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This paper is devoted to model-free attitude control of rigid spacecraft in the presence of control torque saturation and external
disturbances. Specifically, a model-free deep reinforcement learning (DRL) controller is proposed, which can learn continuously
according to the feedback of the environment and realize the high-precision attitude control of spacecraft without repeatedly
adjusting the controller parameters. Considering the continuity of state space and action space, the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm based on actor-critic architecture is adopted. Compared with the Deep
Deterministic Policy Gradient (DDPG) algorithm, TD3 has better performance. TD3 obtains the optimal policy by interacting
with the environment without using any prior knowledge, so the learning process is time-consuming. Aiming at this problem,
the PID-Guide TD3 algorithm is proposed, which can speed up the training speed and improve the convergence precision of the
TD3 algorithm. Aiming at the problem that reinforcement learning (RL) is difficult to deploy in the actual environment, the
pretraining/fine-tuning method is proposed for deployment, which can not only save training time and computing resources but
also achieve good results quickly. The experimental results show that DRL controller can realize high-precision attitude
stabilization and attitude tracking control, with fast response speed and small overshoot. The proposed PID-Guide TD3

algorithm has faster training speed and higher stability than the TD3 algorithm.

1. Introduction

With the rapid development of space technology, the struc-
ture and composition of On-Orbit Servicing Spacecraft
(OO0SS) are becoming more and more complex, and the per-
formance is constantly improving. The effectiveness of atti-
tude control determines the success or failure of the service
mission and the life of the spacecraft. On-Orbit Servicing
Spacecraft is characterized by flexible multibody structure,
liquid sloshing, and fuel consumption and needs to change
the structure and parameters according to the mission
requirements. For example, in the case of mass loss due to
fuel consumption, the rate of mass change of the spacecraft
is known to be a function of control application and actuator
hardware characteristics. The motion of space manipulator
will cause mass displacement, resulting in the change of iner-
tial parameters, and cause disturbances to the attitude stabil-
ity of the service spacecraft body. On the other hand, the

spacecraft is affected by gravity gradient torque, aerodynamic
torque, radiated torque, and other unknown disturbance
torques. These peculiarities make the attitude of the OOSS
present dynamic characteristics such as uncertainty, time-
varying, strong nonlinearity, and high-order multivariable
coupling [1]. Even in many complex space missions, it is dif-
ficult to establish an accurate mathematical model, which
increases the difficulty of attitude control.

The classical attitude control methods include PID
control [2], adaptive control [3], sliding mode control [4],
Lyapunov control [5], optimal control [6], and robust H_,
control [7]. These control algorithms have achieved good
results in simulation experiments and practical applications.
Traditional attitude control algorithms need to establish a
relatively accurate system model and need to design the
parameters of the controller accurately. When the system
cannot be modeled completely or the environment changes
greatly, the performance of the controller will degrade to
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some extent. For systems with unclear or completely
unknown mathematical models, the intelligent control
method with self-learning ability will be a promising choice.

Reinforcement learning (RL) is a kind of machine learn-
ing, which has a close relationship with dynamic program-
ming and optimal control theory [8]. The basic idea of RL
is to explore the optimal strategy through the interaction
between agent and environment, so as to maximize the
return [9]. Classical RL, such as Q-learning, discretizes the
action and state space and uses the table method to solve
the problem [10]. However, the actual control problem may
have continuous action and state space, and it is difficult to
discretize. High-dimensional continuous state and action
space increase the computational burden and lead to the
so-called Curse of Dimensions (CoD) problem. DRL solves
the CoD problem by introducing neural networks to approx-
imate value function and policy [11]. In 2015, Lillicrap et al.
proposed the Deep Deterministic Policy Gradient (DDPG)
algorithm to solve the control problem with continuous
action space [12]. DRL became widely known in 2016 when
Google AlphaGo defeated the top international Go player
Lee Sedol in the Go competition.

Up to now, DRL has been used in robots [13], UAV [14,
15], energy [16, 17], transportation [18], and other control
fields. DRL based on the Markov decision process (MDP)
provides an effective way to realize intelligent control of
spacecraft. In the process of self-learning, DRL optimizes
the parameters of neural networks iteratively, which elimi-
nates the trouble of design parameters, enables it to adapt
to the changing software, hardware, and environment, and
can continuously optimize the performance of the controller
by changing the setting of reward function. As space explora-
tion missions become more frequent and complex, spacecraft
are getting farther and farther from the earth; DRL technol-
ogy with fast learning ability and self-regulation ability will
play an increasingly important role in spacecraft attitude
control system.

