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This paper estimates the pose of a noncooperative space target utilizing a direct method of monocular visual simultaneous location
and mapping (SLAM). A Large Scale Direct SLAM (LSD-SLAM) algorithm for pose estimation based on photometric residual of
pixel intensities is provided to overcome the limitation of existing feature-based on-orbit pose estimation methods. Firstly, new
sequence images of the on-orbit target are continuously inputted, and the pose of each current frame is calculated according to
minimizing the photometric residual of pixel intensities. Secondly, frames are distinguished as keyframes or normal frames
according to the pose relationship, and these frames are used to optimize the local map points. After that, the optimized local
map points are added to the back-end map. Finally, the poses of keyframes are further enumerated and optimized in the back-end
thread based on the map points and the photometric residual between the keyframes. Numerical simulations and experiments are
carried out to prove the validity of the proposed algorithm, and the results elucidate the effectiveness of the algorithm in

estimating the pose of the noncooperative target.

1. Introduction

With the development of space technology, on-orbit service
is getting widespread attentions. And on-orbit capture of
space targets is the key of it, which is regarded as the primary
issue to be addressed by many space missions such as the
assemblage of space station, fuel filling, or the maintenance
of spacecraft. On-orbit capture means the operation that uses
service spacecraft to capture the target spacecraft. The space
targets can be divided into cooperative targets and noncoop-
erative targets. Cooperative targets can provide kinematics
and dynamics information, such as velocity, pose, mass, iner-
tia, centroid position, and size, to facilitate the subsequent
design of the capturing path and control law, whereas nonco-
operative targets cannot. How to capture a noncooperative
target under the condition of less effective information is
becoming one of the focuses in the aerospace industry. In
recent years, the progress in visual technology has provided
new ideas and approaches for motion observation, motion
prediction, and three-dimensional structural reconstruction

of noncooperative targets. Vision-based target observation
technology adopts a camera as the sensor, which has the
characteristics of low cost, easy to install, and noncontact. It
is very suitable for on-orbit service and other missions of
spacecraft. Therefore, the researches on the visual technology
of spacecraft are of great scientific significance and engineer-
ing application value.

At present, monocular pose estimation has been applied
to many missions of a spacecraft, such as autonomous navi-
gation [1-5] and rendezvous operation [6, 7]. The relative
pose measurement and estimation of service spacecraft and
space target is also the important premise of on-orbit cap-
ture. Up to now, there are some researches on it and some
achievements have been made. For example, Wen et al. [8]
extracted circles, lines, and points on the cooperative targets
and calculated the target pose by the Point-3-Perspective
algorithm. The algorithm is suitable for real-time visual mea-
surement that requires high precision in aerospace, which is
not suitable for noncooperative targets. Song and Cao [9]
proposed a monocular vision pose measurement method
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based on solar triangle structure. The algorithm recognizes
feature structure based on sliding window Hough transfor-
mation and proposed inscribed circle of a triangle, calculat-
ing the relative pose of target expressed by rotation and
translation matrix. Regoli et al. [10] presented an approach
for estimating the pose of an unknown object using Photonic
Mixer Device cameras. The algorithm works online by mak-
ing use of the amplitude and depth information provided by
the camera at high frame rates to estimate the relative pose in
the rendezvous and docking process. D’Amico et al. [11] used
a known three-dimensional model of a passive space resident
object and single low-resolution two-dimensional images
collected by the active spacecraft to estimate the pose of a
noncooperative target, but the method had the disadvantage
of requiring lots of known information of the target. Li et al.
[12] proposed a relative pose estimation method between
noncooperative spacecrafts based on parallel binocular
vision. The method extracted the line features and feature
points on the freely tumbling target and calculated the rela-
tive pose between the target coordinate and the world coordi-
nate. Shtark and Gurfil [13] developed a computer-vision
feature detection and matching algorithm to identify and
locate the target in the captured images and then designed
three different filters to estimate the relative position and
velocity. He et al. [14] proposed a measurement method of
relative position and attitude between two noncooperative
spacecrafts based on graph cut and edge information algo-
rithm. The circular feature of the target is accurately
extracted and the edges are ellipse fitting, and the relative
position and attitude of target is obtained by fitting ellipse
parameters of binocular cameras. Dong and Zhu [15] devel-
oped a real-time vision-based pose and motion estimation of
noncooperative target by an extended Kalman filter. Optical
flow algorithm was adopted to track the feature points of
the target, and photogrammetry was used to provide more
accurate initial conditions. Mortari et al. [16] calculated the
centroid and distance from the observer to the body by an
image processing approach of illuminated ellipsoid and esti-
mated the observer-to-body relative position in inertial coor-
dinates for navigation purposes. Modenini [17] utilized some
obtained analytical results for the perspective projection of
an ellipsoid and simplified the attitude determination prob-
lem to an approximate orthogonal Procrustes problem,
which greatly reduced the difficulty of the problem. Liu and
Hu [18] developed a novel framework to determine the rela-
tive pose and range of a known-shaped noncooperative
spacecraft from a single image, and the method was validated
by synthetic and real images. Zhang et al. [19] addressed the
problem of estimating the relative pose of a target spacecraft
by employing Gaussian process regression. Experiments on a
simulated image dataset that contains satellite images of 1D
and 2D pose variation were performed, and the results vali-
dated the effectiveness and robustness of the approach. It is
worth pointing out here that most strategies of the exiting
studies on relative pose measurement and estimation of space
target are matching the target with the existing template
library, or extracting the features on the target such as
corners, circular dockings, rectangular sails, and other fea-
tures, which is the basis of the calculation. Matching and
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calculating based on the template library requires the
three-dimensional structure information of the target in
advance. Establishing a library containing a large number
of representative satellite models consumes a lot of resources
and time; thus, it is not desirable in actual operation. And cal-
culating the relative pose based on target features requires
extraction of strong geometric features on the target. When
there are no such features on the target or the local textures
are missing, the accuracy of the calculation will be greatly
reduced. Therefore, the problem that the existing algorithms
are not quite robust to weak textures still exists.

