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Bidirectional functionally graded material (2D-FGM) plates have mechanical properties that vary continuously in both the
thickness and one-edge directions; these plates are more and more widely used in design and engineering applications. When
these structures are subjected to strong loads, they can be largely deformed; therefore, nonlinear calculations, in this case, are
necessary. In this paper, nonlinear static bending and nonlinear free vibration behaviors of 2D-FGM plates are studied by using
the finite element method based on the third-order shear deformation theory; the Newton-Raphson method is used to solve this
problem. The accuracy of this approach is confirmed by comparing the results with respect to other papers. The effects of some
numerical aspect ratios such as volume fraction index and thickness-to-length ratio on nonlinear static bending and free
vibration of the plates are explored. This study shows that there is a big difference between the numerical results obtained from
the nonlinear problem and those from the linear one.

1. Introduction

Functionally graded materials are a new smart type of com-
posites that were introduced for the first time by Japanese
researchers in 1984. The main difference between the new
material and the classical composite layer is that the mechan-
ical properties change continuously from one interface to the
other. Thus, the stresses distribute smoothly in some direc-
tions, and the FGM structures become stronger as they
mechanically deform. Nowadays, FGMs are applied widely
in many engineering fields. For 1D-FGM structures (usually
called FGM structures), they are made up of two different
materials (ceramic and metal), in which the material proper-
ties vary smoothly from one surface to the other one by the
thickness direction. For 2D-FGM structures, their formula-
tions are based on three material components to take advan-
tage of all three materials, where the mechanical properties
change in two directions, which are the thickness direction
and the longitudinal direction. Therefore, considering the
mechanical behaviors of these types of structures is really
important. It is very helpful in designing, manufacturing,
and using them in engineering practice.

There are many works that have investigated the
mechanical behaviors of one-direction [1–6] and two-
direction FGM plates [7–17] (called FGM and 2D-FGM
plates); the 2D-FGM plates with the volume fraction expo-
nents are the power-law distributions in the longitudinal
and thickness directions. Scientists also paid much attention
to nonlinear static bending and free vibration analysis of
FGM plates based on several plate theories. A nonpolynomial
higher-order shear deformation theory with inverse hyper-
bolic shape function was adopted by Singh and Harsha [1]
to research the free and forced nonlinear vibration character-
istics of FGM plates. Ebrahimi and Rastgoo [2] investigated
the nonlinear static problem of a circular FGM plate using
an analytical method. Reddy [3] used the third-order shear
deformation theory to solve the nonlinear static and dynamic
bending problems of the FGM plate based on the finite
element method and Navier’s solutions. Bui et al. [4] investi-
gated the static bending of FGM plates in the thermal
environment based on the finite element solution and the
third-order shear deformation theory. Lan et al. [5] explored
the nonlinear bending behaviors of the FGM plates based on
a four-node element within the context of the first-order
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shear deformation theory. Kien and his coworkers [6]
researched the nonlinear static behaviors of planar beam
and frame structures made of functionally graded material
based on the finite element method and Bernoulli beam the-
ory (classical beam theory). Civalek [18] used the discrete
singular convolution method to study free vibration analysis
of conical and cylindrical shells and annular plates made of
composite laminated and functionally graded materials
(FGMs). Arefi et al. [19] employed the higher-order shear
deformation theory of Reddy to carry out the static bending
analysis of FG graphene nanoplatelets (GNPs) reinforced
composite microplates with porosity. Bendenia et al. [20]
studied the static and free vibration behavior of FG-CNT
reinforced sandwich plates resting on Pasternak elastic foun-
dation based on the first shear deformation theory. In the
works [21, 22], the authors presented the static and dynamic
responses of FGM plates by using a refined shear deforma-
tion theory. Rabhi et al. [23] investigated buckling and free
vibration of exponentially graded sandwich plates resting
on elastic foundations using a new innovative 3-unknown
HSDT. Chikr and his coworkers [24] used Galerkin’s
approach and a refined trigonometric shear deformation the-
ory to study the buckling response of FG sandwich plates
resting on elastic foundations. Refrafi et al. [25] calculated
the hygrothermal and mechanical buckling responses of a
simply supported FG sandwich plate seated on the
Winkler-Pasternak elastic foundation based on a novel shear
deformation theory. Rahmani et al. [26] employed an origi-
nal novel high order shear theory to examine the influence
of boundary conditions on the bending and free vibration
behavior of functionally graded sandwich plates resting on
a two-parameter elastic foundation.