Based on the above discussion, a model-free attitude con-
trol scheme based on DRL is proposed, and a kind of mixed
reward function for spacecraft attitude control is designed
to realize attitude stabilization control and attitude tracking
control of spacecraft. Aiming at the problem that the TD3
algorithm is relatively slow to explore the optimal strategy
without using any prior knowledge, the PID-Guide TD3
algorithm is proposed, which uses the PID controller to guide
the exploration process of the DRL algorithm, so as to signif-
icantly speed up the training speed and improve the conver-
gence accuracy of the algorithm. Aiming at the problem that
reinforcement learning (RL) is difficult to deploy in the actual
environment, this paper proposes that the algorithm should
be pretrained on the ground and then fine-tune the parame-
ters on orbit, so as to save training time and computing
resources and achieve better results quickly.

The rest of the paper is organized as follows. The problem
statements and control objectives are given in Section 2. The
DRL controller of spacecraft attitude is designed, and the
PID-Guide TD3 algorithm is proposed in Section 3. Section
4 proves the effectiveness of the proposed algorithm through
three simulation cases. Conclusions are given in Section 5.
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FiGure 1: Coordinate definition.

2. Problem Statement and Preliminaries

2.1. Problem Statement. The paper mainly studies the attitude
control problem of OOSS under complex situations such as
uncertain inertia matrix, even unable to establish the motion
model, and external disturbances. The control objective is to
achieve attitude stabilization control under bounded distur-
bances, that is,

lim (p(t) - p,) =0,

lim (w(t) —wy) =0,

t—00

(1)

where p(t) is the attitude angle, w(t) is the angular velocity, p,
is the target attitude angle, and w,, is the target angular velocity.
The characteristics of this control problem are as follows:
(A) it is difficult to establish accurate dynamic and kinematic
models; (B) there are unknown external disturbances, such as
perturbation and solar wind; (C) the actuator is saturated.

2.2. Attitude Representation. The definition of the earth-
centered inertial coordinate system F| — O XY Z,, spacecraft
body-fixed coordinate system Fy —O,X;Y.Z;, and orbital
coordinate system F,—-O,X Y Z, is shown in Figure 1.
When the attitude of the spacecraft is in stable state, the
spacecraft body-fixed frame coincides with the orbital coor-
dinate system. When attitude motion occurs, the orientation
or pointing of the body-fixed frame relative to the orbital
coordinate system is the attitude of the spacecraft. There
are usually five ways to describe the attitude of the spacecraft,
including Euler angles, Rotation Matrix, Quaternions, Rodri-
gues Parameters (RP), and Modified Rodrigues Parameters
(MRP). Different description methods can be converted
between each other. The characteristics of different descrip-
tion methods can be found in [19, 20].

2.3. Spacecraft Dynamics. The kinematic equation of space-

craft attitude described by MRP is given by

1 1-p*+2p> 2(ppy—ps) 2(pps+P,) | [@x
p=Z 2(papy + 1) 1_P2+2P22 2(pp5—py) w,
2(pspy—py) 2(pspy+py) 1-pP+2p7 ] |,

(2)
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The matrix form of the above equation is as follows:

1
[(1=p"p) s + 20"+ 20p" |0 = L G(p)w,  (3)

|

p:

where p=[p,p,ps]" is the Modified Rodrigues Parameters

and w= [wxwwa]T € R? is the rotation angular velocity of

the spacecraft relative to the earth-centered inertial, which is
expressed in the body-fixed frame. I, is the third-order iden-
tity matrix. p* is the skew-symmetric matrix of p, defined as

0 -p3 py
px= Ds 0 P |- (4)
Py P 0

The attitude dynamics equation can be expressed by the
following equation:

Jo+w Jo=M_ +M,, (5)

where ] € R? is the inertia matrix of the spacecraft and w* is
the skew-symmetric matrix of w. M, € R? is the control tor-
que. M, € R? is the total disturbing torque, including the grav-
ity gradient torque, aerodynamic torque, magnetic disturbing
torque, and radiation torque.

Remark 1. The dynamic model mentioned here is only used
as a simulation of the space environment and will not be used
directly in the controller.

