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The l1-norm regularization has attracted attention for image reconstruction in computed tomography. The l0-norm of the
gradients of an image provides a measure of the sparsity of gradients of the image. In this paper, we present a new
combined l1-norm and l0-norm regularization model for image reconstruction from limited projection data in computed
tomography. We also propose an algorithm in the algebraic framework to solve the optimization effectively using the
nonmonotone alternating direction algorithm with hard thresholding method. Numerical experiments indicate that this
new algorithm makes much improvement by involving l0-norm regularization.

1. Introduction

Computed tomography (CT) has been widely applied in
medical imaging and industry for over decades. In some
applications, the reconstructions do not require a high-
quality image, or complete projection data for exact recon-
structions is not available because of the scanning conditions
or radiation issue. CT reconstruction from limited projection
data is of particular importance, and statistical and iterative
reconstruction algorithms outperform the analytic
approaches in these applications.

The theory of compressed sensing [1, 2] has provided a
novel framework for CT image reconstruction from limited
projection data with the prior knowledge of the sparse gradi-
ents for CT images. The total variation (TV) based regulari-
zation [3] for CT image reconstruction is connected to
compressed sensing under the sparse transform of the gradi-
ent operator [4, 5]. The TV of an image is the l1-norm of the
gradients of the image, so the TVminimization is also known
as the l1-minimization.

The l1-norm-based regularization can greatly reduce the
streak artifacts arising from few-view CT [6]. However, the
results are over smoothing and lose some detailed features
including contrast that causes edge blurred [7]. In addition,

the l1-norm regularization does not provide a representation
sparse enough. To overcome the drawback, many improved
TV-based reconstruction algorithms have been developed.
One of them is the reweighted l1 minimization [8]. Algo-
rithms for regularization involving multiple norms are also
developed. For example, the alternating direction method
(ADM) [9, 10] and the nonmonotone alternating direction
algorithm (NADA) [11, 12] are proposed for solving an
l1-norm minimization with an l2-norm constraint.

The l0-norm of an image vector, defined as the num-
ber of its nonzero elements, measures the sparsity of a
vector appropriately. So the l0-norm-based regularization
for CT represents the sparsity of the gradient image better
than the l1-norm-based regularization and preserves the
edge while suppressing the streak artifacts [13]. However,
the l0-norm is a nonconvex function and the l0-norm regu-
larization problem is NP hard [14]. So many variants of the
regularization algorithms are developed. An edge-
preserving image reconstruction method for limited-angle
CT is investigated based on l0-norm regularized gradient
prior [15]. An imaging reconstruction model for few-view
CT based on l0 sparse regularization is proposed [16]. A
new l0 regularization with wavelet tight framelets is
addressed to suppress the slope artifacts in the limited-
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angle X-ray CT reconstruction [17]. Regularization involv-
ing multiple norms is also developed to address the indi-
vidual drawbacks of the l1-norm and l0-norm. An image
reconstruction model based on l0-norm and l2-norm regu-
larization for the limited-angle CT is proposed [18].
Numerical experiments indicate that the algorithm has
the advantage in suppressing slope artifacts. A combined
smoothed l0-norm and l1-norm regularization algorithm
using the NADA method for CT image reconstruction is
proposed and demonstrated to have better performance
than the l1-norm regularization [19].

In this paper, we will develop a new combined l1-norm
and l0-norm regularization model for CT image reconstruc-
tion from limited projection data. The main contributions
of this paper are as follows:

(1) We generalize the l1-norm regularization to an
l1-norm and l0-norm regularization for CT image
reconstruction from limited projection data. The
proposed model can achieve superior performance
compared with the existing related methods for mul-
tiple reasons. Firstly, due to the l1-norm regulariza-
tion term, the proposed model can reduce streak
artifacts in limited-data CT. Secondly, due to the
l0-norm regularization term, the oversmoothing
from the l1-norm regularization term is improved.
The proposed model is less smoothing, thus better
edge-preserving, and provides a better sparsity rep-
resentation. Thirdly, since the l0-norm is adopted
without using the smoothed l0-norm approxima-
tion, the proposed model has the advantage in sup-
pressing slope artifacts

(2) We propose an algorithm in the algebraic framework
to solve the optimization effectively using the non-
monotone alternating direction algorithm with hard
thresholding (NADA-HT) method

The rest of the paper is organized as follows. In Section
2, we present a combined l1-norm and l0-norm-based reg-
ularization model and propose an algorithm for CT image
reconstruction from limited projection data. Numerical
experiments for a comparison of regularization models
with/without the l0-norm and the discussion are given in
Section 3.