The visual SLAM method was originally proposed to
solve the localization problem of a mobile robot [20, 21].
It uses a camera as the unique sensor to track the pose of
the camera in real time according to the sequence images
taken by the camera and at the same time constructs the
three-dimensional map of the environment. In the visual
SLAM method, the scene is stationary, and the camera is
moving relative to the scene. When using a camera to esti-
mate the relative pose of a noncooperative space target, the
camera fixed to the service spacecraft is stationary and the
space target is moving relative to the service spacecraft.
Therefore, it is reasonable to apply the SLAM method to
the relative pose estimation of noncooperative space targets.
Tweddle [22] described a new approach to solving a SLAM
problem for uncooperative objects that are spinning about an
arbitrary axis. The method estimated a geometric map of the
target and obtained its dynamic and kinematic parameters.
Augenstein and Rock [23] presented an algorithm for real-
time pose estimation using monocular SLAM/SFM by com-
bining Bayesian estimation methods and measurement
inversion techniques. The performance and viability of the
hybrid approach were demonstrated by numerical simula-
tions and field experiments. Chiodini et al. [24] presented a
collaborative visual localization method for rovers which
designed to hop and tumble across the surface of small Solar
System bodies. By capturing images from various poses and
illumination angles, the spacecraft mapped the surface of
the body and created a prior 3D landmark map. Then, the
hopping rover relocalized the prior map and performed
simultaneous localization and mapping. The method was
evaluated with image sequences of a mock asteroid and was
shown to be robust to varying illumination angles, scene scale
changes, and oft-nadir camera pointing angles. Visual SLAM
is mainly divided into feature method and direct method.
The feature method extracts some representative points on
the image such as corners and edges. These features remain
stable after the movement of the camera. When the camera
is moving, the feature points observed on two images of adja-
cent positions are matched, and two matched points form a
matched point pair. The relative pose of the camera at two
different positions is estimated according to the correspond-
ing relationship of the matched point pairs. However, when
the number of the observable features in the scene is less than
a certain account, the feature-based SLAM will be invalid.
And if there are many repeated textures in the scene, many
mismatches will occur in the feature-based SLAM, resulting
in the decrease of estimation accuracy. Research in the field
of space has its particularity, such as poor lighting conditions
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and less effective features, and the algorithm should satisty
both real-time and accuracy requirements. Because of the
above limitations, the feature-based SLAM, ORB-SLAM, for
example, cannot be initialized in all cases [25]. The PnP
method, which is commonly used in pose measurement, is
easy to fail in the calculation process, for the reason that it
uses limited number of features and is sensitive to noise
and mismatches [26]. The direct SLAM is establishing the
photometric residual of pixels on images of two adjacent
positions when the camera moves and minimizing the photo-
metric residual to estimate the pose of the camera. Due to the
direct use of image intensity, direct SLAM does not depend
on the number of features in the scene, so it has strong
robustness under complex conditions such as occlusion and
weak texture scenes and is not easily affected by such factors.
It also meets the requirements of real time and accuracy.

In this paper, the relative pose is estimated by the method
of the direct SLAM. The algorithm calculates the photomet-
ric residual based on the intensity of pixels on the image
and minimizes the photometric residual by solving the opti-
mization problem to estimate the pose of the camera. The
estimated pose of the camera can be translated into the pose
of the target. The structure of this paper is as follows. Section
2 outlines and explains the basic principles of the direct
method. Section 3 briefly describes the LSD-SLAM algorithm
used in this paper. Section 4 designs and carries out numeri-
cal simulations for the algorithm in this paper and analyzes
the results. Section 5 is a summary of the preceding contents
and the conclusions obtained.

2. Fundamental Principles of the Direct Method

Feature-based visual SLAM method estimates the pose by
matching the features. Unlike that, the direct SLAM esti-
mates the pose by calculating and optimizing the photomet-
ric residual. For two pictures taken by the camera in different
perspectives, the photometric residual refers to the difference
between the intensity value of a pixel in the first image and
the intensity value of its corresponding pixel in the second
image through the relative pose relationship. In the first
image, each pixel can find a corresponding pixel in the sec-
ond image, and a photometric residual can be calculated.
The direct method calculates the sum of all the photometric
residuals, and the estimated pose is obtained by minimizing
the sum.