3. DRL Controller Design for Spacecraft

3.1. Background. Deep Deterministic Policy Gradient
(DDPG) is an actor-critic method that uses neural networks
as the approximation of policy function and Q-function,
namely, the policy network and the Q network. Therefore,
it can deal with the problem with continuous action space.
At the same time, the use of empirical playback and double
network solves the problem that actor-critic is difficult to
converge [12].

While DDPG can achieve great performance sometimes,
it is frequently vulnerable to hyperparameters and other
kinds of tuning [21]. A common failure mode for DDPG is
that the learned Q-function begins to overestimate Q values
dramatically, which leads to the policy breaking, because
the error in the Q-function is introduced into the training
of the policy network. The Twin Delayed DDPG (TD3) algo-
rithm is an improved version of the DDPG, using three tech-
niques to solve the problems of DDPG [22].

The first one is Double Q Networks. TD3 learns two Q-
functions and uses the smaller of the two Q values to form
the targets in the Bellman error loss functions; thus, the over-
estimation of the approximation of the value function is
reduced.

The second one is “Delayed” Policy Updates. TD3
updates the policy (and target networks) less frequently than
the Q-function.

The last one is Target Policy Smoothing. TD3 adds noise
to the target action to reduce sensitivity and instability, mak-
ing it harder for the policy to exploit Q-function errors by
smoothing out Q along changes in action. The combination
of these three techniques significantly improves performance
of TD3 relative to baseline DDPG.

3.2. End-to-End Attitude Control Based on TD3 Algorithm.
The training goal of the DRL model is to maximize the total
return when the agent interacts with the environment. DRL
controller has a natural similarity with traditional control
but uses different terms to represent the same concept, as
shown in Figure 2. DRL is composed of agent, environment,
state, action, and reward. The agent learns the optimal policy
through interacting with the environment and takes the opti-
mal action to maximize the long-term reward, while the tra-
ditional control is to design the controller (policy) through
experts. The state feedback signal refers to the observation
of the environment, and the reference signal is built into
the reward function and observation.

3.2.1. Environment and State. In order to implement DRL,
the simulation environment of spacecraft attitude motion
should be established according to the attitude dynamic
and kinematic equations of spacecraft. The simulation envi-
ronment includes the environment dynamic model and the
interface between the agent and the environment. The input
of the environment is the action output by the agent, and the
output is the observed state and reward signal after the action
is performed. For the spacecraft attitude control problem,

the system states are selected as attitude angle p=

(P p2p3)T and angular velocity w= (wxwywz)T. The refer-

ence signal includes the target state p;. = (p, pr, pTa)T and
Wy = (wawTwaz)T. The system state s and the error signal
e are used as the observations, where e = (p, - p, w; — )" =

(dpldpzdp3dwxdwyda)z)T. The action space is continuous
three-dimensional control torque a € [-1, 1] N - m.

3.2.2. Reward Function. Reward refers to the reward signal
that the agent measures its performance according to the task
goal. A reasonable reward function is the key for agent to
learn effective policy, which determines the convergence
speed and stability of RL. Typically, a positive reward is
offered to encourage certain behaviors of the agent and a neg-
ative reward is offered to deter others [23]. The reward func-
tion can be divided into three types: continuous reward
function, discrete reward function, and mixed reward func-
tion. The continuous reward function varies continuously
with observation and action. In general, continuous reward
signals can improve the convergence during training and
simplify the network structure. The discrete reward function
varies discontinuously with observation and action. This type
of reward signals slow down the convergence rate and require
a more complicated network structure. Discrete rewards are
usually implemented as event that occurs in the environ-
ment. For example, if the agent exceeds a certain threshold,
it may receive a positive reward; if a certain performance con-
straint is violated, it will be punished. The more commonly
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FIGURE 2: These are the schematics of the controllers: (a) controller based on deep reinforcement learning; (b) traditional controller.
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used reward signal is mixed reward signal. Mixed rewards
include continuous rewards and discrete rewards. Discrete
reward signals keep the system away from bad states, and
continuous reward signals improve convergence by provid-
ing smooth rewards near the target state.