2. Materials and Methods

The projection data in CT can be modelled as a linear system,

Φf + e = u, ð1Þ

where Φ is an m × n2 projection matrix, f ∈ Rn2 represents a
2D n × n image to be reconstructed, e an additive noise with
kek2 ≤ ε for some known ε > 0, and u ∈ Rm the noisy projec-
tion data. For limited data reconstruction, the underdeter-
mined system (m≪ n2) has infinitely many solutions. An
optimal solution representing the original image as good as

possible can be sought by minimizing the energy function
with a TV regularization term [8]:

min
f

fk kTV subject toΦf + e = u, ð2Þ

where the total variation k f kTV is the l1-norm of the magni-
tude of the discrete gradients,

fk kTV = ∇fk k1 =〠
i,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i+1,j − f i,j

� �2
+ f i,j+1 − f i,j
� �2

r
: ð3Þ

Then, a 2D image f with sparse gradients and noisy
measurements in CT can be reconstructed by solving the
following l1-norm minimization with an l2-norm con-
straint,

min
f

∇fk k1 subject to Φf − uk k22 ≤ ε: ð4Þ

However, the image reconstructed by solving (4) has
slope artifacts near the edge of the object for limited-angle
projection data [20].

We consider the following minimization model

min
f

∇fk k1 + α ∇fk k0 +
γ

2 fk k22
n o

subject to Φf − uk k22 ≤ ε,

ð5Þ

where k∇f k0 stands for the number of nonzero gradients
ð∇f Þp, 1 ≤ p ≤ n2. The term ðγ/2Þk f k22, γ⟶ 0 + , makes the
energy of reconstructed image to be minimized and reduces
the ill-posedness of CT reconstruction [18].

For convenience, we denoteDpf as the forward difference
of f at a pixel p in both horizontal and vertical directions, i.e.,

Dpf =Di,j f = f i+1,j − f i,j, f i,j+1 − f i,j
h iT

∈ R2, for p = i − 1ð Þn + j:

ð6Þ

Then, ð∇f Þp =Dpf for 1 ≤ p ≤ n2 and k∇f k1 =∑n2

p=1kDpf k2.
Minimization (5) is equivalent to

min
f

β

2 Φf − uk k22 + 〠
n2

p=1
Dpf

�� ��
2 + α Dpf

�� ��
0

� �
+ γ

2 fk k22
( )

,

ð7Þ

where the notation kDpf k0 is set to be 1 for nonzero Dpf ,
otherwise 0. The above minimization can be converted, with
a parameter β > 0 and vectors vp ′s, to
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min
f

β

2 Φf − uk k22 + 〠
n2

p=1
vp

�� ��
2 + α vp

�� ��
0

� �
+ γ

2 fk k22
( )

subject to Dpf = vp, 1 ≤ p ≤ n2:

ð8Þ

Adapting Lagrangian vectors λp ∈ R2, 1 ≤ p ≤ n2, we con-
vert Minimization (8) into the following problem using the
augmented Lagrangian method

min
f

β

2 Φf − uk k22 + 〠
n2

p=1
vp

�� ��
2 + α vp

�� ��
0

�(

+ μ

2 Dpf − vp + λp
�� ��2

2

�
+ γ

2 fk k22
)
:

ð9Þ

For simplicity, we write Df , v, and λ as vectors whose
p-th components are Dpf , vp, and λp, 1 ≤ p ≤ n2, respec-

tively. Then, kDf − v + λk22 =∑n2

p=1kDpf − vp + λpk22. Thus,
Minimization (9) becomes

min
f

β

2 Φf − uk k22 + 〠
n2

p=1
vp

�� ��
2 + α vp

�� ��
0

� �(

+ μ

2 Df − v + λk k22 +
γ

2 fk k22
)
:

ð10Þ

Next, we will develop an algorithm for solving Mini-
mization (10). By convention, Minimization (10) can be
solved by ADM iteratively. The k-th step of the ADM
involves three procedures,

f k+1 ∈ arg min
f

β

2 Φf − uk k22 +
μ

2 Df − vk + λk
��� ���2

2
+ γ

2 fk k22
� �

,

ð11Þ

vk+1 ∈ arg min
v

〠
n2

p=1
vp

�� ��
2 + α vp

�� ��
0

� �
+ μ

2 Df k+1 − v + λk
��� ���2

2

( )
,

ð12Þ

λk+1 = λk − vk+1 −Df k+1
� �

: ð13Þ

First, Minimization (11) can be solved by ADM with
the gradient decent method involving nonmonotone line
search, for example, the NADA.

Next, we seek for a solution of (12). Minimization (12) is
equivalent to finding

vk+1p ∈ arg min
vp

vp
�� ��

2 + α vp
�� ��

0 +
μ

2 Dpf
k+1

���n

− vp + λkp

���2
2

�
, for 1 ≤ p ≤ n2:

ð14Þ

We introduce a hard thresholds (HT) operatorHκðwÞ on
R2 with the threshold κ defined as

Hκ wð Þ =
0 if wk k2 ≤ κ

w otherwise:

(
ð15Þ

A solution vk+1p is provided in the following theorem.

