
Research Article
Multiaircraft Optimal 4D Trajectory Planning Using
Logical Constraints

Dinesh B. Seenivasan , Alberto Olivares , and Ernesto Staffetti

Department of Signal Theory and Communications and Telematic Systems and Computing, Universidad Rey Juan Carlos,
Camino del Molino s/n 28943 Fuenlabrada, Madrid, Spain

Correspondence should be addressed to Dinesh B. Seenivasan; seenivasan.dinesh@urjc.es

Received 15 January 2019; Accepted 19 September 2019; Published 3 December 2019

Academic Editor: Jose Carlos Páscoa

Copyright © 2019 Dinesh B. Seenivasan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper studies the trajectory planning problem for multiple aircraft with logical constraints in disjunctive form which arise in
modeling passage through waypoints, distance-based and time-based separation constraints, decision-making processes, conflict
resolution policies, no-fly zones, or obstacle or storm avoidance. Enforcing separation between aircraft, passage through
waypoints, and obstacle avoidance is especially demanding in terms of modeling efforts. Indeed, in general, separation
constraints require the introduction of auxiliary integer variables in the model; for passage constraints, a multiphase optimal
control approach is used, and for obstacle avoidance constraints, geometric approximations of the obstacles are introduced.
Multiple phases increase model complexity, and the presence of integer variables in the model has the drawback of
combinatorial complexity of the corresponding mixed-integer optimal control problem. In this paper, an embedding approach
is employed to transform logical constraints in disjunctive form into inequality and equality constraints which involve only
continuous auxiliary variables. In this way, the optimal control problem with logical constraints is converted into a smooth
optimal control problem which is solved using traditional techniques, thereby reducing the computational complexity of finding
the solution. The effectiveness of the approach is demonstrated through several numerical experiments by computing the
optimal trajectories of multiple aircraft in converging and intersecting arrival routes with time-based separation constraints,
distance-based separation constraints, and operational constraints.

1. Introduction

In air traffic management (ATM), the flight of several aircraft
can be modeled as a hybrid dynamical system, which can be
regarded as a set of interacting continuous dynamical sys-
tems. A number of frameworks have been proposed to model
hybrid dynamical systems, in which, in general, differential
equations describe the dynamics of each system, whereas log-
ical constraints describe the behavior of the systems during
the interactions among them and the interaction with the
environment in which they operate. In the ATM context, log-
ical constraints describe, for instance, policies to apply in
conflict detection and resolution and operational constraints
to be fulfilled during flight. The main operational constraints
to be fulfilled during flight are separation constraints, keep-

out constraints to avoid no-fly zones, and passage constraints
through or by waypoints [1].

Given a set of aircraft, separation constraints between
them can be expressed as follows: pairwise, they must keep
a vertical distance greater than a minimum vertical safety dis-
tance or a horizontal distance greater than a minimum hori-
zontal safety distance. The minimum horizontal separation
distance can be fixed or variable. In the latter case, it can be
established based on the turbulence generated by the preced-
ing aircraft and the ability of the following aircraft to resist
turbulence [2]. Obstacles and no-fly zones are in general
polyhedral regions of airspace. However, the corresponding
keep-out constraints are usually introduced by bounding
ellipsoids around obstacles. In some cases, this is a coarse
approximation. Keep-out constraints from a polyhedral
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region of airspace can be expressed as follows: each aircraft
must stay outside one of the half-spaces defined by the planes
that supports the faces of the polyhedron. This method
for modeling keep-out constraints from obstacles can be
extended to model passage constraints through windows or
waypoints in the airspace. In this manner, the multiphase
modeling of the problem is avoided. This is an interesting
possibility, since multiphase optimal control models imply
the introduction of additional variables to the problem, such
as the duration of the phases and additional constraints such
as the linkage constraints between them to enforce continuity
of the state variables between contiguous phases [3].

It is easy to see that all the constraints mentioned above
are expressed in disjunctive form. Standard modeling tech-
niques are able to tackle constraints in disjunctive form
using binary variables. The four-dimensional (4D) trajectory
planning problem for multiple aircraft with logical con-
straints in disjunctive form can be solved as an optimal con-
trol problem (OCP) for a hybrid dynamical system and a
common approach for solving this class of problems is to
formulate them as a mixed-integer programming problem.
In [4], the optimal cooperative three-dimensional (3D) con-
flict resolution problem among multiple aircraft has been
solved in which separation constraints among aircraft
expressed in disjunctive form have been included in the
model using continuous auxiliary variables. In [5], the opti-
mal path planning problem for multiple unmanned aerial
vehicles in the horizontal plane with collision avoidance
has been studied, in which constraints for collision avoid-
ance with rectangular obstacles expressed in disjunctive
form are included in the model using continuous auxiliary
variables. In [6], the trajectory optimization problem for
multiple aircraft landing on a single runway in the presence
of constraints on the airspace has been treated. The constraints
considered are passage constraints through windows in the
airspace, and optimal trajectories have been determined by
solving a nonsequential constrained multiple-phase optimal
control problem.

In this paper, the embedding technique proposed in [5]
to model rectangular obstacle avoidance in the horizontal
plane has been extended to model time-based and distance-
based separation constraints and passage through waypoints
constraints in trajectory optimization for multiple aircraft.
The modeling of passage constraints through waypoints has
been done by defining vertical walls in the airspace with a
cuboidal window around the waypoint. In this way, introduc-
ing multiple phases in the model to enforce passage through
waypoints is avoided. Moreover, the dimensions of the win-
dows can be easily calibrated to induce a fly-by or a fly-
through the waypoint.

This study can be classified into the category of continu-
ous descent operations (CDO) [7]. During CDO, aircraft
descend from the cruise altitude to the final approach fix at
or near idle thrust without level segments at low altitude min-
imizing the need for high thrust levels to remain at a constant
altitude and reducing the environmental impact. Actually,
the term CDO makes reference to the different techniques
to maximize operational efficiency and, at the same time, ful-
filling local airspace requirements and constraints. These

operations are known as continuous descent arrivals, opti-
mized profile descents (OPDs), tailored arrivals, 3D path
arrival management, and continuous descent approaches
(CDA). In particular, an OPD is a descent profile normally
associated with a standard terminal arrival route (STAR)
and designed to allow maximum use of a CDO. Planning
CDOs is one of the functions of the so-called arrival man-
agers (AMANs) whose purpose is to ensure an optimal
sequencing and spacing of arrival traffic [8].