When the scene is stationary, the relationship between
pixels on the image i and their projection positions on the
image j is shown in Figure 1. The plane rectangular coordi-
nate systems O;-u;v; and O;-u,v; are the pixel coordinate sys-
tems, built on the image planes of i and j, respectively. The
space rectangular coordinate systems C;-x;y,z; and C;-x;yz;
are the camera coordinate systems of the image i and the
image j, respectively, where x;C,y; is parallel to #;0;v; and
ijjyj is parallel to ujOjvj. Tﬁ € R¥* is the transformation
matrix between C;-x;y,z; and Cj-x;y;z;, which is expressed
as Equation (3). w; = (1, v)" € R> is the coordinate vec-
tor of the pixel projected on the image i (that is the k-th pixel)
of the space point p, in the coordinate system O;-u;v;, where
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FIGURE 1: Schematic diagram of the relationship between the pixels
on the image i and the image j and their projection positions.

T represents the transposition of a vector or a matrix. My =
(Ujks vjk)T € R*! is the coordinate vector of the pixel pro-
jected on the image j of the space point p, in the coordinate
system O;-u;v;. The pixel is the corresponding projection
pixel of the k-th pixel on the image i.
T T

Suppose X; = (X Vo Zi) - and X; = (xj, yj» 2j) are the
coordinate vectors of the space point p, in the coordinate sys-
tems C;-x;y;z; and Cj-x;y,z;, respectively. d; is the depth of
the k-th pixel on the image i, that is, the coordinate value of
z coordinate in the coordinate system C;-x;y,z; of the space
point p, [27]. We have the following expression

T — T
X; = (% Vi Zi) | = K (g v 1), (1)

where K € R** is the camera intrinsic matrix and K™! € R¥

is its inverse matrix, given by

fx 0 CX
K=10 f, ¢/
[0 0
o, , Ly & (2)
fo 0 o |fs I
-1 _ ! _
K =10 fx C/:/ 1o i _Cl >
0 0 1 fy f}’
0 0 1

where f and f  are, respectively, the scaled focal lengths in the
u and v directions on the image, f.= (1/f,) andf}',: (1/f,).
(cw>¢y) is the pixel coordinate of the principle point of the
camera, c.= —(c,/f ) and c; =—(c,/f,). The so-called princi-
ple point is the pixel coordinate of the intersection points of
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FIGURE 2: A broad outline of the LSD-SLAM algorithm.

C; and C; perpendicular to the respective image plane. For the
camera center at different locations such as C; and C;, their ¢,
and ¢, are constant.

The relative transformation matrix between the coor-
dinate systems C;-x;;z; and Cj-x;y;z; can be expressed
as [28]

T; = [R;t;], 3)

where R; € R and tjielR3X1 are the rotation matrix
and translation vector from the coordinate system C;-x;
iz to the coordinate system C;-x;y;z;. Using Equation
(3), the coordinates x; of the space point p; in the cam-
era coordinate system can be expressed as

T
X; = (xjk,yjk, ij) =R;x; +t;. (4)

The pixel coordinate p; = (u;,v;)" can be calculated,

given by [29]
xjk i !
ugp=|—=—|f,+co
Jk <ij

Yik X g1 s
vi=|=|f,+¢,
j <ij y Ty

Assume that I and I; are the intensity value of the
k-th pixel on the image i and its corresponding pixel on
the image j, the photometric residual is given by

e =Ty (M) = T (ij) : (6)

T;; can be obtained by solving the following optimiza-
tion problem

T =arg nTnnZHrkHz (7)
ik

When the quadratic sum of all photometric residuals is
minimized, the T;; that minimizes the sum is the estimated
pose. This optimization problem can be solved by the
gradient-based optimization methods such as the Gauss-
Newton method or the Levenberg-Marquardt algorithm.

3. LSD-SLAM Algorithm

The LSD-SLAM utilizes the pixels whose gradient has signif-
icant changes and minimizes the photometric residual of
pixels to estimate the pose, recover the depth, and construct
the semidense three-dimensional map [30]. The process of
LSD-SLAM is shown in Figure 2. There are three main
modules of the algorithm: camera pose tracking, depth map
estimation, and global map optimization. First, the pose
tracking module continuously calculates the pose of the
incoming frames. A single image in a long sequence of con-
secutive images is generally called a frame. Then, based on
the obtained relative pose, the depth map estimation mod-
ule generates and enhances keyframes in an independent
thread; the construction and the refinement of the local 3D
map of the scene are performed at the same time. Finally,
the map optimization module filters all the keyframes and
uses the optimization algorithm to perform more detail
and accurate optimization of the global 3D map in another
independent thread.