Besides, mechanical behaviors of 2D-FGM structures
were also considered widely all over the world, and scien-
tists obtained significant knowledge. Thom and his
coworkers [7] studied static bending and buckling of 2D-
FGM based on the finite element method and new third-
order shear deformation theory. Nemat-Alla et al. [8] used
a 3D finite element model to research the mechanical
behavior of 2D-FGM plates in the thermal environment.
Simsek [9] studied free vibration and dynamic responses
of the 2D-FGM Timoshenko beam based on the Lagrange
equations and simple polynomials. The free vibration of
the 2D-FGM Timoshenko beam was also studied by Deng
and Cheng [10] using a new dynamic stiffness matrix
solution. By using a semianalytical and seminumerical
method, Wang et al. [11] focused on the natural frequen-
cies of a 2D-FG Euler–Bernoulli beam. Rad [12] used a
semianalytical method in order to research the static prob-
lem of bidirectional FGM auxetic porous circular plate
resting on the Pasternak foundation. Esmaeilzadeh and
Kadkhodayan [13] investigated dynamic responses of the
bidirectional FGM porous plate structure; the solution
was based on a dynamic relaxation method and a struc-
ture with moving loads. Mahinzare et al. [14] calculated
the free vibration of a bidimensional functionally graded
microplate by using a numerical method, while the struc-
ture rested on a Winkler–Pasternak foundation under the
thermal load, in which temperature-dependent mechanical

properties varied gradually in the thickness and radial
direction of the plate. Lieu and Lee [15] considered taking
the material optimization method into the free vibration
analysis of multidirectional FGM plates based on the
IGA method. The buckling and vibrational behaviors of
the inplane bidirectional FGM plate were also explored
by Lieu et al. [16]. Wu and Yu [17] used the combination
of the prism method and Reissner’s mixed variational
method to investigate the free vibrational behavior of bidi-
rectional FGM plates.

The functionally graded structures have been using
widely in engineering practice; when they are subjected to
strong loads, large deformations can be occupied. Therefore,
linear problems cannot describe exactly the mechanical
behavior of the structures. We need to use nonlinear prob-
lems to deal with these large deformations; this means that
we have to consider the geometrical nonlinear factor in these
cases. The explorations of mechanical responses of 2D-FGM
plates taking into account nonlinear factors are still limited,
especially problems related to nonlinear static bending and
free vibration of structures in consideration of large deforma-
tion. These interesting issues require a higher complicated
process than small deformation problems. In this paper, the
nonlinear static bending and nonlinear free vibration of
bidirection functionally graded material plates are investi-
gated based on the finite element model and the third-order
shear deformation theory; 4-node plate elements are used,
in which each node with 5 degrees of freedom can reduce
the working load much while the accuracy still remains.
Numerical results of nonlinear mechanical behaviors of 2D-
FGM plates are presented, then compared with linear results
to show that the nonlinear results are much different from
linear results.

The rest of this paper is structured as follows. Section 2
presents shortly bidirectional functionally graded plates used
in this work. Finite element formulations for nonlinear static
bending and free vibration analysis are introduced detail in
Section 3. Section 4 presents the verification problems,
numerical results, and discussions. Novel explorations are
summed up in Section 5.

2. Bidirectional Functionally Graded Plates

A plate made of three kinds of materials with length a, width
b, and thickness h is considered as shown in Figure 1.

Young’s modulus, Poisson’s ratio, and mass density
change continuously in the longitudinal and thickness direc-
tions, and these properties can be calculated as [7]

E x, zð Þ = E1V1 + E2V2 + E3V3,
ν x, zð Þ = ν1V1 + ν2V2 + ν3V3,
ρ x, zð Þ = ρ1V1 + ρ2V2 + ρ3V ,

8>><
>>: ð1Þ

where Ei, νi, ρi, and Vi (i = 1 – 3) are Young’s modulus, Pois-
son’s ratio, mass density, and the volume fraction of i-th
material, respectively; x and y are lines of inplane of
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midsurface; and z defines the normal axis. The volume frac-
tions of materials in this paper are given by [7]

V1 = 1 − z
h
+ 1
2

� �n� �
1 − x

a

� �qh i
,

V2 = 1 − z
h
+ 1
2

� �n� �
x
a

� �q
, V3 =

z
h
+ 1
2

� �n

,

8>>><
>>>:

ð2Þ

being everywhere V1 +V2 +V3 = 1. The distributions of V1,
V2, and V3 through the 2D-FGM plate when n = 0:5 and q
= 2 are also plotted in Figure 2. One can see that the volume
fraction indexes of three materials change smoothly in both
thickness and longitudinal directions. Therefore, the
mechanical properties of the materials also vary gradually
in the corresponding directions. This is the main difference
from 1D-FGM structures, in which the material only changes
in one thickness direction.