Most of the previous research on CDOs based on optimal
control theory focused on the trajectory optimization of a
single aircraft. In [9], a multiphase optimal control method
based on the pseudospectral technique has been employed
to optimize vertical trajectories for individual aircraft in
CDAs. Since the lateral path is assumed to be given by a
STAR procedure, this work focused on optimizing vertical
profile only using time and fuel consumption as performance
indices. All the phases are formulated based on operational
constraints and flap/gear schedules. The initial along track
distance is free. Hence, it is possible to calculate both the
optimal top-of-descent (TOD) and CDA trajectory. The
optimal trajectories have been computed for two aircraft
types: a Boeing 737-500 and a Boeing 767-400.

In [10], the vertical trajectory optimization for the en
route descent phase of an aircraft has been studied in the
presence of both along-track and cross winds, which are both
modeled as functions of altitude. Flight idle thrust was
assumed during the entire descent phase. The problem is for-
mulated as an optimal control problem. The flight range was
specified from a point during the latter stages of the cruise to
the meter fix. Calibrated air speed (CAS) and Mach con-
straints, which are the state path constraints, are considered,
along with flight path angle constraints, and a maximum
descent rate limit, which is a mixed input and state path con-
straint. The descent trajectory is optimized with respect to
two cost functionals: fuel and emissions. The effects of wind
speed, windshear, and cross-wind on the optimal trajectory
have been analyzed using the models of two types of aircraft,
Boeing 737-500 and Boeing 767-400.

Less research efforts have been devoted to combined opti-
mization of trajectories of multiple aircraft and sequencing
for approaching a terminal manoeuvring area (TMA) in
which all aircraft follow CDAs, while satisfying the opera-
tional requirements. This fact motivated the study presented
in this paper.

Two types of CDA exist depending on the lateral path
followed, generally referred to as CDA under vectoring and
advanced CDA. In the first case, the lateral path followed
by the aircraft is assumed to be specified through instructions
provided by the air traffic control (ATC). In the second case,
the lateral path of the aircraft is predefined and is based on
the STAR.

Each of the problems that has been solved to validate the
method proposed in this paper can be stated as follows.
Given the dynamic models of a set of aircraft, their initial
and final states, a set of operational constraints, find the opti-
mal trajectories that steer the aircraft from the initial to the
final states, fulfilling all the constraints and optimizing an
objective functional.
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In particular, the optimal trajectories of multiple aircraft in
converging arrival routes are computed taking into account
time separation constraints, distance separation constraints,
and their optimized profile descent along a STAR lateral
profile. The problem has been solved using optimal con-
trol techniques. In particular, the OCP is transcribed using
a Hermite-Simpson collocation method [11]. The resulting
nonlinear programming (NLP) problem has been solved
using the NLP solver IPOPT [12].

The paper is structured as follows. In Section 2, the
general optimal control problem for multiple dynamical
systems is stated and the direct collocation approach for its
resolution is described. In Section 3, the aircraft equation of
motion and the flight envelope constraints are stated. In
Section 4, the general approach to model logical constraints
is presented, which is then particularized to model time-
based and distance-based separation constraints between
aircraft, obstacle avoidance constraints, and waypoint con-
straints. In Section 5, the results of the application of the pro-
posed method to solve several trajectory optimization
problems for multiple aircraft with logical constraints in dis-
junctive form are reported and discussed. Finally, in Section
6, some conclusions are drawn.

2. Optimal Control Approach

2.1. Statement of the Optimal Control Problem. The multiair-
craft flight planning problem considered in this paper can be
regarded as a multitrajectory optimization problem in which
the motion of each aircraft has been modeled as a differential
algebraic dynamic system

〠p =
n
f p : Xp ×Up ×ℝnps × tpI , t

p
F

� �
⟶ℝnpx ,

gp : Xp ×Up ×ℝnps × tpI , t
p
F

� �
⟶ Rnpz

o
,

ð1Þ

for p = 1, 2,⋯,Np, where f
p describes the right-hand side of

the differential equation

_xp tð Þ = f p xp tð Þ, up tð Þ, sp, tð Þ, ð2Þ

and gp describes the algebraic constraints

0 = gp xp tð Þ, up tð Þ, sp, tð Þ, ð3Þ

where Xp ⊆ℝnpx and Up ⊆ℝnpu are the state and control sets,

respectively, xpðtÞ ∈ℝnpx is a npx-dimensional state variable,

upðtÞ ∈ℝnpu is a npu-dimensional control input, sp ∈ℝnps is a
vector of parameters, and t ∈ ½tpI , tpF � represents time, in which
tpI and tpF denote the initial time and final time for aircraft p,
with p = 1, 2,⋯,Np.

Since this multiaircraft flight planning problem also
involves operative performances and flight envelope condi-
tions for multiple aircraft, as well as the optimization of a
specified performance index, the multitrajectory optimiza-
tion problem can be formulated as an OCP of a set of
dynamic systems in which the goal is to find the trajectories

and the corresponding control inputs that steer the states of
the systems between two configurations, satisfying a set of
constraints on the state and/or control variables while mini-
mizing an objective functional.

Therefore, the optimal control problem considered in
this work can be stated as follows:

min J x tð Þ, u tð Þ, s, tð Þ

= 〠
Np

p=1
Φ tpF , x

p tpF
� �� �

+ 〠
Np

p=1

ðtpF
tpI

Lp xp tð Þ, up tð Þ, sp, tð Þdt

ð4aÞ

subject to _x tð Þ = f x tð Þ, u tð Þ, s, tð Þ ð4bÞ

0 = g x tð Þ, u tð Þ, s, tð Þ ð4cÞ

ϕl ≤ ϕ x tð Þ, u tð Þ, s, tð Þ ≤ ϕu ð4dÞ

x tIð Þ = xI ð4eÞ

ψ x tFð Þð Þ = 0, ð4fÞ
where

x tð Þ = x1 tð Þ, x2 tð Þ,⋯, xNp tð Þ� �T,
u tð Þ = u1 tð Þ, u2 tð Þ,⋯, uNp tð Þ� �T,

s = s1, s2,⋯, sNp
� �T

:

ð5Þ

The objective function

J : ℝnx ×ℝnu ×ℝns × tI , tF½ �⟶ℝ ð6Þ

is given in Bolza form. It is expressed as a combination of a
Mayer term

〠
Np

p=1
Φ tpF , x

p tpF
� �� � ð7Þ

and a Lagrange term

〠
Np

p=1

ðtpF
tpI

Lp xp tð Þ, up tð Þ, sp, tð Þdt: ð8Þ

Functions

Φp : tpI , t
p
F

� �
×ℝnpx ⟶ℝ,

Lp : ℝnpx ×ℝnpu ×ℝnpz × tpI , t
p
F

� �
⟶ℝ

ð9Þ

are assumed to be twice differentiable. Function f is assumed
to be piecewise Lipschitz continuous within the time interval
½tI , tF �, and the derivative of the algebraic right-hand side
function g with respect to z, that is,
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∂g
∂z