Theorem 1. Let w =Dpf
k+1 + λkp and κ = ð1/μÞð1 + ffiffiffiffiffiffiffiffi

2μα
p Þ. If

2μα > 1, then a minimizer vk+1p for Minimization (14) is given
by

vk+1p =max 1 −
1

μ wk k2
, 0

� �
Hκ wð Þ: ð16Þ

Proof. For simplicity, denote z = vp. The objective function in
Minimization (14) is rewritten as

g zð Þ = zk k2 + α zk k0 +
μ

2 z −wk k22: ð17Þ

Without loss of generality, we assume that w ≠ 0 since
zopt = 0 in the case of w = 0.

For z = 0, gðzÞ = ðμ/2Þkwk22.
For z ≠ 0, gðzÞ = kzk2 + α + ðμ/2Þkz −wk22. The mini-

mizer is derived in the following two cases.

(i) Case 1. μjjwjj2 > 1

We claim that gmin = kwk2 + α − 1/ð2μÞ at z = ð1 − 1/
ðμkwk2ÞÞw. In fact, it follows from

dg
dz

= 1
zk k2

z + μ z −wð Þ = 0 ð18Þ

that a minimizer z is a scalar multiple of w. Let z = tw
where t > 0 due to the minimization problem. Then, the
function

h tð Þ≔ g zð Þ = μ

2 tw −wk k22 + twk k2 + α

= μ

2 wk k22t2 − μ wk k22 − wk k2
� 	

t + μ

2 wk k22 + α

ð19Þ

reaches its minimum value

hmin = α + μ

2 wk k22 −
μ wk k22 − wk k2
� 	2

2μ wk k22
= α + wk k2 −

1
2μ
ð20Þ

at t = 1 − 1/ðμkwk2Þ. The claim is proved.

(ii) Case 2. μjjwjj2 ≤ 1
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In this case, h′ðtÞ = μkwk22ðt − 1 + 1/ðμkwk2ÞÞ > 0 for all
t > 0 and lim

t→0+
hðtÞ = ðμ/2Þkwk22 + α > ðμ/2Þkwk22. Thus, the

minimizer is zopt = 0.
Combining the results for z = 0 and z ≠ 0, we conclude

that if ðμ/2Þkwk22 ≤ α + kwk2 − 1/ð2μÞ then, zopt = 0; other-
wise, zopt =max f1 − 1/ðμkwk2Þ, 0gw.

Next, we look for conditions under which the inequality
ðμ/2Þkwk22 ≤ α + kwk2 − 1/ð2μÞ holds. Substituting r = jjwjj2
into the inequality, we consider the equation

q rð Þ≔ μ

2 r
2 − r − α −

1
2μ


 �
= 0 ð21Þ

in an unknown r. The zeros of the equation are given by
r1,2 = ð1/μÞð1 ∓ ffiffiffiffiffiffiffiffi2μαp Þ. So qðrÞ ≤ 0 for r ∈ ½r1, r2�, where

r1 ≤ 0 for 2μα > 1, and qðrÞ > 0 for r > r2. Therefore, for
2μα > 1, if kwk2 ≤ ð1/μÞð1 + ffiffiffiffiffiffiffiffi2μαp Þ, we have ðμ/2Þkwk22 ≤
α + kwk2 − 1/ð2μÞ, and consequently, zopt = 0; otherwise, ðμ/
2Þkwk22 > α + kwk2 − 1/ð2μÞ, and consequently, zopt =max
f1 − 1/ðμkwk2Þ, 0gw.

With a threshold κ = ð1/μÞð1 + ffiffiffiffiffiffiffiffi2μαp Þ, if kwk2 ≤ κ,
then zopt = 0; otherwise, zopt =max f1 − 1/ðμkwk2Þ, 0gw.
Using the HT operator in (14), we have zopt =max f1 − 1/
ðμkwk2Þ, 0gHκðwÞ. We complete the proof of the theorem.

Remark. In practice, the condition 2μα > 1 for nonzero α
in Theorem 1 is fulfilled. Now we summarize our algorithm
as follows.

3. Results and Discussion

In this section, the performance of the proposed algorithm is
compared with that of the l1-norm regularization algorithm.

(l1-norm and l0-norm regularization algorithm using NADA-HT method).
1. input Φ, u, α, ε
2. initialize n, β, γ, μ, k, f 0, v0, λ0,maxit, ratio, tol
3. while k <maxit
3.1 update f k+1 by NADA
3.2. for each integer p, 1 ≤ p ≤ n2, update vk+1p by HT method

set w =Dpf
k+1 + λkp, κ = ð1/μÞð1 + ffiffiffiffiffiffiffiffi2μαp Þ

update vk+1p =max f1 − 1/ðμkwk2Þ, 0gHκðwÞ
3.3 update λk+1 = λk + ðDf k+1 − vk+1Þ
3.4 if error <tol then output f k+1; stop
3.5 γ = γ × ratio
3.6 k = k + 1
end.