3. Finite Element Formulations for Nonlinear
Bending of 2D-FGM Plates

Based on the Reddy third-order theory, the displacements at
a point (x, y, z) in the plate can be written as [3]

u x, y, zð Þ = u0 x, yð Þ + zφx x, yð Þ − 4
3h2

z3 φx +
∂w0
∂x

� �
,

v x, y, zð Þ = v0 x, yð Þ + zφy x, yð Þ − 4
3h2

z3 φy +
∂w0
∂y

� �
,

w x, y, zð Þ =w0 x, yð Þ,

8>>>>>><
>>>>>>:

ð3Þ

where u0,v0, and w0 are the displacements at a point (x, y, z
= 0); φx and φy are the transverse normal rotations in xz-
and yz-surfaces.

The strains can be written clearly as

εx = ε0x + εNx + zε1x + z3ε3x,
εy = ε0y + εNy + zε1y + z3ε3y ,

γxy = γ0xy + γNxy + zγ1x + z3γ3x,

γxz = γ0xz + z2γ2xz ,
γyz = γ0yz + z2γ2yz ,

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

with

ε0 =

ε0x

ε0y

γ0xy

8>><
>>:

9>>=
>>; =

∂u0
∂x
∂v0
∂y

∂v0
∂x

+ ∂u0
∂y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, εN =

εNxx

εNyy

γNxy

8>><
>>:

9>>=
>>; = 1

2

∂w0
∂x

� �2

∂w0
∂y

� �2

∂w0
∂x

∂w0
∂y

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
,

ε1x =

ε1x

ε1y

γ1xy

8>><
>>:

9>>=
>>; =

∂φx

∂x
∂φy

∂y

∂φx

∂y
+
∂φy

∂x

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, ε3x =

ε3x

ε3y

γ3xy

8>><
>>:

9>>=
>>; = −4

3h2

∂φx
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+ ∂2w0
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∂y2
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∂y
+
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∂x
+ 2∂2w0
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9>>>>>>>>=
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,

γ0 =
γ0xz

γ0yz

( )
=

φx +
∂w0
∂x

φy +
∂w0
∂y

8>><
>>:

9>>=
>>;, γ2 =

γ2xz

γ2yz

( )
= −4

h2

φx +
∂w0
∂x

φy +
∂w0
∂y

8>><
>>:

9>>=
>>;:

ð5Þ

According to Hooke’s law, the relationship between
stresses and strains is written by

σ =Db ε0 + εN + zε1 + z3ε3
� 	

,

τ =Ds γ0 + z2γ2
� 	

,

(
ð6Þ

h

y

x

z

a

b

Full of
material 1
(V1 = 1)

Full of material 2 (V2 = 1)

Full of material 3 (V3 = 1)

Figure 1: Schematic of a 2D-FGM plate.
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Figure 2: The change of V1, V2, and V3 as a function of z and x, n = 0:5, q = 2.

4 International Journal of Aerospace Engineering



where

σ =
σx

σy

τxy

8>><
>>:

9>>=
>>;, τ =

τxz

τyz

( )
,

Db =
E x, zð Þ

1 − v2 x, zð Þ

1 ν x, zð Þ 0

ν x, zð Þ 1 0

0 0 1 − ν x, zð Þ
2

2
66664

3
77775,

Ds =
E x, zð Þ

2 1 + v x, zð Þð Þ
1 0

0 1

" #
:

ð7Þ

Thus, the stress-deformation relation depends on both x
and z coordinates; this is different from the case of 1D-FGM;
therefore, this also makes the calculation process more com-
plicated. The four-node element with five degrees of freedom
in each node is used in this study, which is expressed as

u0 = 〠
4

j=1
Nj ξ, ηð Þ ⋅ uj, v0 = 〠

4

j=1
Nj ξ, ηð Þ ⋅ vj,w0 = 〠

4

j=1
Nj ξ, ηð Þ ⋅w0j

φx = 〠
4

j=1
Nj ξ, ηð Þ ⋅ φxj, φy = 〠

4

j=1
Nj ξ, ηð Þ ⋅ φyj,

ð8Þ

where Nj is the Lagrangian interpolation function of the
four-node element and ξ, η are natural coordinates, so that
the strains relate with element displacement vector (qe) as

