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Our purpose in this paper is to prove, under some regularity conditions on the data, the solvability in a Gevrey class of bound —1
on the interval [-1,1] of a class of nonlinear fractional functional differential equations.

1. Introduction

Fractional calculus has evolved from the speculations of
early mathematicians of the 17" and 18™ centuries like G.
W. Leibnitz, I. Newton, L. Euler, G. F. de L’'Hospital, and J. L.
Lagrange [1]. In the 19" century, other eminent mathe-
maticians like P. S. Laplace, J. Liouville, B. Riemann, E. A.
Holmgren, O. Heaviside, A. Grunwald, A. Letnikov, J. B. J.
Fourier, and N. H. Abel have used the ideas of fractional
calculus to solve some physical or mathematical problems
[1]. In the 20" century, several mathematicians (S. Pin-
cherle, O. Heaviside, G. H. Hardy, H. Weyl, E. Post, T. J. Fa
Bromwich, A. Zygmund, A. Erdelyi, R. G. Buschman, M.
Caputo, etc.) have made considerable progress in their quest
for rigor and generality to build fractional calculus and its
applications on rigorous and solid mathematical founda-
tions [1]. Actually, fractional calculus allows mathematical
modeling of social and natural phenomena in a more
powerful way than the classical calculus. Indeed fractional
calculus has a lot of applications in different areas of pure
and applied sciences like mathematics, physics, engineering,
fractal phenomena, biology, social sciences, finance, econ-
omy, chemistry, anomalous diffusion, and rheology [1-22].
It is then of capital importance to develop for fractional
calculus the mathematical tools analogous to those of
classical calculus [1, 3, 4, 19, 23]. The fractional differential
equations [23-28] are a particularly important case of such
fundamental tools. An important type of fractional

differential equations is that of fractional functional dif-
ferential equations (FFDEs) [10, 29-31] which are the
fractional analogues to functional differential equations
[17, 32-34], enable the study of some physical, biological,
social, and economical processes (automatic control, fi-
nancial dynamics, economical planning, population dy-
namics, blood cell dynamics, infectious disease dynamics,
etc.) with fractal memory and nonlocality effects, where the
rate of change of the state of the systems depends not only on
the present time but on other different times which are
functions of the present time [11, 35, 36]. The question then
arises of the choice of a suitable framework for the study of
the solvability of these equations. But, since the functional
Gevrey spaces play an important role in various branches of
partial and ordinary differential equations [37- 40], we think
that these functional spaces can play the role of such con-
venient framework. However, let us point out that in order
to make these spaces adequate to our specific setting, it is
necessary to make a modification to their definition. This
leads us to the definition of new Gevrey classes, namely, the
Gevrey classes G, ([q;,9,]) of bound q; and index />0 on
an interval [g;,q,]. Our purpose in this paper is to prove,
under some regularity conditions on the data, the solvability
in a Gevrey class of the form G, _, ([-1,1]) of a class of
nonlinear FFDE. Our approach is mainly based on a the-
orem that we have proved in [41]. The notion of fractional
calculus we are interested in is the Caputo fractional cal-
culus. Some examples are given to illustrate our main results.
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2. Preliminary Notes and Statement of the
Main Result

2.1. Basic Notations. Let F : E — E be a mapping from a
nonempty set E into itself. F<” (n € N) denotes the iterate of
F of order n for the composition of mappings.

For z € C and h>0,B(z, h) is the open ball in C = R?
with the center z and radius h.

Let S, and S, be two nonempty subsets of C such that
§; ¢Sy and f : S, — C a mapping. We denote by f|s the
restriction of the mapping f to the set §;.

For z € C and S ¢ C(S nonempty) we set

0(z,8) = i(relsf(IZ—(|)~ (1)

For I, ¢, r>0, and n € N*, we set for every nontrivial
compact interval [q;,q,] of R

(9192, ={x+{: x € [q1,4,],C € B(0, )},
[‘h"h]lrn = [qp‘b]m*l”’
1 (900" ={q +s¢° 15 €10,q, —q, + [ 0 €1~ 9, 9[},

[914.)" =[919]"™

[‘il)‘b]lm = [‘11>‘12]m7w

(2)

Thus, we have

{ (99:], ={z € C: o(z [q1,9:]) <7}, 3)

(90 92)1,n =12 € C: 0(2 [q1,q,]) <.