3.1. Camera Pose Tracking. When LSD-SLAM is running, the
input frames are always the real-time images of the camera,
or the images of a continuous sequence. The lately input
frame is called the current frame. For each current frame j,
assume that T;_, ; is the relative pose transformation matrix
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of the previous frame j — 1 relative to the nearest keyframe i.
Then, take T;_, ; as the initial value and minimize the normal-

ized photometric residual between the frames i and j, the
relative pose T ; of the current frame j to the nearest keyframe

iis calculated, given by

2
E) =2 |5 (8)
Ui €2 || Tuk || o
Tk = Ty () — T (ij (Mo dio Eji))’ )

where E is the normalized photometric residual function; €; is
the set of all the pixels in the region where the pixel gradient has
significant changes on the frame i. By considering geometric
disparity error and photometric disparity error [31] compre-
hensively, it can be found that the greater the pixel gradient
is, the smaller the error is. Therefore selecting pixels of “signif-
icant change in gradient” is to eliminate the comprehensive
error. y; is the pixel coordinate of the k-th pixel on the key-
frame i, while y is the corresponding pixel coordinate on
the current frame j.dj, is the depth of the k-th pixel on the key-
framei; Eﬁ isthe transformation matrix T i between frameiand
frame j represented by Lie Algebras [32]. Based on p1;;, d;;, and
§;i» the corresponding pixel coordinate 4 on the frame j is

determined. [|[| is the Huber norm, r,; is the photometric
residual, and o? _ is the variance of the photometric residual
i

.- The optimization problem is
§; =arg ngan(Eﬁ). (10)

When the normalized photometric residual function takes
the minimum value, the obtained § is the estimated relative
transformation. This optimization problem can be solved by
the reweighted Gauss-Newton method [30].

3.2. Depth Map Estimation. Based on the obtained relative
pose of each frame, LSD-SLAM performs depth map estima-
tion. In the calculation process, the algorithm selects some
representative frames as keyframes, which are refined by
other frames during tracking. These keyframes are used to
build the local map and enhance it. First, the weighted dis-
tance dist(§;;) of the current frame j relative to keyframe i
is calculated. If the distance is greater than a certain thresh-
old, the current frame is taken as a new keyframe. The
threshold is a variable value that depends on the number of
existing keyframes, which can be found in source code
(https://github.com/tum-vision/Isd_slam). The weighted dis-
tance can be expressed as

dist (&;) = §[ WE;, (11)

where W is the weight matrix. When the current frame j
becomes a new keyframe, it replaces the previous keyframe
as the latest keyframe. The former keyframe was added into
the keyframe graph and optimized in the back-end thread.

The depth map points of the previous keyframe are projected
to the current frame according to the relative pose and are set
as the initial depth map points of the current frame. And if
the distance is less than the threshold, the current frame is
not set as a keyframe. Based on the relative pose between
the frame j and the nearest keyframe i, the depth d; and the

variance 012 of the current frame j can be obtained. And the

depth d; and the variance V; are updated by using the
extended Kalman filter [33].

(o) — ) ’Epj) a0}

d
V; pj) +cr]2-
Vv, <pj)a§

Vf(p.) —
o Vi<pj> +a]2-

The updated depth map is integrated into the original
depth map, which makes the depth map of the keyframe
more complete and smooth.

3.3. Global Map Optimization. Due to the scale uncertainty of
monocular vision, the depth of pixels cannot be accurately
obtained. It can only be estimated by moving the camera to
different positions, and the error accumulates after long-
term movements of the camera, which leads to the inconsis-
tency of the scale in the scene. In other words, the scene will
change dramatically. However, the pose of each frame is cal-
culated relative to the nearest keyframe, and frames which
are relative to the same keyframe make up a set. The consis-
tency of the scale for the frames in the same set can be main-
tained, while the consistency of different sets cannot.
Therefore, for the keyframes added to the keyframe graph,
LSD-SLAM solves the optimization problem by minimizing
the joint function of the normalized photometric residual
and the normalized depth of the scene. The relative pose
between two keyframes i and j can be obtained, which can
be expressed as

2 2
"k " Tk
2 2
Tk Tdk

, (13)
B

G;; = arg min Z

o
el

Tk = L (i) = i (P-jk (Mo s qji))’ (14
14
Tak = Zjk = djk (ij)’

where 1, is the difference of the z coordinate value z;; of the
space point p, in the camera coordinate of the frame j, and
the depth dj; of the pixel coordinate y1;, of the corresponding
pixel in the frame j. afdk is the variance of the residual r ;, and
G is the relative transformation between keyframe i and

frame j represented by Lie Algebras. At last, with the contin-
uous inputs of the image sequence, LSD-SLAM performs
loop closure detection based on the relative pose ¢;; between
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FIGURE 3: Schematic diagram of the satellite model: (a) stereogram, (b) view in the Z direction, and (c) view in the X direction.

the keyframes in the back-end, further eliminating the cumu-
lated error induced by the camera motion [34].

It is worth mentioning that in Numerical Simulations
and Experiments of this paper, as we have tried, the loop clo-
sure has not been detected and the back-end optimization
module of the LSD-SLAM algorithm is not triggered.

4. Numerical Simulations and Experiments

To verify the validity of the method applied in this paper,
numerical simulations and experiments are carried out. First,
the satellite model of the simulation is a cuboid model with a
docking ring mounted on the front and some small satellite
components, generated by POV-Ray (http://www.povray
.org/) software. The model rotates around a single axis and
the images of the model are saved at the same time. The cal-
culated results can be obtained by calculating the images by
the proposed method. The theoretical results of the rotation
angles of the model can be obtained by the software. The
two results are compared, and the errors are analyzed.