The following mixed reward function is designed for
spacecraft attitude control:

~(llell) -4’
! <0.1
o7~ pll+0.01 (llefl o <0-1),

ry ==100(|[p|l, = 4or ||@]| o, 2 4),

r,=

R=r +r,+r;

where |||, ||| o> @and || ||, represent vector norm. r, is a con-
tinuous reward, which can stabilize the system state and

reduce fuel consumption. The smaller the error, the greater
the reward of r,. The second term in r; represents energy
consumption. When the attitude of the spacecraft is very
close to the target attitude, the error change is small, and
the change of r, will be very insignificant. Therefore, the con-
tinuous reward r, is introduced to increase the reward gradi-
ent when the absolute value of each error component is less
than 0.1, so as to guide the attitude angle to approach the tar-
get value quickly and accurately. r; is a discrete reward,
which can control the attitude angle not to exceed the range
and increase training speed.

3.2.3. TD3 Algorithm. The agent receives observations and
rewards from the environment and sends actions to the envi-
ronment. The TD3 algorithm is used as the learning method
of agent in this paper. TD3 and DDPG are both off-policy
algorithms. TD3 creates an experience replay buffer to store
historical experiences and then randomly sample transitions
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(1) Randomly initialize critic networks Qp , Qp, and actor network 7, with weights 6, 6,, ¢
(2) Initialize target networks Qe{’ QQQ, Ty and with weights 9{ —0,, 6; —0,, (/5' —¢
(3) Initialize replay buffer &
(4) for episode =1 to M do
(1) Set the target state, randomly reset the environment, and get the initial state s
(2)fort=1to T do
1) Select action a; =7, (s) + € according to the current policy and exploration noise, € ~ N
(i) Sel i | =T ding to th policy and explorati i W0
(ii) Select another action according to PID controller a, = K,e(t) + K,-([ée(t)dt + K (de(t)/dt)
(iii) Execute action a = arg max;_;,(Qp, (s, a;)) and observe reward r and observe new state s’
(iv) Store transition tuple (s, a,r, s') in #
(v) If s’ is terminal, reset environment state
(vi) If it is time to update, then randomly sample a mini batch of N transitions from %
(vii) Compute target action a’ = clip(r, o (s") + clip(g,=¢, €)s=a, 100 Byay)
(viii) Compute target Q value y =r +y min,_, ,Qy (s',a")
(ix) Update critic networks 6; « arg ming N™'Y.(y - Qq (s, a))?
(x) If t mod d then
(a) Update ¢ by the deterministic policy gradient
N
V¢](</>) = I/NZ]':lan@l (S’ a) |a=ﬂ¢(s)v¢ﬂ¢(s)
(b) Update target networks
0% — 6%+ (1-1)69,
0" —10"+(1-1)0"
end for
end for
ArgoriTHM 1: PID-Guide TD3 Algorithm.
from it and feed those sample data to update actor and critic TasLe 1: Actor and critic network architecture.
networks. The existence of experience rePlay buffer helps the Actor network Critic network
a}%ent ﬂ;olbe ablef to lea{n pl’.(lf.VIOl..ls expenznces and improve Layer #units  Activation  # units  Activation
the efficiency o §amp e utilization. Random sampling c.an Tnput layer 2 Relu 15 Relu
break the correlation between samples and make the learning )
process of agents more stable [24]. Hfdden layer 1 250 Relu 250 Relu
TD3 uses a total of 6 neural networks, namely, actor net- Hidden layer 2 250 Relu 250 Relu
work 74, actor target network 7 o' critic network Qp,» critic Output layer 3 Linear 1 Linear
network Q , critic target network Q> and critic target net-
work QG;‘ The role and update rules of each network are as TABLE 2: Hyperparameter settings.
follows.
Hyperparameters Symbol Value
(1) Actor network 71: responsible for the iterative update Random seed — 2
of actor network parameters ¢ and selects the current Max episodes M 400
action a acco.rding to th.e current state s, which is used Max steps per episode T 200
to interact with the environment to generate the next )
’ Sample time T, 1
state s’ and reward R .
Replay buffer size R 10
(2) Actor target network 7 ¢If: responsible for selecting Batch size N 250
tllle optimal .next action a according to the next state Policy network learning rate r, 0.0003
s sampled in the experience replay buffer. Network . .
1 T . Critic network learning rate rl, 0.001
parameters ¢ are periodically copied from ¢
» ) ; ) ) Exploration noise scale c 0.1
(3) Critic networks Qei: responsible for the iterative Delay update d 3
update of Q network parameters and calculate the D . 0.99
current Q value Qq (s, a). The target Q value is the iscount factor 14 )
Soft update rate T 0.01

smaller of the two value, namely, y =7+ y min,_, ,

Qe’/ (S’, a!)
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FIGURE 4: The learning process of TD3 agent under ideal environment.