Algorithm 1.

 Shepp-Logan l1 regularization l0+l1 regularization

 Cardiac image  l1 regularization  l0+l1 regularization

Figure 1: Original and reconstructed images. First row: Shepp-Logan phantom after 200 iterations. Second row: cardiac image after 500
iterations.
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Both algorithms are implemented in MATLAB using the
NADA and tested with the 2D Shepp-Logan phantom and
a cardiac image [21] of size 128 × 128 on an Intel Core i7
3.40GHz PC. In each test, the same system u =Φf + e is cre-
ated, where Φ ∈ Rm×n2 (m ≈ 0:3n2) is a random matrix and
the noise e = 0:02 ∗meanðΦf Þ ∗ randnðmÞ. The weight
parameter α is chosen as 0 and 1 for the l0-norm regulariza-
tion and the proposed algorithm, respectively. Other two
important parameters in the objective function are taken
as β = 28, μ = 24 for the Shepp-Logan phantom and β = 27,
μ = 22 for the cardiac image, respectively.

Experiments are conducted to compare the reconstruc-
tion by the two algorithms after the same number of itera-
tions. The original and reconstructed images for two images
after the same numbers of iterations are shown in Figure 1.
The images demonstrate that the proposed algorithm yields
much better reconstruction. The quality of reconstructed
images is compared using several commonly used criteria:
the relative error, the root-mean-square error (RMSE), the
normalized root mean square deviation (NRMSD), the nor-

malized mean absolute deviation (NMAD), and the struc-
tural similarity index (SSIM). The experimental results
from 100 tests are summarized in Table 1. It shows that the
proposed algorithm produces significantly improved evalua-
tion measurement: 88%–167% for the Shepp-Logan phan-
tom and 67%–114% for the cardiac image, respectively,
while taking less CPU time. Overall, the new algorithm pro-
vides better accuracy after the same iteration number.

Figure 2 shows the graph of relative error v.s. the number
of iterations for the two algorithms. The curves indicate that
the proposed algorithm requires much less iterations and
time to achieve the same accuracy and yields much faster
convergence. After a certain number of iteration numbers,
the relative error of the proposed algorithm drops sharply,
while the relative error of the l1-norm regularization is slowly
decreasing and does not improve much over the iterations.

The proposed regularization model introduces an l0-norm
term in addition to an l1-norm term. The l0-norm of a
vector is the number of nonzero elements in the vector; thus,
the l0-norm is appropriate for representing sparsity.

Table 1: Comparison of two algorithms after same number of iterations.

(a)

Shepp-Logan phantom, after 200 iterations
Time(s) Error RMSE NRMSD NMAD SSIM

l1 regularization 53 0.341 0.083 0.086 0.422 0.356

l0 + l1 regularization 52 0.035 0.009 0.009 0.033 0.949

(b)

Cardiac image, after 500 iterations
Time(s) Error RMSE NRMSD NMAD SSIM

l1 regularization 88 0.362 0.111 0.076 0.352 0.442

l0 + l1 regularization 83 0.119 0.014 0.010 0.041 0.936

100

10–1

0 50 150100
Number of iterations

200

l0+l1 regularization
l1 regularization

Re
la

tiv
e e

rr
or

(a) Shepp-Logan phantom

100

10–1

Re
la

tiv
e e

rr
or

0 100 300200
Number of iterations

500

l0+l1 regularization
l1 regularization

400

(b) Cardiac image

Figure 2: Relative error v.s. iteration number in reconstruction by two algorithms. (a) Shepp-Logan phantom. (b) Cardiac image.
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Meanwhile, the l0-norm term makes the model less
smoothing. Numerical experiments demonstrate that, in
the proposed model, the edge is better preserved, and a bet-
ter sparsity representation is provided. So, the proposed
algorithm improves the quality and the efficiency of the
reconstruction even with the extra computation from the
added l0-norm term.

The effect of the weight parameter α of the l0-norm is
tested. From our experiments, the parameter α from 0:5 to
1 almost does not not affect the efficiency of the algorithm.
Selecting good values of other parameters β, μ, and γ in Min-
imization (10) is a challenging problem and will be further
investigated in the future.

High-quality CT image reconstruction from limited pro-
jection data is challenging. Learning based algorithms such as
structure-aware sparse Bayesian learning [22] could yield
improved performance in reconstructing tomographic
images from limited data, since structural prior knowledge
is exploited. Enhancing the proposed algorithm in a
learning-based framework using prior knowledge will be
the topic of future research.
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