ε0 = B0qe, εN = BNqe, ε3 = B3qe,
γ0 = Bγ0qe, γ2 = Bγ2qe,

(
ð9Þ

with

B0 = 〠
4

j=1

∂Nj

∂x
0 0 0 0

0
∂Nj

∂y
0 0 0

∂Nj

∂y
∂Nj

∂x
0 0 0

2
666666664

3
777777775
,
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2

〠
4

j=1

∂Nj

∂x
w0i 0

0 〠
4

j=1

∂Nj
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w0i

〠
4
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j=1
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2
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3
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〠
4
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3
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B1 = 〠
4
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∂Nj
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∂Nj
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2
6666666664

3
7777777775
;
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3h2

〠
4

j=1

0 0
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∂x
0

0 0
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∂y2
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∂Nj
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0 0 2
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∂Nj
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∂Nj
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2
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3
77777777775

Bγ0 = 〠
4

j=1

0 0
∂Nj

∂x
N j 0

0 0
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0 Nj

2
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3
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Bγ2 =
−4
h2

〠
4
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0 0
∂Nj
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N j 0

0 0
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∂y
0 Nj

2
6664

3
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ð10Þ

After integrating from −h/2 to h/2, the normal force,
bending moment, high order moment, shear force, and high
order shear force can be expressed as

N
M
P̂
Q
R

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

=

A B E 0 0
B D F 0 0
E F H 0 0
0 0 0 �A �B
0 0 0 �B �D

2
666666664

3
777777775

ε0 + εN

ε1

ε3

γ0

γ2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, ð11Þ

where

A
B
D
E
F
H

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

=
ðh/2
−h/2

Db

1
z

z2

z3

z4

z6

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

dz,

�A
�B
�D

8>><
>>:

9>>=
>>; =

ðh/2
−h/2

Ds

1
z2

z4

8>><
>>:

9>>=
>>;dz:

ð12Þ

The total strain energy of the 2D-FGM plate can be given
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by

Y
e

= 1
2

ð
Ve

ε0ε1ε3γ0γ2

 �T

σdV −
ð
Se

uT ~QdS = qTe
1
2

ð
Se

�

BT
0AB0 + BT

0BB1 + BT
1 EB3 + BT

1BB0 + BT
1DB1

+BT
0 EB3 + BT

3 EB0 + BT
0ABN + BT

NAB0

+BT
NABN + BT

1BBN + BT
NBB1 + BT

NEB3 + BT
3 EBN

+BT
1 FB3 + BT

3 EB1 + BT
3 FB1 + BT

3HB3

+BT
0γ�AB0γ + BT

0γ�BB2γ + BT
2γ�BB0γ + BT

2γ�BB2γ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
dSqe

− qTe
ð
Se

NT ~QdS,

ð13Þ

where ~Q is the surface loading, and Equation (13) is
expressed in the matrix form as

Y
e

= 1
2 q

T
e KL

e +KN
e

� 	
qe − qTe Fe, ð14Þ

in which the linear matrix is calculated as follows:

KL
e =
ð
Se

BT
0AB0 + BT

0BB1 + BT
1 EB3 + BT

1BB0 + BT
1DB1

+BT
1 FB3 + BT

3 EB1 + BT
3 FB1 + BT

3HB3

+BT
0γ �AB0γ + BT

0γ�BB2γ + BT
2γ�BB0γ + BT

2γ�BB2γ

0
BB@

1
CCAdS,

ð15Þ

and the nonlinear matrix is expressed as follows:

KN
e =

ð
Se

BT
0ABN + BT

NAB0 + BT
NABN + BT

1BBN

+BT
NBB1 + BT

NEB3 + BT
3 EBN

 !
dS,

ð16Þ

where Fe is the element force vector.
Hence, the governing equation for nonlinear bending

analysis becomes

〠
e

KL
e +〠

e

KN
e

 !
〠
e

qe =〠
e

Fe: ð17Þ

The kinetic energy of a plate element is determined by the
following expression:

Te =
1
2

ð
Ve

_uTρ x, zð Þ _udV = 1
2 _qTe

ð
Ve

NTLTρ x, zð ÞLNdV
 !