(4) Critic target networks Q, : responsible for calculating
Qg (s',a") of the target Q value. Network parameters

0, are periodically copied from 6;

For the critic networks, the loss function is defined as

(r-Qy(s2))". (7)

Z| =
M=

I
—_

J(6;) = '

J

For the actor network, the deterministic policy is used to
optimize the parameters, and the loss function is defined as

N
VoI (¢) = %Z;anGI (5 @) |azn,(5) V77 (5)- (8)
p=

The target networks are updated by soft update method:

0, —10;+(1-1)0,
¢ —1p+(1-1)¢".

3.3. PID-Guide TD3 Algorithm. TD3 is a model-free algo-
rithm, which does not use any prior knowledge and constantly
explores through the interaction with the environment to
obtain the optimal strategy. It is time-consuming for agent
to find optimal policy without any prior knowledge due to
the problems such as partial observability of environmental
feedback, the sparsity of reward, and high-dimensional state
and action space.

In order to speed up the training speed and improve the
convergence stability of the algorithm, a PID-Guide TD3
algorithm is proposed in this section. The core idea of the
PID-Guide TD3 algorithm is as follows. In the current state
s, two actions are generated by the action network and PID
controller, respectively. Then, the critical network is used to
evaluate the two actions; the action with higher value will
be actually executed. In fact, any model-free controller can

©)

guide TD3 to conduct policy search. Figure 3 describes the
structure of PID-Guide TD3.

PID is a model-free controller based on the feedback of
error. PID requires precise design of parameters, so the
change of environment will lead to serious degradation of
its performance. The formula of PID algorithm is

! de(t)
u=K,e(t) + Kijoe(t)dt +K, P

(10)

where K, K, and K are positive definite matrices containing
the control parameters, which are, respectively, called propor-
tional coefficient, integral coefficient, and differential coefficient.

The pseudocode of PID-Guide TD3 is given in Algo-
rithm 1. The main steps of the PID-Guide TD3 algorithm
are as follows:

(1) Randomly initialize critic networks Q9,»" Q> Qp, and
actor network 7y with weights 6, 6,, ¢ and initialize
target networks Qg Qg:, 7y with weights 0,0,
009" —¢

(2) Initialize replay buffer %

(3) Start a new episode, set the target position, randomly
reset the environment, and get the initial state s

(4) For every step, select an action according to the cur-
rent policy with exploration noise:

a; =my(s) + & (11)

where the exploration noise € ~ ./(0, )

(5) Select another action according to PID controller:

! de(t
a, = Ke(t) +KiJOe(t)dt+Kd d(t)'

(12)
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FIGURE 5: Attitude stabilization using the DRL controller under ideal environment: (a) time response of control torque; (b) time response of
MRP; (c) time response of angular velocity; (d) the attitude error curve.

(6) Execute the action a=arg max;_,,(Qy (s, 4;)) and
observe the reward r and the new state s

(7) Store transition tuple (s, a,r,s') in %
(8) If s’ is terminal, reset environment state

(9) If it is time to update the critic networks, then ran-
domly sample a mini batch of N transitions from %

(10) Compute target action:

a' =dlip (n¢r (s/) + clip(&,=¢, €),= A amax) , (13)

where c is the scale of exploration noise and a,,,, is the max-
imum control torque

(11) Compute target Q value:

y=r+vy minizl,zQel, (s', a,),

where y is the discount factor

(12) Update critic networks by

Vo (0)=Va 5 2. (- Qs (5))’

N

1

(14)
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(13) Ifitis time to update the actor network, update ¢ by

the deterministic policy gradient:

a=my(s) V(f)”gb (S) :

1 N
Vel (9)= NZI V. Qp, (s, )
j=

(14) Update target networks by
6;<— 70+ (1- 1)0{,
' —To+(1-1)¢',

where 7 is the update rate for target model

(16)

3.4. Pretraining and Fine-Tuning. When the state space and
action space are too large, the DRL algorithm is difficult to
be applied in space tasks directly due to the low learning effi-
ciency and the difficulty in training the networks. In order to
shorten the training time and avoid dangerous states during
the exploration, this paper proposes to use the pretraining
and fine-tuning method in deep learning to further improve
the learning efficiency.