The satellite model of the experiments is a satellite model
fixed on a rack and can rotate around a single axis driven by a
stepper motor. The model rotates and the images of the

model are saved at the same time. The calculated results
can also be obtained by calculating the images by the pro-
posed method. The theoretical results of the rotation angles
of the model can be obtained by the motor. The two results
are compared, and the errors are also analyzed.

4.1. Numerical Simulations. In this section, numerical simu-
lations are performed to verify the validity of the proposed
method in this paper. As shown in Figure 3, the space coor-
dinate system O-XYZ is established at the center of the front
surface of the satellite, and the lengths in the three directions
X, Y, and Z of the main satellite body are 10, 10, and 8,
respectively (note: this article uses a dimensionless unit).
The docking ring mounted on the front surface of the satellite
takes O as the center of the circle, and the inner and outer
radius, and the height is 2, 3, and 1, respectively. There are
three different components on the surface of the satellite
named A, B, and C. The lengths in the three directions X,
Y, and Z of A are 1, 1, and 1.5, respectively. The lengths in
the three directions X, Y, and Z of B are 0.6, 1, and 0.6,
respectively. The lengths in the three directions X, Y, and Z
of C are 1.6, 0.5, and 0.2, respectively. The camera model in
the software is pinhole camera model. Before the simulation,
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(a)

FIGURE 4: Schematic diagram of three different satellite models: (a) no texture with 3 components, (b) rough textures with 3 components, and

(c) rough textures with 5 components.

the camera in the software needs to be calibrated. The proce-
dure of calibration is as follows: (1) first, a total of 10-20
images (15 in this paper) of different poses with chessboard
are generated and saved as jpg format; (2) then, the corner
points of these checkerboard pictures are extracted by using
the Camera Calibration Toolbox of MATLAB; (3) at last,
the camera parameters are obtained by calculation. The
calculated camera parameters are as follows: f, =479 mm,
f, =479 mm, ¢, =319, and ¢, = 239. The camera parameters

do not change in the process of camera movements, so the
obtained camera parameters can be used for the subsequent
simulations.

In order to indicate the estimation accuracy of kinematic
information in different roughness conditions on the surface
of the object, this paper considers three kinds of satellite
models with different surface texture features and different
amounts of the components, as shown in Figure 4, which
are (a) no texture on the surface and 3 components mounted
on the model, (b) rough textures on the surface and 3 compo-
nents mounted on the model, and (c) rough textures on the
surface and 5 components mounted on the model. There
are two additional components in (c), where the radius and
height of the cylinder located at the center on the front sur-
face are 0.5 and 1.8, and the radius and height of the cylinder
located at the bottom left corner on the front surface are both
0.8. All of the generated images are saved as jpg format, and
the size of each picture is 640 x 480.

In the first case, it is assumed that the satellite rotates at a
constant imaging speed around the Z axis. The imaging
speed of the camera is set to be 10 frames per degree. The
rotation angles are 90, 180, 360, and 450 degrees, respectively.
The POV-Ray could generate sequences of images at different
angles under such condition. The camera parameters and
sequence image sets are used as input of the LSD-SLAM
algorithm, and the estimated angles of the satellite model are
calculated and compared with the theoretical values. In
Figures 5-10, as the number of frames increases, the theoret-
ical value of the rotation angle increases proportionally, which
is expressed in a dashed curve named “theoretical result.”
And as the number of frames increases, the calculated value
of the rotation angle also increases correspondingly, which

is expressed in a solid curve called “calculated result.”
Figures 5-7 show the curves in the first case in the three dif-
ferent models, respectively. And the results of the root mean
square (RMS) error, the absolute error, and the fractional
error are shown in Table 1. It can be seen from the results
that the method presented in this paper can accurately esti-
mate the rotation angle of the satellite.

Then, the second case where the imaging speed of the
camera varies should be considered. Assume that the imaging
speed is set to be 20, 30, and 40 frames per degree, and the
rotation angle of the satellite is 90 degrees. Figures 8-10 show
the curves under these conditions in the three different
models, respectively. The error results are shown in Table 2.
It can be seen from the calculation that the method can still
effectively estimate the pose of the satellite.

According to the above results of simulations, the analy-
ses are as follows. (1) The error of angular value obtained by
calculating the satellite with rough surface is less than that
with no texture. (2) In the condition of 10 frames per degree
unchanged, as the rotation angle of the satellite increases, the
error of the angular calculation first decreases and then
increases; the error is the smallest and reaches the highest
precision when the rotation angle is 180 degrees. (3) Under
the condition that the satellite rotation is maintained at 90
degrees, as the imaging speed increases, the angular error
of the surface with no texture increases, and that of the sur-
face with textures is reduced. In general, the angular calcu-
lation error of the satellite model is within a certain range
in all cases, which shows that the algorithm has satisfied
estimation accuracy.