∈ℝnz×nz ð10Þ

is assumed to be regular within the time interval ½tI , tF �,
where zðtÞ ∈ℝnz denotes the nz-dimensional algebraic vari-
able, that is, the state variables without time derivative. Vec-
tor xI ∈ℝnx represents the initial conditions given at the
initial time tI and function

ψ : ℝnx ⟶ℝnψ ð11Þ

provides the terminal conditions at the final time tF , and it is
assumed to be twice differentiable. The system must also sat-
isfy algebraic path constraints within the time interval ½tI , tF �
given by the vector function

ϕ : ℝnx ×ℝnu ×ℝns × tI , tF½ �⟶ℝnϕ ð12Þ

with lower bound ϕl ∈ℝ
nϕ and upper bound ϕu ∈ℝ

nϕ . Func-
tion ϕ is assumed to be twice differentiable.

In the objective function (4), the Lagrange term repre-
sents a running cost, whereas the Mayer terms represent a
terminal cost. A usual Lagrange objective function is to
minimize the total amount of fuel consumed during the
flight. A typical Mayer objective function is to minimize
the duration of the flight. Equations (4b) and (4c) represent
the differential-algebraic equation system that governs the
motion of the dynamical system, e.g., the aircraft. Equation
(4d) models the physical performance limitations of the
dynamical system, typically expressed as upper and lower
bounds on both states and control variables. Equations (4e)
and (4f) denote the boundary (initial and final, respectively)
conditions of the aircraft. Note that Equations (4c) and (4d)
will also include the logical constraints that model conflict
detection and resolution, and operational constraints as
described in Section 4, which are of special interest for the
problem studied in this paper.

Hence, the optimal control problem (4a), (4b), (4c), (4d),
(4e) and (4f) consists in finding an admissible control u∗ðtÞ
such that the set of aircraft follow an admissible trajectory
x∗ðtÞ between the initial and final state that minimizes the
performance index JðxðtÞ, uðtÞ, s, tÞ. The final time, tF , may
be fixed or free.

2.2. Direct Collocation Transcription of the Optimal Control
Problem. A direct numerical method has been employed to
transcribe the OCP into a NLP problem. More specifically,
a Hermite-Simpson direct collocation method [11] has been
used. The time interval ½tI , tF � has been subdivided into N
subintervals of equal length, whose endpoints are

t0, t1,⋯, tNf g, ð13Þ

with t0 = tI and tN = tF . In each subinterval ½ti, ti+1�, i = 0,
⋯,N − 1, the Hermite-Simpson numerical integration
scheme has been used.

The set of constraints of the resulting NLP problem
includes the Hermite-Simpson system constraints that corre-
spond to the differential constraint (4b) and the discretized
versions of the other constraints of the optimal control prob-
lem. They include the algebraic constraints (4c), the state and
control envelope constraints (4d), and the boundary condi-
tions (4e) and (4f). The unknowns of the NLP problem are
the values of the state and the control variables at the end-
points of each subinterval ½ti, ti+1�, i = 0,⋯,N − 1.

To solve the resulting NLP problem, the open source
IPOPT solver [12] has been employed. It implements an inte-
rior point line search filter method and it is able to handle
properly large-scale sparse nonconvex NLP problems, with
a large number of equality and inequality constraints. Source
and binary files are available at the Computational Infra-
structure for Operations Research (COIN-OR) website
(https://www.coin-or.org/).

3. Aircraft Model Description

Following [13], a common three-degree-of-freedom dynamic
model has been used which describes the point variable-mass
motion of the aircraft over a spherical Earth model. In partic-
ular, a symmetric flight has been considered. Thus, it has
been assumed that there is no sideslip and all forces lie in
the plane of symmetry of aircraft.

3.1. Equations of Motion. The following equations of motion
of the aircraft have been considered:

_V tð Þ = T tð Þ −D he tð Þ, V tð Þ, CL tð Þð Þ −m tð Þ · g · sin γ tð Þ
m tð Þ ,

_χ tð Þ = L he tð Þ, V tð Þ, CL tð Þð Þ · sin μ tð Þ
m tð Þ · V tð Þ · cos γ tð Þ ,

_γ tð Þ = L he tð Þ, V tð Þ, CL tð Þð Þ · cos μ tð Þ −m tð Þ · g · cos γ tð Þ
m tð Þ · V tð Þ ,

_λe tð Þ = V tð Þ · cos γ tð Þ · cos χ tð Þ
R · cos θe tð Þ

,

_θe tð Þ = V tð Þ · cos γ tð Þ · sin χ tð Þ
R

,

_he tð Þ =V tð Þ · sin γ tð Þ,
_m tð Þ = −T tð Þ · η V tð Þð Þ:

ð14Þ

The three dynamic equations in (14) are expressed in an
aircraft-attached reference frame ðxw, yw, zwÞ, and the three
kinematic equations are expressed in a ground-based refer-
ence frame ðxe, ye, zeÞ as shown in Figure 1.

The states of the system (14) are V , χ, γ, λe, θe, he, andm.
Thus, xðtÞ = ðVðtÞ, χðtÞ, γðtÞ, λeðtÞ, θeðtÞ, heðtÞ,mðtÞÞ. The
state variables V ,χ, and γ are the true airspeed, the heading
angle, and the flight path angle, respectively. The state vari-
ables λe, θe, and he are the aircraft 3D position, the longitude,
the latitude, and the altitude, respectively. The components
of the aircraft position vector in two dimensions (xe, ye) are
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approximated as xe = λe · ðR + heÞ · cos θe and ye = θe · ðR +
heÞ. Finally, the state variablem is the aircraft mass. The con-
trol inputs are the bank angle μ, the engine thrust T , and the
lift coefficient CL. Thus, uðtÞ = ðTðtÞ, μðtÞ, CLðtÞÞ.

The parameter R is the radius of Earth and η is the speed-
dependent fuel efficiency coefficient. Lift, L = CLSq̂, and drag,
D = CDSq̂, are the components of the aerodynamic force. The
parameter S is the reference wing surface area and q̂ = 1/2ρV2

is the dynamic pressure. A parabolic drag polar CD = CD0 +
KC2

L and an International Standard Atmosphere (ISA) model
are assumed. The lift coefficient CL is a known function of the
angle of attack α and the Mach number.