Pretraining in deep learning is training the machines
before they start performing a particular task. Pretraining
imitates the way human beings process new knowledge.
The weights saved from the previous network will be used
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as the initial weight for the new experiment. In this way, the
old knowledge helps new models successfully perform new
tasks from old experience instead of from scratch.

A well-established paradigm is to pretrain models
using large-scale data and then to fine-tune the models
on target tasks that often have less training data. Pretrain-
ing has enabled state-of-the-art results on many tasks,
including object detection, image segmentation, and action
recognition [25].

The pretraining and fine-tuning method makes it possi-
ble to deploy the DRL controller on orbit. The real space
environment is different from the simulation environment;
there are some uncertain information such as unknown dis-
turbances and unknown inertial parameters in space. For
the spacecraft attitude control task, the agent which has been
pretrained on the ground only needs a small amount of on-
orbit training to fine-tune the parameters to obtain good
performance.

4. Simulation and Results

In order to verify the effectiveness and superiority of the pro-
posed PID-Guide TD3 algorithm, the simulations are carried
out in this section. The following numerical simulations are
organized.

Case 1: in the ideal environment without external distur-
bances, the agent is trained to realize the attitude stabilization
control and attitude tracking control of spacecraft, respectively.

Case 2: on the basis of Case 1, the existence of unknown
disturbance torques is considered.

Case 3: on the basis of Case 2, the PID-Guide TD3 algo-
rithm is used to accelerate the training speed and conver-
gence stability.

4.1. Simulation Setup. All training processes are done on
the computer with an Intel Seon Silver 4210 CPU and
an NVIDIA Quadro P2000 GPU. Python 3.7 is used as
the project interpreter. The deep learning framework

TensorFlow-2.0.0 is used for training the networks under
Windows system.

The experiments are conducted in the OpenAI Gym sim-
ulation environment. The step size of the Gym simulator,
which specifies the duration of each physics update step, is
set to 0.1's to develop highly accurate simulations. The inertia
matrix is set as J = diag (120, 100, 120) kg- m?. The initial
states of system are selected as p, = (0.3,0.1,-0.2)" and w,
= (OOO)Trad/s. The target states are p, = (OOO)T and w, =

(000)" rad/s. The maximum value of control torque is a,,,, =
IN-m.

The policy and value functions are approximated by
four-layer neural networks with Relu activations on each hid-
den layer. The composition of the networks is shown in
Table 1.

The hyperparameter settings during the implementation
of the algorithm are given in Table 2. All network architec-
ture and hyperparameters used in the three cases are the
same.

4.2. Case 1. End-to-End TD3 Algorithm under Ideal
Environment. In order to verify the performance of the
End-to-End DRL controller and the effectiveness of the
reward function proposed in Section 3.2, the agent is trained
in an ideal environment without external disturbances to
realize the attitude stabilization and attitude tracking control
of spacecraft, respectively.

Figure 4 shows the learning process of the End-to-End
TD3 algorithm. It can be seen that the algorithm basically
achieves convergence after 100 episodes of training, and
the rewards for each episode finally stabilized at 15000.

In this case, the control strategy output by the agent,
namely, the control torque, is shown in Figure 5(a).
Figures 5(b) and 5(c) show the parameter response of the
attitude angle and attitude angular velocity under the
above-mentioned control torque, respectively. After 30 sec-
onds, the attitude angle has been basically controlled to the



10
E
Z
L
=
g
2
E
=
]
¢)
~14
0 50 100 150 200
T (s)
a}(
—a
R az
()
0.06
Ih|
0.04
% 0.02
o
&
& 0+
|9}
=2
4
0027
= :
E :
2 -0044 "
-0.06 - -
-0.08 . ; :
0 50 100 150 200
T, (s)
‘UX
—w
;
I wz
(©

International Journal of Aerospace Engineering

0.4

034
024 -

0.1+

MRP

0 50 100 150
T, (s)

200

P,
— P,
--- D,

(b)

0.8

064 - ... a0

0.4+

0.2

Attitude errors

024 -

-0.4 T T T
0 50 100 150

T (s)

200

P,
—p,
_—— P3

(d)

FIGURE 8: Attitude stabilization using the DRL controller under unknown external disturbances: (a) time response of control torque; (b) time
response of MRP; (c) time response of angular velocity; (d) the attitude error curve.

target value, and the angular velocity is basically zero. The
convergence speed is fast, and the amount of overshoot is
small. The error curve of the attitude angle is shown in
Figure 5(d). The error level drops to 10™*, which shows that
the control accuracy is relatively high.