_qe

= 1
2 _qTe Me _qe,

ð18Þ

where N is the shape function and matrix L and the element

mass matrix Me are expressed as follows:

L =

1 0 −
4z3
3h2

∂
∂x

z −
4z3
3h2

0

0 1 −
4z3
3h2

∂
∂y

0 z −
4z3
3h2

0 0 1 0 0

2
6666664

3
7777775
,

Me =
ð
Ve

NTLTρ x, zð ÞLNdV :

ð19Þ

For free vibration analysis, in order to find fundamental
frequencies, we need to solve the following equation:

〠
e

KL
e +KN

e

� 	
− ω2〠

e

Me

 !
〠
e

qe = 0: ð20Þ

Note that Equations (17) and (20) contain the element
stiffness matrix, which depends on the displacement vector
qe; therefore, to solve this equation, the Newton-Raphson
method is used. Equation (17) can be written in short form
as follows:

K qð Þ ⋅ q = F, ð21Þ

where KðqÞ is the stiffness matrix, which depends on nodal
displacement q; q =∑eqe is an unknown displacement vec-
tor. Assuming that the value of the displacement is found
in step i, denoted by qi, to find displacements in the next step
(qi+1), the Taylor expansion to first-order is used as follows:

K qi+1
� 	

≈K qi
� 	

+Ki
T qi
� 	

Δqi = F, ð22Þ

in which Ki
TðqiÞ = ð∂K/∂qÞi is a Jacobian matrix, usually

called the tangent stiffness matrix, andΔqi is a displacement
increment. From Equation (22), the displacement increment
Δqi can be found in the following equation:

Ki
T qi
� 	

Δqi = F−K qi
� 	

: ð23Þ

Now, Equation (23) will give displacement increment
Δqi; the displacement in the next step qi+1 is calculated
as follows:

qi+1 = qi + Δqi: ð24Þ

The solution from Equation (24) does not satisfy the
exact roots of nonlinear Equation (21). This time, there
will exist an unbalanced force:

Ri+1 = F−K qi+1
� 	

: ð25Þ

This process is repeated until the unbalanced force is
less than the given value; qi+1 will be accepted as solutions
to nonlinear Equation (21). To determine this stationary
time, a comparison of the convergence parameter is
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carried out εconv ≤ ξ0, in which εconv is defined as

εconv =
∑n

j=1 Ri+1
j

� �2
1 +∑n

j=1 Fj

� 	2 , ð26Þ

and ξ0 = 10−4 can be acceptable.
To solve the nonlinear eigenvalue problems (20), an

iterative procedure is used. Firstly, neglecting the nonlinear
stiffness matrix component of Equation (20), the linear fun-
damental frequency is calculated, and then it is normalized.
Next, the normalized vector is amplified/scaled up so that
the maximum displacement is equal to the desired ampli-
tude, supposing that w/h = 0:6 (w is the maximum lateral
displacement, h is the thickness of the plate). This gives the
initial vector, denoted by �ζ. The iterative solution procedure
for the nonlinear analysis starts with the initial vector, �ζ.
Based on this initial mode shape (�ζ), the nonlinear stiffness
matrix, which depends on displacement, is formed, and sub-
sequently, the updated eigenvalue and its corresponding
eigenvector are obtained. This eigenvector is further normal-
ized and scaled up by the same amplitude (w = h), and the
iterative procedure adopted here continues till the frequency
values and mode shapes evaluated from the subsequent two
iterations satisfy the prescribed convergence criteria [27] as

〠
N

j=1

ωr
p − ωr−1

p

� �
ωr
p

≤ 10−4

〠
N

j=1

δrj − δr−1j

� �
δrj

≤ 10−4 for p‐thmode,

ð27Þ

in which p, i, N , and r represent the mode number, degree of
freedom of the finite element model, total degree of freedom,
and iteration number, respectively.

4. Numerical Results and Discussions

4.1. Nonlinear Static Bending

4.1.1. Convergence of Mesh. Consider a CCCC square plate
with the thickness h = a/10, Young’s modulus E = 70GPa,
Poisson’s ratio ν = 0:3(aluminum, Al), subjected to a trans-
versal uniform load of intensity q0. The comparative nondi-
mensional deflection wc/h at the center point of the plate
with different meshes is shown in Table 1. It can be seen that
the mesh 14 × 14 ensures the required convergence. Hence,
for all the succeeding investigations, this mesh will be used.
Note that in Table 1, reference [28] used a seminumerical
approach and [29] used an analytical solution.

4.1.2. Accuracy Study for 1D-FGM Plate. A square FGM
plate has the dimensions a = b and plate thickness h = a/
100. The material parameters of ceramic (c) and metal
(m) are [3] Ec = 151GPa, νc = 0:3, Em = 70GPa, and νm
= 0:3. The plate is fully simple supported and subjected
to a transversal uniform load of intensity q0. The normal

nonlinear displacements (Wmax/h) of the plate solved by this
work compared with Reddy’s results [3] are shown in
Figure 3; we can see that the results obtained by this approach
are in a good agreement with the reference results of Reddy
[3], which used the mesh with 8 × 8 elements.