4.2. Experiments. Here, experiments are performed to verify
the validity of the proposed method in this paper. As shown
in Figure 11, a satellite model is fixed on a rack and the model
can rotate around the axis perpendicular to the plane of the
rack driven by a stepper motor. A docking ring and three
components are mounted on the front of the satellite model,
and two sailboards are on both sides of the satellite. The front
surface of the model is wrapped with gold foil. The monocu-
lar camera is stationary in front of the satellite model. Since
the experiments are for measuring the rotation angle
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FIGURE 5: Angle estimation of model (a) under different rotation angles (10 frames per degree)
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FIGURE 6: Angle estimation of model (b) under different rotation angles (10 frames per degree).
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FIGURE 7: Angle estimation of model (c) under different rotation angles (10 frames per degree)
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FIGURE 8: Angle estimation of model (a) under different imaging speeds (rotation angle of 90 degrees).
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TasBLE 1: Calculated values and errors of the three models under different rotation angles (10 frames per degree).

Angle () Calculated value (°) RMS error () Absolute error (%) Fractional error (%)
Model (a): no textures_3 components

90 86.35 2.42 3.65 4.06
180 171.83 5.28 8.17 4.54
360 357.64 4.48 2.36 0.66
450 439.84 4.21 10.16 2.26
Model (b): rough textures_3 components

90 87.17 1.77 2.83 3.14
180 177.99 1.18 2.01 1.12
360 351.59 4.59 8.41 2.34
450 443.01 4.22 6.99 1.55
Model (c): rough textures_5 components

90 89.40 0.29 0.60 0.67
180 178.94 0.63 1.06 0.59
360 350.62 1.37 9.38 2.61
450 434.34 6.69 15.66 3.48

TaBLE 2: Calculated values and the errors of three different models under different imaging speeds (rotation angle of 90 degrees).

Frame Calculated value (°)

RMS error (°) Absolute error (%) Fractional error (%)

Model (a): no textures_3 components

900 86.35 2.43 3.65 4.06
1800 85.26 2.46 4.74 5.27
2700 85.05 2.39 4.95 5.50
3600 88.95 0.71 1.05 1.17
Model (b): rough textures_3 components

900 87.17 1.77 2.83 3.14
1800 88.92 0.49 1.08 1.20
2700 89.42 0.17 0.58 0.64
3600 91.50 1.37 1.50 1.67
Model (c): rough textures_5 components

900 89.40 0.29 0.60 0.66
1800 89.71 0.23 0.29 0.33
2700 90.06 0.50 0.06 0.06
3600 90.04 0.52 0.04 0.04

perpendicular to the plane of the rack, the specific distance
between the model and the monocular camera is no need to
know. The relative position between the model and the cam-
era is as shown in Figure 12, where the red frame represents
the monocular camera. In order to simulate space environ-
ment and reduce interferences, the background is covered
by black curtains and the satellite model becomes the only
object in the field of view of the camera. When the satellite
model rotates driven by the motor, the monocular camera
captures the images of the satellite model. The calibrated
parameters of the monocular camera are f, =552.38 mm,
f,=554.18 mm, ¢, = 303.02, and ¢, = 224.06. An image cap-

tured by the camera is as shown in Figure 13 and the running

process of the algorithm is as shown in Figure 14, where the
red frame represents the camera and the green curve repre-
sents the trajectory of the camera relative to the model. As
the input of the LSD-SLAM algorithm, the images are com-
puted and the experiment results of the rotation angles can
be obtained. The theoretical results of the rotation angles
can be obtained by the stepper motor. Comparison of the
experiment results and the theoretical results is as shown in
Figure 15 and Table 3.

According to the above results of experiments, it can be
seen that the angular calculation error of the satellite model
is within a reasonable range, which shows that the algorithm
has satisfied estimation accuracy.
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FiGure 11: Schematic diagram of the satellite model and the
experimental scenario.

FIGURE 12: Schematic diagram of relative position relationship
between the satellite model and the monocular camera.

FIGURE 13: An image of the satellite model captured by the
monocular camera.

4.3. Analysis and Discussion. According to the result above,
the feasibility of the algorithm and the possible causes of
errors are analyzed, while other schemes of motion observa-
tion are also briefly introduced and discussed.

International Journal of Aerospace Engineering

FIGURE 14: Schematic diagram of the running process of the
algorithm.

In the above numerical simulations and experiments, the
LSD-SLAM algorithm runs on the computer of which the
CPU is Inter i7-4790 and the operation system is Ubuntu
16.04. In general, when the frame rate of the camera is 30
frames per second, in order to meet the real-time require-
ments, the processing time of each frame should not exceed
33.3 ms. Running the algorithm on this computer, the aver-
age processing time of each frame is no more than 30 ms,
which guarantees the real-time operation of the algorithm.

Based on the above results of numerical simulations and
experiments, it can be found that as the frame number and
imaging speed increase, the error increases gradually. The
possible reason is related to the characteristic of the direct
method. Since the corresponding relationship only depends
on the intensity, one pixel may have more than one corre-
sponding pixels, which may lead to mismatching. And the
photometric residual is based on the hypothesis that the
intensity of the same pixel remains unchanged in different
images, which is a strong assumption.