The objective of attitude tracking control is to track the
desired attitude with p,,=(0.1,0.05,-0.15)" and wy(t)=

[0.02 cos (¢/15),0.02 sin (/20), 0.02 sin (/15)]" rad/s. The
simulation results are illustrated in Figure 6. It can be seen
that both the attitude and angular velocity converge to the

target attitude rapidly, which indicate that the tracking objec-
tive is accomplished with the proposed End-to-End DRL
controller.

4.3. Case 2: End-to-End TD3 Algorithm under Unknown
External Disturbances. In this case, the spacecraft suffers
from external disturbances d(t)=[0.15 cos (0.1¢), 0.25 cos
(0.15¢),0.15 sin (0.1¢£)] N - m. The learning process is illus-
trated in Figure 7. The simulation results are illustrated in
Figure 8. Compared with the ideal environment, the training



International Journal of Aerospace Engineering

16000

11

14000 -

12000 -

10000 -

8000 -

6000 +-

Episode reward

4000 -

2000 -

-2000 T

0 50 100 150

200 250 300 350 400

Episode number

—— End-to-End TD3
—— PID-Guide TD3
—— Pretraining

FIGURE 9: The training process of different algorithms.

4
17 x 10

14 -

1.3 4

Episode reward

1.2 4

1.1 4-

0 20 40

60 80 100

Episode number

—— End-to-End TD3
—— PID-Guide TD3

—— Pretraining
—— PID

FIGURE 10: The testing process of different algorithms.

speed of the algorithm is slightly reduced, and it still has good
convergence accuracy. It can be seen that the disturbance tor-
ques are completely compensated by the controller.

4.4. Case 3: PID-Guide TD3 Algorithm under Unknown
External Disturbances. In order to verify the superiority of
the PID-Guide TD3 algorithm proposed in Section 3.3, the
training speed and stability performance of PID-Guide
TD3, End-to-End TD3, and pretraining/fine-tuning method
are compared, respectively. The training process and testing
process are illustrated in Figures 9 and 10. The simulation
results are illustrated in Figure 11.

A PID-like controller designed for spacecraft attitude sta-

bilization is used as the guide controller [26] u = GT(p)er

+ GT(p)Kifgedt + K, w. The weighting coefficients are cho-
sen as K, = 40133, K; = 0I3,3, and K, = 6015,5.

From Figures 9 and 10, it can be discerned obviously
that all the three algorithms got good convergence perfor-
mance after training. However, compared with End-to-
End TD3 algorithm, the PID-Guide TD3 has significantly
faster training speed and higher convergence accuracy.
The PID controller itself does not have very high perfor-
mance, but it can guide the TD3 to produce better sam-
ple data at the beginning of training, thus speeding up
the training process.

Further, it can also be observed that the pretrained agent
only needs a few episodes of training to adapt to the new
environment and at the same time avoid the occurrence of
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FiGure 11: Attitude stabilization using the PID-Guide TD3 algorithm under unknown external disturbances: (a) time response of control
torque; (b) time response of MRP; (c) time response of angular velocity; (d) the attitude error curve.

dangerous states in the process of exploration. The benefits of
pretraining extend beyond merely quick convergence, since
pretraining can improve model robustness and uncertainty.
Therefore, the pretrained DRL controller can be deployed
to the spacecraft and then fine-tune parameters on orbit,
instead of training from scratch.

5. Conclusions

A DRL-based control approach is proposed to handle the
model-free attitude control problem of OOSS under the
guidance of the mixed reward system. The PID-Guide
TD3 algorithm based on prior knowledge is proposed to

increase the training speed and learning stability of the
TD3 algorithm. In addition, the pretraining and fine-
tuning method is proposed to realize the deployment of
DRL controller in space. Simulation results show that the
DRL controller can achieve high-precision attitude stabili-
zation and attitude tracking control with fast response and
small overshoot. The learning curves of the three DRL
methods illustrate that the proposed PID-Guide TD3 algo-
rithm has faster learning speed and convergence accuracy
than the baseline TD3 algorithm. The pretraining and
fine-tuning method can make the controller adapt to
uncertain and unknown disturbances in the actual envi-
ronment very quickly.
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