Note that differential equations in (14) take the form
of (4b) of the continuous optimal control problem stated in
Section 2.1.

3.2. Flight Envelope Constraints. Flight envelope constraints
are derived from the geometry of the aircraft, structural
limitations, engine power, and aerodynamic characteristics.
The performance limitation model and the parameters
have been obtained from the Base of Aircraft Data (BADA),
version 3.6 [14]:

0 ≤ he tð Þ ≤min hM0, hu tð Þ½ �,
γmin ≤ γ tð Þ ≤ γmax,

M tð Þ ≤MM0,

mmin ≤m tð Þ ≤mmax,
_V tð Þ ≤ �al,

CvVs tð Þ ≤V tð Þ ≤ VMo,

_γ tð ÞV tð Þ ≤ �an,

0:1 ≤ CL tð Þ ≤ CLmax
,

Tmin tð Þ ≤ T tð Þ ≤ Tmax tð Þ,
μ tð Þ ≤ μ ̄:

ð15Þ

In (15), hM0 is the maximum reachable altitude and huðtÞ
is the maximum operative altitude at a given mass (it
increases as fuel is burned). MðtÞ is the Mach number and

MM0
is the maximum operating Mach number. Cv is the

minimum speed coefficient, VsðtÞ is the stall speed, VM0
is

the maximum operating CAS, and an and al are, respec-
tively, the maximum normal and longitudinal accelerations
for civilian aircraft. Finally, TminðtÞ and TmaxðtÞ correspond
to the minimum and maximum available thrust, respec-
tively, and μ corresponds to the maximum bank angle due
to structural limitations.

Note that inequality constraints in (15) take the form
of (4d) of the continuous optimal control problem stated in
Section 2.1.

4. Logical Constraints Modeling

In this section, the approach proposed in [5] has been
followed in which an extension of the embedding optimal
control technique stated in [15] and developed in [16] was
proposed. The embedding technique introduced in [15, 16],
to transform hybrid optimal control problems into traditional
smooth optimal control problems, in which the discrete aspect
of the system arisen only from switches in the dynamic equa-
tions, was adapted in [5] to deal with the logical (discrete)
components which also might appear as constraints.

It was shown in [17] that every Boolean expression can be
transformed into conjunctive normal form (CNF). Thus, it
has been assumed that any logical constraint considered in
this study can be written as a CNF expression

Q1 ∧Q2∧⋯∧Qn, ð16Þ

where

Qi = P1
i ∨P

2
i ∨⋯∨Pmi

i ð17Þ

is in disjunctive form, in which only one of the propositions
must be satisfied and the proposition Pj

i is either X
j
i or ¬X

j
i .

Term Xj
i is a literal that can be either True or False and ¬ rep-

resents the negation or logical complement operator. The
term Xj

i is used to represent statements such as “longitude

λe ≤ 40”. Therefore, Pj
i takes the form

D

xe

xw

yeyw

X

T

(a) Top view

ze

zw

ye

yw

mg

L

𝜇

(b) Front view

zw
ze

xw

xe

mg
D

L

T

𝛾

(c) Lateral view

Figure 1: Aircraft state and forces.
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gj
i x tð Þð Þ ≤ 0

n o
, ð18Þ

where gj
i : ℝ

nx ⟶ℝ is assumed to be a C1 function.
In order to include the logical constraint (16) in a smooth

continuous optimal control problem formulation, it must be
converted into a set of equality or inequality constraints in
which binary variables are not employed. In this way, the
combinatorial complexity of integer programming is eluded.

Transcribing the conjunction in (16) is straightforward
since it is equivalent to the following expression:

∀i ∈ 1, 2,⋯, nf g: Qi: ð19Þ

Thus, taking into account (17), the logical expression (16)
can be represented as follows:

∀i ∈ 1, 2,⋯, nf g: P1
i ∨P

2
i ∨⋯∨Pmi

i : ð20Þ

To transcribe these disjunctions into a set of inequality
constraints, a continuous variable βj

i ∈ ½0, 1� is defined and

related to each Pj
i in (18). Thus, (20) can be expressed as

follows:

∀i ∈ 1, 2,⋯, nf g: βj
i · g

j
i x tð Þð Þ ≤ 0,

0 ≤ βj
i ≤ 1,

〠
mi

j=1
βj
i = 1:

ð21Þ

It is immediate to check that if βj
i = 0 in the first term

in (21), then constraint gj
iðxðtÞÞ ≤ 0 is not fulfilled. On the

other hand, if 0 < βj
i ≤ 1, then βj

i · g
j
iðxðtÞÞ ≤ 0 is in fact

gj
iðxðtÞÞ ≤ 0, and thus, constraint gj

iðxðtÞÞ ≤ 0 is enforced.
Finally, the last term in (21) guarantees that at least one
of the propositions Pj

i holds.
Note that, as expected, equality and inequality con-

straints in (21) take the form of (4c) and (4d), respectively,
of the traditional continuous optimal control problem stated
in Section 2.1. In the following subsections, the application of
this technique to several instances of interest in the ATM
context will be presented in detail.

4.1. Collision Avoidance Constraints

4.1.1. Time-Based Separation between Aircraft. One of the
problems of most interest in ATM is the conflict detection
and resolution problem [18]. Two different instances of this
problem will be studied in this subsection and in the next
one. In a first instance, a collision avoidance model among
different aircraft along routes converging at the same way-
point has been considered, in which a safety time-based sep-
aration is guaranteed at the merging waypoint.

Let tpF and tqF be the unfixed time at the merging way-
point of aircraft p and q, respectively, and let dt be the safety
time difference between two consecutive aircraft. Since in

terms of the discretization (13), tpF = tpN and tqF = tqN , then
multiaircraft time-based separation constraints can be
expressed as follows:

∀q > p : ∣tpN − tqN ∣ ≥ dt , ð22Þ

where condition q > p prevents unnecessary duplication of
constraints. Constraints (22) can be rewritten as follows:

∀q > p : tpN − tqN ≥ dt

or tqN − tpN ≥ dt:
ð23Þ

Following the technique described above to tackle
constraints in disjunctive form, if we define new variables
δ1pN ,qN , δ

2
pN ,qN

∈ ½0, 1� satisfying condition

δ1pN ,qN + δ2pN ,qN = 1, ð24Þ

Equation (23) can be transformed into

∀q > p : δ1pN ,qN tpN − tqN − dt
� �

≥ 0,

δ2pN ,qN tqN − tpN − dt
� �

≥ 0,

0 ≤ δjpN ,qN ≤ 1, j = 1, 2,

δ1pN ,qN + δ2pN ,qN = 1:

ð25Þ

The last constraint in (25) ensures that at least one of
the constraints in (23) is fulfilled, that is, the safety time-
based separation between aircraft p and q is guaranteed.