4.1.3. Numerical Results of Nonlinear Static Bending for 2D-
FGM Plate. In this section, the nonlinear static mechanical
displacements of 2D-FGM plates are analyzed using the pro-
posed method. The fully simply supported plate is subjected
to a uniform load P0 and made from three materials with
properties [7] E1 = 151GPa, E2 = 205:1GPa, E3 = 70GPa,
and ν1 = ν2 = ν3 = 0:3. In this analysis, the deflection and
load are normalized by the following formulas:

w∗ = Wmax
h

,

P∗ = P0a
4

E3h
4 :

8>>><
>>>:

ð28Þ

(1) Effect of Volume Fraction. To study the effect of the vol-
ume fraction on the nonlinear static behavior of 2D-FGM
(a/b = 1, a/h = 100), the values of n and q are changed from
0 to 10, maximum deflections w ∗ of this plate depending
on n and q are plotted in Figure 4. The deflection changes dif-
ferently with the increase in n and q when n increases and
deflection increases; however, it decreases when q increases.
The linear and nonlinear maximum deflection in two values
of q (0.5 and 10) are shown in Figures 5 and 6; these figures
show that when increasing the applied load, the nondimen-
sional deflection in the case of the linear problem changes
much than that in the case of the nonlinear one, and the non-
linear curve of w ∗ changes sharply when P ∗ increases in a
range of 0 to 40; for the other range of 40-100, the curve of
w ∗ changes gradually. And one can see that when the load
applied to the structure has small intensity (P ∗ <5), the
numerical results of the linear problem are very close to those
of the nonlinear problem. However, when P ∗ >5, the results
between the linear problem are much different from those of
the nonlinear problem. This demonstrates that nonlinear
results are much different from linear results when the load
applied to the structure has great intensity, so that nonlinear
analysis is more useful than the linear one.

Table 1: Nonlinear central deflection wc/h of an isotropic fully
clamped square plate ð�q0 = q0a

4/Eh4Þ.

Source �q0 = 20 �q0 = 40 �q0 = 200
[28] 0.3068 0.5506 1.4306

[29] 0.3096 0.5525 1.4336

This work

10 × 10 elements 0.3090 0.5782 1.6689

12 × 12 elements 0.3080 0.5632 1.5186

14 × 14 elements 0.3079 0.5599 1.5097

16 × 16 elements 0.3078 0.5598 1.5096
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(2) Effect of the Thickness-to-Length Ratio a/h. In order to
investigate the effect of the thickness-to-length ratio a/h on
the nonlinear mechanical bending response of 2D-FGM plate
(a/b = 1), new normalization for this specified analysis is used
as follows: w ∗∗ =Wmax/h0, h0 = a/100, P ∗ = P0a

4
0/E3h

4
0 =

50. Thicknesses are considered as different values of the
thickness-to-length ratio a/h = 40‐100. The numerical results
of maximum deflections in two cases of q are plotted in
Figure 6. One can see that by reducing the plate thickness, the
higher nonlinear mechanical deflections of 2D-FGM plates

are obtained. It is also explained that when the plate thickness
is reduced, its stiffness will decrease, and the displacements will
increase; therefore, it can be understood that the ratio a/h has a
great influence on the nonlinear bending responses of this
plate. At the same time, the change of w ∗ is sharper when n
increases from 0 to 2, and w ∗ varies gradually when n > 2.

(3) Effect of Width-to-Length Ratio b/a. In this section, the
effect of aspect ratio b/a on the nonlinear mechanical deflec-
tion of the 2D-FGM plate is analyzed. Different values of the
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Figure 3: The nonlinear displacements of FGM plate are compared with Reddy’s results.
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Figure 4: Effect of n and q on the maximum deflection of the 2D-FGM plate.
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aspect ratio such as b/a = 0:5, 1, and 4 are considered
(a/h = 100); the volume fraction exponents q = 0:5 and 10
are used in this exploration. The numerical results of nonlin-
ear deflections are depicted in Figure 7. It can be seen that the

higher the aspect ratio b/a is taken, the higher the nondimen-
sional deflections of 2D-FGM plates are obtained. The reason
is that when b/a increases, the plate becomes softer; thus, the
nondimensional deflection also increases.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Linear results

Nonlinear results

q = 0.5

P⁎

W
⁎

n = 0.5
n = 0.5
n = 1
n = 1

n = 2
n = 2
n = 10
n = 10

(a) q = 0:5

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

P⁎

W
⁎

n = 0.5
n = 0.5
n = 1
n = 1

n = 2
n = 2
n = 10
n = 10

q = 10

Nonlinear results

Linear results

(b) q = 10

Figure 5: Effect of n on linear and nonlinear maximum deflection for two specific values of q.
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4.2. Nonlinear Free Vibration