There are many schemes for motion observation of non-
cooperative targets, such as methods based on radar and
lidar. Radar and lidar have the advantages of active measure-
ment, high accuracy, strong direction, and fast observation.
The disadvantages are also obvious, such as sensitive to light
and radiation, small measurement range, and low efficiency
of searching targets. Vision-based scheme has the character-
istics of low cost, easy to install, and wide application scenar-
ios, and relatively sensitive to interference and has lower
accuracy. Therefore, to have complementary advantages, dif-
ferent sensor fusion becomes the trend of researches on
motion observation of noncooperative targets.

5. Conclusion

The vision-based pose estimation of noncooperative space
targets is of great scientific and engineering significance for
the on-orbit service missions. In order to alleviate the depen-
dence of most existing methods on target features, this paper
presents an LSD-SLAM algorithm for pose estimation based
on image photometric residuals. The algorithm utilizes the
pixels of significant change in gradient to minimize the
photometric residuals of pixels to estimate the pose, recover
the depth, and construct the semidense three-dimensional
map. Considering the error accumulation in long-term
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FIGURE 15: Angle estimation results of satellite model in experiments.

TaBLE 3: Comparison of theoretical results and calculated results.

Theoretical value () Experiment Absolute Fractional
value (°) error (°) error (%)

95.4 91.8 3.6 3.8

381.6 360.4 21.2 5.6

observation, the proposed algorithm remains high accuracy
in short-term and close range motion observation of a non-
cooperative target, especially when there are rough textures
on the satellite surface.

However, it should be pointed out that the back-end opti-
mization module of the LSD-SLAM algorithm is not trig-
gered in the simulations and experiments in this paper,
which affects the accuracy. The further research will focus
on solving this problem and improving the accuracy of
calculation.

Data Availability

(1) The images used to verify the effectiveness of the algo-
rithm in the simulations and to support the findings of this
study were generated by POV-Ray software (http://www
.povray.org/). The image data used to support the findings
of this study are included within the supplementary informa-
tion file. Please see the attachment. (2) The curve data and
table data used to support the findings of this study were gen-
erated by running the LSD-SLAM algorithm using images
generated by POV-Ray. LSD-SLAM is an open source pro-
gram hosted on GitHub, which is proposed and written by
Professors Jakob Engel and Daniel Cremers, and the Com-
puter Vision Group of Technical University of Munich.
The website of the project is https://github.com/tum-vision/
Isd_slam.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Founda-
tion of China (grant numbers 11772187 and 11802174),
the China Postdoctoral Science Foundation (grant number
2018M632104), and Shanghai Institute of Technical Phys-
ics of the Chinese Academy of Science (grant number
CASIR201702).

References

[1] D. Modenini, M. Zannoni, R. L. Manghi, and P. Tortora, “An
analytical approach to autonomous optical navigation for a
cubesat mission to a binary asteroid system,” Advances in the
Astronautical Sciences, vol. 163, pp. 139-149, 2018.

[2] J. A. Christian, “Accurate planetary limb localization for
image-based spacecraft navigation,” Journal of Spacecraft and
Rockets, vol. 54, no. 3, pp. 708-730, 2017.

[3] K. Kanani, A. Petit, E. Marchand, T. Chabot, and B. Gerber,

“Vision based navigation for debris removal missions,” in Pro-

ceedings of the 63rd International Astronautical Congress,

Naples, Italy, October 2012.

A. Petit, E. Marchand, and K. Kanani, “Vision-based detection

and tracking for space navigation in a rendezvous context,” in

Proceedings of the International Symposium on Artificial

Intelligence, Robotics and Automation in Space, Turin, Italy,

September 2012.

D. Conway, B. Macomber, K. A. Cavalieri, and J. L. Junkins,

“Vision-based relative navigation filter for asteroid rendez-

vous,” in Proceedings of the AAS Guidance, Navigation, and

Control Conference, Breckenridge, CO, Febuary 2014.

[6] G. Liu, C. Xu, Y. Zhu, and J. Zhao, “Monocular vision-based
pose determination in close proximity for low impact dock-
ing,” Sensors, vol. 19, no. 15, p. 3261, 2019.

[7] S. Sharma, J. Ventura, and S. D’Amico, “Robust model-based

monocular pose initialization for noncooperative spacecraft

rendezvous,” Journal of Spacecraft and Rockets, vol. 55, no. 6,

pp. 1414-1429, 2018.

G. Liu, C. Xu, Y. Zhu, and J. Zhao, “Robust, fast and accurate

vision-based localization of a cooperative target used for space

robotic arm,” Acta Astronautica, vol. 136, pp. 101-114,

2017.

=

(5

—_

(8

[r}


http://www.povray.org/
http://www.povray.org/
https://github.com/tum-vision/lsd_slam
https://github.com/tum-vision/lsd_slam

14

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

J. Z. Song and C. X. Cao, “Pose Self-Measurement of Noncoop-
erative Spacecraft Based on Solar Panel Triangle Structure,”
Journal of Robotics, vol. 2015, Article ID 472461, 6 pages, 2015.

L. Regoli, K. Ravandoor, M. Schmidt, and K. Schilling, “On-
line robust pose estimation for rendezvous and docking in
space using photonic mixer devices,” Acta Astronautica,
vol. 96, pp. 159-165, 2014.