4.1.2. Distance-Based Separation between Aircraft. In the sec-
ond instance, to model collision avoidance among different
aircraft, at each endpoint of the subintervals of the discretiza-
tion (13) and for every couple of aircraft, a safety distance-
based separation is guaranteed in the horizontal or vertical
directions, that is, λ − θ or h directions.

Let ðλpi , θpi , hpiÞ and ðλqi , θqi , hqiÞ be the positions of air-
craft p and q at the endpoint ti of the discretization, respec-
tively. If the safety distance-based separation in the λ − θ
and h directions is denoted by dλθ and dh, respectively, then
the distance-based separation constraints can be expressed
as follows:

∀q > p,∀i ∈ 1, 2,⋯,Nf g: 2Ratan2
ffiffiffiffi
ζi

p
,

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζi

p� �
≥ dλθ

or ∣hpi − hqi ∣ ≥ dh,

ð26Þ

where the haversine formula has been considered for the dis-
tance in the λ − θ direction with

ζi = sin2
θqi − θpi

2

	 

+ cos θpi cos θqi sin

2 λqi − λpi
2

	 

: ð27Þ
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As before, condition q > p prevents unnecessary duplica-
tion of constraints, and the set of constraints (26) can be
rewritten as follows:

∀q > p,∀i ∈ 1, 2,⋯,Nf g: 2R atan2
ffiffiffiffi
ζi

p
,

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζi

p� �
≥ dλθ

or hpi − hqi ≥ dh

or hqi − hpi ≥ dh:

ð28Þ

Again, following the technique described above, new
variables νj

pi ,qi ∈ ½0, 1� for i = 1, 2,⋯,N , j = 1, 2, 3, satisfying
condition

〠
3

j=1
νj
pi ,qi = 1, ð29Þ

are introduced, and Equation (28) can be transformed into

∀q > p,∀i ∈ 1, 2,⋯,Nf g: ν1pi ,qi 2R atan2
ffiffiffiffi
ζi

p
,

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζi

p� �
− dλθ

� �
≥ 0,

ν2pi ,qi hpi − hqi − dh
� �

≥ 0,

ν3pi ,qi hqi − hpi − dh
� �

≥ 0,

0 ≤ νj
pi ,qi ≤ 1, j = 1, 2, 3,

〠
3

j=1
νj
pi ,qi = 1:

ð30Þ

The last constraint in (30) ensures that at least one of
the constraints in (28) is fulfilled, that is, aircraft p and q
are guaranteed to be a safe distance apart. Moreover, since
this embedded logical constraint approach is quite general,
any other distance separation model described in terms of
Equation (17) can be considered.

4.1.3. Obstacle Avoidance. In the third instance, an obsta-
cle avoidance problem has been considered. Following [5],
in which a set of stationary rectangular obstacles in a two-
dimensional environment were assumed, stationary obstacles
on the three-dimensional space have been enveloped by
cuboids. Cuboids give computational advantages with respect
to other models, such as ellipsoids, since they give rise to sim-
ple bound constraints instead of quadratic constraints, and
mathematical programming solvers are able to deal with
bound constraints more efficiently than with nonlinear con-
straints. Additionally, this simple approach allows us to spec-
ify each cuboid by giving only the coordinates of two
opposite corners as shown in Figure 2.

Let ðλl, θl, hlÞ and ðλu, θu, huÞ be the positions of opposite
corners of the cuboid. Cuboid avoidance for a single aircraft
involves that at every endpoint ti of the subintervals of the
discretization(13), the position of the aircraft ðλi, θi, hiÞmust
remain outside it. In terms of logical constraints, this condi-
tion can be expressed as follows:

∀i ∈ 1, 2,⋯,N − 1f g: λi − λl ≤ 0

or λu − λi ≤ 0

or θi − θl ≤ 0

or θu − θi ≤ 0

or hi − hl ≤ 0

or hu − hi ≤ 0:

ð31Þ

Note that constraints (31) are not enforced at the initial
and final points of the discretization, t0 and tN , since in prac-
tice both positions are fixed. Moreover, due to the nature
of the collocation technique described in Section 2.2, con-
straints are not enforced between the endpoints of the dis-
cretized differential system of equations. Therefore, small
intrusions inside the cuboids might occur. A smaller discreti-
zation size implies a larger intrusion, and vice versa. In prac-
tice, this drawback can be easily overcome by considering a
sufficient safety margin in the modeling of the cuboids.

Following the same technique used in the previous sec-
tions, new variables ξji ∈ ½0, 1�, for i = 1, 2,⋯,N − 1, j = 1, 2,
⋯, 6, satisfying condition

〠
6

j=1
ξji = 1, ð32Þ

are introduced, and Equation (31) can be transformed into

Figure 2: Two opposite corners of a cuboid in the 3D space.
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∀i ∈ 1, 2,⋯,N − 1f g: ξ1i λi − λlð Þ ≤ 0,

ξ2i λu − λið Þ ≤ 0,

ξ3i θi − θlð Þ ≤ 0,

ξ4i θu − θið Þ ≤ 0,

ξ5i hi − hlð Þ ≤ 0,

ξ6i hu − hið Þ ≤ 0,

0 ≤ ξji ≤ 1, j = 1, 2,⋯, 6,

〠
6

j=1
ξji = 1:

ð33Þ
Again, as mentioned above, the last constraint in (33)

ensures that at least one of the constraints in (31) is fulfilled,
which means that aircraft flies outside the cuboid. Also note
that the set of constraints in (33) can be straightforward
extended to multiobstacle and multiaircraft settings. As
already pointed out in Section 4.1.2, since this embedded log-
ical constraint approach is quite general, any other obstacle
model described in terms of Equation (17) can be considered.

4.2. Waypoint Constraints. Finally, the modeling of an air-
craft flying through a waypoint has been considered. The
model has been based on the use of cuboids similar to those
considered in Section 4.1.3. In this case, a cuboid centered
at each waypoint has been defined. However, unlike the
obstacle avoidance constraints, in this setting, the aircraft
has forced to pass through the cuboid instead of avoiding it.