4.2.1. Accuracy Study for 1D-FGM Plate. The structure in this
example is a simply supported square FGM plate ZrO2/Ti-
6Al-4V which is 0.2m long, 0.2m wide, and 0.025m thick.
The material properties, as given in Shen [30], are Em = 105
GPa, νm = 0:3, ρm = 4429 kg/m3 for Ti-6Al-4V and Ec = 168
GPa, νc = 0:3, and ρc = 3000 kg/m3 for ZrO2. The nonlinear
to linear frequency ratiosωNL/ωL presented inTable 2 are com-

pared with Shen [30] (exact results) and Behjat and Khoshra-
van [31] (finite element model with mesh of 6 × 6 elements);
good agreement can be seen from this table when the number
of elements is large enough. Besides, it also can be observed
that the mesh 14 × 14 ensures the accuracy; therefore, for all
succeeding investigations, this mesh will be employed.

4.2.2. Numerical Results of Nonlinear Free Vibration for 2D-
FGM Plate. A simply supported square 2D-FGM plate with

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

q = 0.5

a/h = 40
a/h = 50

a/h = 80
a/h = 100

n

W
⁎
⁎

(a) q = 0:5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

a/h = 40
a/h = 50

a/h = 80
a/h = 100

q = 10

n

W
⁎
⁎

(b) q = 10

Figure 6: The maximum of deflection in two cases of q.
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a = b = 0:2m and the thickness h is considered. The material
properties are E1 = 207:79GPa, ν1 = 0:318, and ρ1 = 8166
kg/m3 for stainless steel (SUS304); E2 = 70GPa, ν1 = 0:3, and
ρ1 = 2700kg/m3 for aluminum (Al); and E3 = 168:06GPa, ν1
= 0:298, and ρ1 = 3657kg/m3 for zirconium oxide (ZrO2).

The nonlinear-to-linear frequency ratios ωNL/ωL are reported
in each following subsection, where wc =wcða/2, b/2Þ.

(1) Effect of Volume Fraction. In this investigation, let the vol-
ume fraction index n vary in a range of 0 to 10, and three

q = 0.5

n

W
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Figure 7: Effect of b/a on the linear and nonlinear maximum deflection.
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cases of q (q = 0:5, 1, and 10) are considered. The first funda-
mental frequencies of the plate are presented in Tables 3, 4,
and 5 and Figures 8, 9, and 10. It can be seen that for the case
of q = 0:5 and 1, when n increases, the ratio ωNL/ωL also
increases and obtains the peak point around the value of n =
1, then it goes down. For the case of q = 10, when n increases,
the ratio ωNL/ωL increases, too. Thus, depending on the spe-
cific case of material distribution, the case that corresponds
to the maximum value of the ratio ωNL/ωL can be found. In
addition, when the ratio wc/h = 0:2, then the difference
between ωNL and ωL is small (maximum 3.05% for n = 1).
However, when wc/h increases, the difference between ωNL
andωL also increases; the largest one can be up to 44.84%.This
also shows that when the deformation is small, the effect of the

nonlinear factor is not much. The larger the deformation is,
the larger the component KN

e in Equations (16) and (17) gets.
The stiffness of the structure is increased, and as a result, the
nonlinear specific frequency and the difference between ωNL
andωL are also increased. Figure 11 shows the first five funda-
mental vibration mode shapes of the 2D-FGM plate in the
case of n = 10, q = 1, and wc/h = 0:8.

(2) Effect of the Plate Thickness. Now in the last subsection, in
order to explore the effect of the plate thickness on the free
vibration of the 2D-FGM plate, the thickness changes in a
range of a/10 to a/100, where other parameters are n = 0‐10,
q = 0:5, and wc/h = 0:8. The ratio ωNL/ωL is shown in
Figure 12.

