicting the location of future brain atrophy.
In the first study, beta-amyloid plaques appear to be late-
comers to the disease rather than an early trigger in that no
statistical difference in plaque load was found during the
earliest, subtle cognitive difficulties, suggesting that beta-
amyloid may not be the trigger for initial disease progression
[115]. In the second study, using tau PET imaging (currently
under review by the FDA), the authors eloquently demon-
strated in early clinical stage AD patients, tau PET brain
scans predict the location of brain atrophy measured by
MRIs 1-2 years later, but amyloid PET imaging neither pre-
dicts the location of either tau nor future atrophy [116].

Finally, preclinically, previous results have shown that
AD animal models do not predict human efficacy or toxicity;
therefore, future approaches should expand to include the
use of induced pluripotent stem cells derived from humans
with AD in addition to the continued use of appropriate ani-
mal models. The use of these cells would predictably allow for
a better recapitulation of the human AD disease process that
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may translate more favorably in terms of drug toxicity and
efficacy. New therapies that prevent, slow, or stop the disease
are urgently needed to fight the growing Alzheimer’s disease
burden in the United States and around the world.
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