Let ðλWl
, θWl

, hWl
Þ and ðλWu

, θWu
, hWu

Þ be the positions
of opposite corners of a cuboid surrounding a single way-
point. Flying by this waypoint (that is, passing through the
corresponding cuboid) involves that at every endpoint ti of
the subintervals of the discretization (13), the position of
the aircraft ðλi, θi, hiÞ must remain inside it. In terms of log-
ical constraints, this condition can be expressed as follows:

∀i ∈ 1, 2,⋯,N − 1f g: λWl
− λi ≤ 0,

λi − λWu
≤ 0,

θWl
− θi ≤ 0,

θi − θWu
≤ 0,

hWl
− hi ≤ 0,

hi − hWu
≤ 0:

ð34Þ

Note that, for one hand, constraints (34) are enforced at
every point of the discretization except for the initial and final
points, t0 and tN , since there is no a priori knowledge about
when the aircraft is going to fly by the waypoint. On the other
hand, these constraints obviously make sense only when the
aircraft is closed enough to the waypoint.

To overcome this drawback, a second auxiliary cuboid is
considered to modelled free flight mode of the aircraft. Let
λmin, θmin, hmin, λmax, θmax, and hmax be the minimum and

maximum values of the state variables λ, θ, and h, respec-
tively. In terms of logical constraints, the free flight mode
condition can be expressed as follows:

∀i ∈ 1, 2,⋯,N − 1f g: λmin − λi ≤ 0,

λi − λmax ≤ 0,

θmin − θi ≤ 0,

θi − θmax ≤ 0,

hmin − hi ≤ 0,

hi − hmax ≤ 0:

ð35Þ

Then, the transcription into a logical disjunction which
allows to select along the whole trajectory between flying by
the waypoint mode (WM) or free flight mode (FM), namely,
WM∨FM, can be expressed as follows:

∀i ∈ 1, 2,⋯,N − 1f g: WMi

or FMi,
ð36Þ

where WMi and FMi denote if at discretization instant i, the
aircraft is in waypoint mode or free flight mode, respectively.

Once again, following the technique described above, if
we define new variables κ1i , κ2i ∈ ½0, 1� satisfying condition

κ1i + κ2i = 1, for all i = 1, 2,⋯,N − 1, ð37Þ

Equation (36) can be transformed into

∀i ∈ 1, 2,⋯,N − 1f g: κ1i λWl
− λi

� �
≤ 0,

κ2i λmin − λið Þ ≤ 0,

κ1i λi − λWu

� �
≤ 0,

κ2i λi − λmaxð Þ ≤ 0,

κ1i θWl
− θi

� �
≤ 0,

κ2i θmin − θið Þ ≤ 0,

κ1i θi − θWu

� �
≤ 0,

κ2i θi − θmaxð Þ ≤ 0,

κ1i hWl
− hi

� �
≤ 0,

κ2i hmin − hið Þ ≤ 0,

κ1i hi − hWu

� �
≤ 0,

κ2i hi − hmaxð Þ ≤ 0,

0 ≤ κ ji ≤ 1, j = 1, 2,

〠
2

j=1
κji = 1:

ð38Þ

The last constraint in (38) ensures that at least one of the
conditions in (36) is fulfilled, which means that at each
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discretization instant i, the aircraft flies in FM or WM. Note
that, depending on the performance index (4a) considered in
the optimal control problem, two related undesired issues
could potentially arise.

On the one hand, the optimal solution could provide a
trajectory in which the aircraft flies in FM for each discretiza-
tion instant i. Therefore, in order to force the aircraft to actu-
ally fly by the waypoint, a penalty term must also be added to
the numerical transcription of the performance index (4a).
The use of this penalty term, which is set forth to encode
the desired control objectives, implies that the numerical
solution of the optimal control problem must combine the
usual collocation technique describe in Section 2.2 with a
penalty function methodology. In particular, in this work,
the well-known continuation method has been implemented
following a similar approach to [19]. In this specific case of
waypoint modeling, the penalty term takes the form

c1 〠
N−1

i=1
κ1i + c2 〠

N−1

i=1
κ2i , ð39Þ

where c1 and c2 are suitable constants determined by the con-
tinuation method. In the context of a minimization perfor-
mance index such as (4a), a large enough value c2 such that
c2 ≫ c1 > 0, which penalizes the free flight mode, guarantees
that the aircraft actually flies by the waypoint.

On the other hand, the optimal solution could provide a
trajectory in which the aircraft flies by the waypoint more
than once. This situation can be easily avoid introducing in
the model the following simple constraint:

〠
N−1

i=1
κ1i ≤ c3, ð40Þ

where c3 ∈ f1, 2,⋯,N − 1g is a suitable constant. In the con-
text of the problem considered in this work including the
penalty term (39), a value of c3 between 2 and 4 is enough
to avoid this potential undesired issue.

Note that this waypoint constraint setting can be straight-
forward extended to multiwaypoint and multiaircraft settings.
Moreover, once again, since this embedded logical constraint
approach is quite general, any other waypoint constraint
described in terms of Equation (17) can be considered.

5. Numerical Results

To show the effectiveness of the methodology describe in
Section 4, the following three numerical experiments have
been carried out:

(i) Experiment 1. Minimum-time continuous descent of three
aircraft along routes converging at the same waypoint with
time-based separation constraint among them

(ii) Experiment 2. Minimum-time continuous descent of
three aircraft along intersecting routes with distance-based
separation constraint

(iii) Experiment 3. Minimum-time STAR-based continuous
descent of three aircraft along converging routes. The consid-
ered STAR procedure includes sequencing the aircraft at a
merging point and passing through two other waypoints

All of these numerical experiments involve Airbus A-320
BADA 3.6 aircraft models in which the performance index is
the sum of the duration of the flights of the three aircraft. In
some of them, constraints derived from current flight regula-
tion have been introduced, namely, time-based separation
and distance-based separation operational constraints have
been imposed. In particular, a minimum horizontal distance
separation between aircraft of 5000m and vertical separation
between aircraft of 1000m has been considered, whereas the
considered minimum time separation between aircraft has
been 200 s. These specific values have been chosen taking as
a reference the aviation regulation [20] in which, in general,
aircraft have to be separated by at least 3 NM or 3min in
the TMA.

The numerical experiments have been conducted on an
Intel Core i7 2.8GHz CPU with 16GB RAM.