Table 3: Nonlinear-to-linear frequency ratio ωNL/ωL of 2D-FGM square plate, q = 0:5, a/h = 10.
wc
h n = 0 n = 0:2 n = 0:5 n = 1 n = 2 n = 5 n = 10
0.2 1.0193 1.0253 1.0291 1.0305 1.0294 1.0259 1.0235

0.4 1.0748 1.0900 1.0971 1.0992 1.0964 1.0898 1.0858

0.6 1.1780 1.1871 1.1964 1.1984 1.1936 1.1843 1.1794

0.8 1.2858 1.3056 1.3161 1.3173 1.3101 1.2983 1.2931

1.0 1.4145 1.4371 1.4484 1.4483 1.4385 1.4244 1.4191

Table 4: Nonlinear-to-linear frequency ratio ωNL/ωL of 2D-FGM square plate, q = 1, a/h = 10.
wc
h n = 0 n = 0:2 n = 0:5 n = 1 n = 2 n = 5 n = 10
0.2 1.0193 1.0235 1.0261 1.0270 1.0264 1.0243 1.0228

0.4 1.0748 1.0865 1.0914 1.0930 1.0916 1.0879 1.0856

0.6 1.1780 1.1822 1.1887 1.1904 1.1881 1.1833 1.1808

0.8 1.2858 1.2997 1.3071 1.3085 1.3051 1.2994 1.2969

1.0 1.4145 1.4304 1.4384 1.4392 1.4346 1.4281 1.4260

Table 5: Nonlinear-to-linear frequency ratio ωNL/ωL of 2D-FGM square plate, q = 10, a/h = 10.
wc
h n = 0 n = 0:2 n = 0:5 n = 1 n = 2 n = 5 n = 10
0.2 1.0193 1.0193 1.0193 1.0193 1.0197 1.0203 1.0207

0.4 1.0748 1.0785 1.0786 1.0794 1.0808 1.0827 1.0835

0.6 1.1780 1.1781 1.1782 1.1784 1.1786 1.1800 1.1812

0.8 1.2858 1.2860 1.2878 1.2909 1.2953 1.3003 1.3019

1.0 1.4145 1.4152 1.4178 1.4222 1.4283 1.4348 1.4368

Table 2: Nonlinear-to-linear frequency ratio ωNL/ωL of FGM square plate, n = 2.

Method
Wmax
h

0.0 0.2 0.4 0.6 0.8 1

This work

10 × 10 elements 1.00 1.001 1.004 1.092 1.100 1.229

12 × 12 elements 1.00 1.009 1.011 1.150 1.204 1.382

14 × 14 elements 1.00 1.018 1.077 1.169 1.283 1.410

16 × 16 elements 1.00 1.019 1.078 1.168 1.282 1.409

[30] 1.00 1.021 1.081 1.174 1.293 1.436

[31] 1.00 1.027 1.089 1.189 1.309 —
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It can be obtained that the thinner the plate thickness is,
the higher the ratio ωNL/ωL gets. This phenomenon means
that when the plate becomes thinner, the difference between
the nonlinear frequency and the linear frequency is higher.
Furthermore, when increasing the value of the volume frac-
tion index n, the nonlinear frequency will reach the maxi-

mum value then drop down gradually. This means that
there is one value of n (around n = 1) in order that the non-
linear frequency obtains the maximum value. It also means
that the difference between ωNL and ωL reaches its maximum
value when n is around 1; the difference between ωNL and ωL
can be as close as 33%.
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Figure 8: Effect of volume fraction index n, q = 0:5, a/h = 10, SSSS.
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Figure 10: Effect of volume fraction index n, q = 10, a/h = 10, SSSS.
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5. Conclusions

Nonlinear static bending and free vibration responses of 2D-
FGM plates are investigated. The plate is made from three
materials, which change continuously in longitudinal and
thickness directions. The study is based on the finite element
method and third-order shear deformation theory. The
results obtained by this method are compared with those of
other methods to show the accuracy of the proposed theory
and mathematical model. The paper explored the effect of
geometric and material parameters on nonlinear static
behaviors of the 2D-FGM plates. It shows that there is much
difference between linear and nonlinear deflections. When
the plate has a large deformation, some highlighted results
in specific problems are as follows:

(i) For the nonlinear static bending: when the load
applied to the structure has small intensity (P∗<5),
the numerical results of the linear problem are very
close to those of the nonlinear problem. However,
when P∗>5, the maximum deflection wmax between
the linear problem is much different from that of
the nonlinear problem

(ii) For the nonlinear vibration: when the plate has a small
deformation (wc/h = 0:2), the influence of strain wc
on the nonlinear stiffness matrix composition is also
small. Therefore, the difference between the nonlinear
oscillation frequency and the linear oscillation
frequency is also small (3.05%). As wc/h increases,
the difference between the nonlinear oscillation

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5

Figure 11: First five fundamental vibration mode shapes, n = 10, q = 1, wc/h = 0:8.
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Figure 12: Effect of the plate thickness, q = 0:5, wc/h = 0:8, SSSS.
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frequency and the linear one increases as well, and the
maximum can reach up to 44.84% when wc/h = 1

These results will give good information for the design
and application of these structures in practice.
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