S. D’Amico, “Pose estimation of an uncooperative spacecraft
from actual space imagery,” International Journal of Space
Science and Engineering, vol. 2, no. 2, pp. 171-189, 2014.

R. Li, Y. Zhou, F. Chen, and Y. Chen, “Parallel vision-based
pose estimation for non-cooperative spacecraft,” Advances in
Mechanical Engineering, vol. 7, no. 7, 2015.

T. Shtark and P. Gurfil, “Tracking a non-cooperative target
using real-time Stereovision-Based control: an experimental
study,” Sensors, vol. 17, no. 4, p. 735, 2017.

Y. He, B. Liang, X. Du, X. Wang, and D. Zhang, “Measurement
of relative pose between two non-cooperative spacecrafts
based on graph cut theory,” in 2014 13th International Confer-
ence on Control Automation Robotics & Vision (ICARCV),
pp. 1900-1905, IEEE, 2014.

G. Dong and Z. H. Zhu, “Vision-based pose and motion esti-
mation of non-cooperative target for space robotic manipula-
tors,” in AIAA Space Conference and Exposition, San Diego,
USA, 2014.

D. Mortari, C. N. D’Souza, and R. Zanetti, “Image processing
of illuminated ellipsoid,” Journal of Spacecraft and Rockets,
vol. 53, no. 3, pp. 448-456, 2016.

D. Modenini, “Attitude determination from ellipsoid observa-
tions: a modified orthogonal Procrustes problem,” Journal of
Guidance, Control, and Dynamics, vol. 41, no. 10, pp. 2324-
2326, 2018.

C. Liu and W. Hu, “Relative pose estimation for cylinder-
shaped spacecrafts using single image,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 50, no. 4, pp. 3036—
3056, 2014.

H. Zhang, Z. Jiang, Y. Yao, and G. Meng, “Vision-based pose
estimation for space objects by Gaussian process regression,”
in 2015 IEEE Aerospace Conference, pp. 1-9, IEEE, 2015.

H. Durrant-Whyte and T. Bailey, “Simultaneous localization
and mapping: part I,” IEEE Robotics & Automation Magazine,
vol. 13, no. 2, pp. 99-110, 2006.

T. Bailey and H. Durrant-Whyte, “Simultaneous localization
and mapping (SLAM): Part II,” IEEE Robotics & Automation
Magazine, vol. 13, no. 3, pp. 108-117, 2006.

B. E. Tweddle, “Computer vision-based localization and map-
ping of an unknown, uncooperative and spinning target for
spacecraft proximity operations,” PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2013.

S. Augenstein and S. M. Rock, “Improved frame-to-frame pose
tracking during vision only SLAM/SFM with a tumbling
target,” in proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3131-3138, Shanghai, China,
May 2011.

S. Chiodini, R. G. Reid, B. Hockman, I. A. D. Nesnas, S. Debei,
and M. Pavone, “Robust visual localization for hopping rovers
on small bodies,” in IEEE International Conference on Robotics
and Automation, pp. 897-903, Brisbane, Australia, May 2018.

M. Dor and P. Tsiotras, “ORB-SLAM applied to spacecraft
non-cooperative rendezvous,” in Space Flight Mechanics
Meeting, Kissimmee, USA, 2018.

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

International Journal of Aerospace Engineering

X.D.Du, Y. He, L. Chen, and S. Gao, “Pose estimation of large
non-cooperative spacecraft based on extended PnP model,” in
IEEE International Conference on Robotics and Biomimetics,
Qingdao, China, 2016.

H. M. Liu, G. F. Zhang, and H. J. Bao, “A review of simulta-
neous localization and mapping method based on monocular
vision,” Journal of Computer Aided Design & Computer
Graphics, vol. 28, no. 6, pp. 855-866, 2016.

R. Hartley and A. Zisserman, Multiple View Geometry in Com-
puter Vision (Second Edition), Cambridge University Press,
Cambridge, 2003.

R. A. Newcome, S. J. Lovegrove, and A. J. Davison,
“DTAM: dense tracking and mapping in real-time,” in IEEE
International Conference on Computer Vision, pp. 2320-
2327, Barcelona, Spain, 2011.

J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: large-scale
direct monocular slam,” in European Conference on Computer
Vision, pp. 834-839, Zurich, Swizerland, 2014.

J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odome-
try for a monocular camera,” in Proceedings of the IEEE inter-
national conference on computer vision, pp. 1449-1456,
Sydney, Australia, December 2013.

T. D. Barfoot, State Estimation for Robotics: Matrix Lie Groups,
Cambridge University Press, Cambridge, 2017.

G. Q. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis
and improvement of the consistency of extended Kalman filter
based slam,” in IEEE International Conference on Robotics and
Automation, pp. 473-479, Pasadena, USA, 2008.

A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford,
and G. Wyeth, “OpenFABMAP: an open source toolbox
for appearance-based loop closure detection,” in IEEE
International Conference on Robotics and Automation,
pp. 4730-4735, Minnesota, USA, 2012.



International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal ——  Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of ) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration


https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