5.1. Experiment 1: Minimum-Time Continuous Descent with
Time-Based Separation Constraints. In this experiment, a
CDA under vectoring has been considered, that is, the lateral
path followed by the aircraft has been assumed to be specified
through instructions provided by the ATC. In particular,
the boundary conditions of the state variables have been
selected from the chart of the Adolfo Suárez Madrid-
Barajas (LEMD/MAD) TMA shown in Figure 3. The initial
position of Aircraft 1, Aircraft 2, and Aircraft 3 has been sup-
posed to be coincident with the ROLDO, SOTUK, and
MORAL waypoints, respectively. Their common final posi-
tion has been assumed to be the LALPI waypoint. The three
aircraft have been supposed to go directly from their ini-
tial positions to the final waypoint, that is, no constraints
on the lateral path have been considered. Neither time-
based nor distance-based separation constraints have been
included in the model. The initial mass of the three aircraft
has been assumed equal to the maximum landing weight of
the aircraft. The specific boundary conditions of the state var-
iables are given in Table 1 and the final mass and time given
by the solution of the corresponding OCP are reported for
each aircraft in the first row of Table 2.

In Figure 4, the 3D view of the paths obtained in the
solution is represented in thick lines, whereas in Figures 5
and 6, the horizontal and vertical profiles are represented in
solid lines.

The computation time to find the solution has been
15:8098 s. The final time of the three aircraft is 1539 s,
1419 s, and 1350 s, respectively, corresponding to 22-25min
of flight. The difference between the final time of aircraft 2
and 3 is 69 s. The difference between the final time of aircraft
1 and 2 is 120 s. The difference between the final time of air-
craft 1 and 3 is 189 s. These differences in time among the
three aircraft at LALPI waypoint are below the required time
separation of 200 s established above. Therefore, a new
experiment has been conducted, which includes time-based
separation logical constraint of at least 200 s between aircraft
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as described in Section 4.1.1. The final mass and time given
by the solution are reported for each aircraft in the second
row of Table 2.

In Figure 4, the 3D view of the paths is represented in thin
lines, and in Figures 5 and 6, the horizontal and vertical pro-
files are represented in dashed lines. It can be seen that

Figure 3: Chart of the Adolfo Suárez Madrid-Barajas (LEMD/MAD) STAR 10-2A1.
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whereas there are slight changes in the horizontal profiles, the
vertical profiles changed significantly.

In this case, the computation time to find the solution
has been 20:8883 s, and the final time of the three aircraft
is 1750 s, 1550 s, and 1350 s, respectively. Since the objec-
tive function to be minimized is the duration of the flights,
aircraft maintain mutually the minimum required time

separation of 200 s. The mass consumption is represented
in Figure 7, in which the solution without time-based sep-
aration constraints is represented in solid lines, whereas
the solution with time-based separation constraints is rep-
resented in dashed lines. It can be seen that introducing
time separation constraints increases the mass consumption
of Aircraft 1 and Aircraft 2, whereas that of Aircraft 3
remains unchanged.

5.2. Experiment 2: Minimum-Time Continuous Descent of
Three Aircraft along Intersecting Routes with Distance-Based
Separation Constraint. This experiment has been designed
to test the effectiveness of the logical constraint formalism
described in Section 4.1.2, where three aircraft start at and
have to reach three different positions flying along intersect-
ing routes in which a mid-air conflict arises, in the sense that
the experiment is intentionally designed in such a way that
they reach almost the same point at the same time.

Neither time-based nor distance-based separation con-
straints have been included in the model. The initial mass
of the three aircraft has been assumed equal to the maximum

Table 1: Boundary conditions for Experiment 1 and Experiment 3.

Symbol Unit Aircraft 1 Aircraft 2 Aircraft 3

hI m 7400 7000 7200

hF m 3350 3350 3350

θI deg 39.526 39.116 39.000

θF deg 40.575 40.575 40.575

λI deg -5.327 -4.448 -3.325

λF deg -3.422 -3.422 -3.422

VI m/s 130 130 130

VF m/s 110 110 110

μI deg 0 0 0

γI deg 0 0 0

χI deg 356 294 24

mI kg 65000 65000 65000

Table 2: Results of Experiment 1.

# aircraft Final time (s)
Final mass

(kg)

Without time
constraint

1 1539 64023

2 1419 64142

3 1350 64151

With time constraint

1 1750 64109

2 1550 64216

3 1350 64151
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Figure 4: Experiment 1. 3D view of the paths with (thin lines) and
without (thick lines) time-based separation constraints.
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Figure 5: Experiment 1. Horizontal profiles with (TC, dashed lines)
and without (FF, solid lines) time-based separation constraints.
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Figure 6: Experiment 1. Vertical profiles with (TC, dashed lines)
and without (FF, solid lines) time-based separation constraints.
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landing weight of the aircraft. The specific boundary condi-
tions of the state variables are given in Table 3, the informa-
tion about the positions of the aircraft at the conflict region is
reported in Table 4, and the final mass and time given by the
solution of the corresponding OCP are reported for each air-
craft in the first row of Table 5.

In Figure 8, the 3D view of the paths obtained in the solu-
tion is represented in thick lines, whereas Figures 9 and 10,
the horizontal and vertical profiles are represented in solid
lines. The computation time to find the solution has been
65:6747 s, and the final time of three aircraft is 1838 s.

To avoid the conflict, a new experiment has been con-
ducted, which includes distance-based separation logical
constraints of at least 5000m (2:7NM) in the horizontal pro-
file and at least 1000m (0:5 NM) in the vertical profile as
described in Section 4.1.2. The final mass and time obtained
in the solution are reported for each aircraft in the second
row of Table 5. In Figure 8, the 3D view of the paths is repre-
sented in thin lines, whereas in Figures 9 and 10, the horizon-
tal and vertical profiles are represented in dashed lines.

It can be seen from Figures 9 and 11 that the conflict is
avoided by activating the logical constraints associated with
the horizontal profile. In particular, from Figure 11, it can
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M
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SOTUK TC 1550 s, 64216 kg

ROLDO FF 1539 s, 64023 kg
SOTUK FF 1419 s, 64142 kg
MORAL FF1350 s, 64151 kg MORAL TC 1350 s, 64151 kg

Figure 7: Experiment 1. Mass consumption with (TC, dashed lines)
and without (FF, solid lines) time-based separation constraints.

Table 4: Positions of the aircraft at conflict region (at time 980 s)
without distance constraint for Experiment 2.

Symbol Unit Aircraft 1 Aircraft 2 Aircraft 3

hI m 4176 4170 4194

θI deg 39.8414 39.8449 39.8458

λI deg -4.3243 -4.3165 -4.3184

Table 3: Boundary conditions for Experiment 2.

Symbol Unit Aircraft 1 Aircraft 2 Aircraft 3

hI m 7400 7400 7400

hF m 3350 3350 3350

θI deg 39.000 39.000 38.701

θF deg 40.575 40.575 40.848

λI deg -5.327 -3.325 -4.320

λF deg -3.430 -5.215 -4.320

VI m/s 130 130 130

VF m/s 110 110 110

μI deg 0 0 0

γI deg 0 0 0

χI deg 356 294 294

mI kg 65000 65000 65000

Table 5: Results of Experiment 2.

# aircraft Final time (s) Final mass (kg)

Without distance
constraint

1 1838 63787

2 1838 63824

3 1838 63751

With distance
constraint

1 1841 63772

2 1839 63900

3 1843 63772

4000

−3.5
−4.0

−4.5
Longitude (°)

Lati
tude (

°)

Aircraft 1

Aircraft 3
Aircraft 2

−5.0
40.5

40.0

39.5

39.0
5000

A
lti

tu
de

 (m
)

6000
7000

Figure 8: Experiment 2. 3D view of the paths with (thin lines) and
without (thick lines) distance-based separation constraints.
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Figure 9: Experiment 2. Horizontal profiles with (DC, dashed lines)
and without (FF, solid lines) distance-based separation constraints.
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be observed that the logical distance constraint between Air-
craft 1 and Aircraft 2 is active in the interval ½982, 1012� s,
between Aircraft 2 and Aircraft 3 it is active in the interval ½
1011, 1042� s, and between Aircraft 1 and Aircraft 3 it is
active in the interval ½952,983� s. The final time of Aircraft 1,
Aircraft 2, and Aircraft 3 is similar, being 1841 s, 1838 s, and
1843 s, respectively. The computation time to find the solution
has been 69:3823 s. The mass consumption is depicted in
Figure 12, in which the solution without distance-based sepa-
ration constraints is represented in solid lines, whereas the
solution with distance-based separation constraints is repre-
sented in dashed lines. It can be seen that introducing
distance-based separation constraints does not significantly
change the mass consumption of the aircraft.

5.3. Experiment 3: Minimum-Time STAR-Based Continuous
Descent along Converging Routes. In this experiment, a
STAR-based CDA has been considered, that is, the lateral
path followed by the aircraft has been assumed to be spec-
ified in a navigation chart. In particular, as in Experiment

1, the boundary conditions of the state variables have been
selected from the chart of the Adolfo Suárez Madrid-
Barajas (LEMD/MAD) TMA shown in Figure 3. The initial
position of Aircraft 1, Aircraft 2, and Aircraft 3 is supposed
to be coincident with the ROLDO, SOTUK, and MORAL
waypoints, respectively. Aircraft are constrained to pass
through TODNO and RESBI waypoints and their common
final position is assumed to be the LALPI waypoint. For the
setting of the cuboids centered at the given waypoints, the
modeling defined in Equation (34) has been considered. In
particular, the cuboid centered at TODNO waypoint has
been defined by the two corners ð39:560∘,−4:24∘, 5400mÞ
and ð39:640∘,−4:160∘, 6000mÞ, whereas the cuboid centered
at RESBI waypoint has been defined by the two corners
ð40:400∘,−4:150∘, 4200mÞ and ð40:480∘,−4:070∘, 4800mÞ.

The initial mass of the three aircraft has been assumed
equal to the maximum landing weight of the aircraft. The
specific boundary conditions of the state variables are the
same as in Experiment 1 and are given in Table 1, and the
final mass and time given by the solution of the correspond-
ing OCP are reported for each aircraft in the second row of
Table 6. In spite of the fact that the three aircraft have to pass
through two waypoints, neither distance-based conflict nor
time-based conflict arises during the flight except for the last
part of the time discretization. In particular, Aircraft 1 and
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Figure 10: Experiment 2. Vertical profiles with (DC, dashed lines)
and without (FF, solid lines) distance-based separation constraints.
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Figure 12: Experiment 2. Mass consumption with (DC, dashed
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Table 6: Results of Experiment 3.

# aircraft Final time (s) Final mass (kg)

Without logical
constraints

1 1539 64023

2 1419 64142

3 1350 64151

With waypoint
constraints

1 1971 63813

2 1626 64071

3 1965 63863

With waypoint and
time constraints

1 2109 63908

2 1619 64127

3 1909 63956
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Aircraft 3 reach the LALPI waypoint with a time separation
of 6 s only. The computation time to find the solution has
been 41:7981 s.

Therefore, a new experiment has been conducted, which,
besides waypoint constraints, also includes time-based sepa-
ration logical constraint of at least 200 s between aircraft as
described in Section 4.1.1. The final mass and time given by
the solution are reported for each aircraft in the third row of
Table 6. In Figure 13, the 3D view of the paths is represented
in thin lines, whereas in Figures 14 and 15, the horizontal
and vertical profiles are represented in dashed lines.

It can be seen that, as expected, there are significant
changes in both the horizontal and vertical profiles. The final
time of the three aircraft is 2109 s, 1619 s, and 1909 s, respec-
tively. The difference between the final time of aircraft 1 and
3 is 200 s, whereas the difference between the final time of
aircraft 3 and 2 is 290 s. Notice that, unlike Experiment 1, air-
craft 3 and 2 do not maintain the minimum required time
separation of 200 s. This is due to the fact that the perfor-
mance index includes in this case, besides the minimization
of the duration of the flights, the penalty term associated with

the waypoints constraints. Therefore, the saturation of the
time-based constraints may not happen in this setting. In this
case, the computation time to find the solution has been
49:0766 s.

The mass consumption is depicted in Figure 16, in which
the solution without logical constraints is represented in
solid lines, whereas the solution with waypoints constraints
is represented in dashed lines. It can be seen that introducing
waypoint constraints increases the mass consumption of
Aircraft 1 and Aircraft 3, whereas that of Aircraft 2 remains
almost unchanged.

6. Conclusions

In this paper, the trajectory planning problem for multiple
aircraft has been studied in which logical constraints in dis-
junctive form are included in the model. The logical con-
straints in disjunctive form have been transformed into
inequality and equality constraints which involves only
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Figure 13: Experiment 3. 3D view of the paths with (thin lines)
and without (thick lines) waypoints and time-based separation
constraints.
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continuous auxiliary variables. In this way, the optimal
control problem with logical constraints has been con-
verted into a smooth optimal control problem which has
been solved using standard techniques. This approach has
been applied to the computation of the optimized profile
descent of multiple aircraft in converging and intersecting
arrival routes within the Adolfo Suárez Madrid-Barajas
(LEMD/MAD) TMA. The results show the effectiveness
of the proposed technique.
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