Remark 1. The following inclusions hold for every
d e ]%7Q2]:7’ E]O)d_ql[ al‘ld n E N*I

{ [4.q.], < [a1-4.]"
[ @)1 € 91592

Let f : S — C be a bounded function. || ., s denotes
the quantity:

(4)

]l,r,n

1/ llco,s := sup | f (s)I. (5)

zeS

By C°([q;,9,]) (resp. C'([gy,9,])), we denote the
complex vector space of all complex valued functions de-
fined and continuous (resp. defined and of class C!) on the
interval [q;,q,]. C°([g;,9,]) is a Banach space when it is
endowed with the uniform norm:

1 eC(ava) — Wlafga)  ©

For every r>0, we denote by A, (r) the closed ball in
C%([-1,1])) of radius r and center, the null function.

Let £,,&, € C. We denote by &,, &, the linear path joining
& to &y % —

fl,fz : [0,1] — C,

I Nloo,[g,.4.]

(7)
t— (1 -t)&, +t&,.

In this paper, k>0 and « €]0, 1[ are fixed numbers.
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2.2. Fractional Derivatives and Integrals

Definition 1. Let § €]0,1[ and f be a Lebesgue-integrable
function on the nontrivial compact interval [q;,q,]. The
Caputo fractional integral of order § and lower bound g, of
the function £ [19, 23, 25, 26, 28] is the function denoted by
I’ f and defined by

c0 ._L !
LSO =5 Ll (t

where I' denotes the classical gamma function.

7 f(9ds, te[qna], (8)

Remark 2. 1If the function f is continuous on the interval
[4,»9,), then the function €I° f is well defined and con-
tinuous on the entire interval [ql, q,], and we have

Iy f(a) = 0. ©)

Definition 2. Let f:[q,,q,] — C be an absolutely con-
tinuous function on [g;,q,]; then, the Caputo fractional
derivative of f of order § and lower bound ¢
[19, 23, 25, 26, 28] is the function denoted by CD5 f and
defined by

c 1 ! -5 g1
DO =g | -9 945 1< [ana)
(10)
Remark 3. Let f € C'([q;,9,]). We have for every
€ [q1,9,]
(I oD ) f (%) = £(x) = £ (a). (11)

If f(q,) =0, then the Caputo fractional integral of the
function f of order &,°1° > is also of class C! on the interval
[41>9,] and we have [19 23, 25, 26, 28]

(D13 ) = 1. 1)

2.3. Gevrey Classes

Definition 3. Let 1>0. The Gevrey class of index [ on
[9:1>9,], denoted by G, ([q;, q,]), is the set of all functions f of
class C* on [q;,4,] such that

”f(n) n+1nn(1+(1/l))’

where B> 0 is a constant (with the convention that 0° = 1).

<B
00, [‘11v‘12]

neN, (13)

Definition 4. 'The Gevrey class of bound g, and index / on
the interval [q;, q,], denoted by G, ; ([q;,4,]), is the set of all
functions f of class C! on [q;, g,] and of class C* on ]q,, g,]
such that the restriction f, . of f belongs to the Gevrey
class G;([g,q,]), for every q €]q,, 4, .
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2.4. The Property S(I)

Definition 5. A function ¢ defined on the set {g}
U lg1,g,]" (r €]0,7[) is said to satisfy the property S(I) on
the interval [q,,q,] if ¢y . 1is holomorphic on
(91921 9)1q,q,) 1s @ function of class C! on [91>95], and
there exists a constant 7, €10, 7[ such that for all D € 10, T o]
there exist N}, (D) € N* depending only on D, /, and ¢ such
that the inclusion

l, Nk l, N
o([a1-92]"""") < [a1,95]™" (14)

holds for every integer n> N, , (D). The number 7, is then
called a S(I)-threshold for the function ¢.

Remark 4. Let ¢ be a function verifying the property S (/).
Then,
¢([91-42]) < [91 4] (15)

On the other hand, it follows from (14) that we have for
every D €]0, Tq,[

Thence, we have

]Z,DNI_(P (D) pt1 ) ] ]Z,DNW (D) p

‘P([‘h’% 919 peN.

(17)

It follows that for every D €]0, Ty [ there exists E €]0, D[
such that
peN”. (18)

LE, LE,
o([a1-9.1"""") < (a1 @]

2.5. Statement of the Main Result. Our main result in this
paper is the following.

Theorem 1. Let A € C and ¢>0. Let a,b, and y be hol-
omorphic functions on [-1, 1], and O be an entire function.
We assume that the function a is not identically vanishing and
that there exist constants a,f3, >0 such that

D (2)| <apeP™, zecC (19)

LD,N,, (D) (p+1) LAN,, (D *
o([q0 )N P € [y, g, N PR, pe N
(16) and that y satisfies the property S (k). We also assume that the
following conditions are fulfilled:
a(-1)=b(-1)=0, (20)
L al (a)/eay 2% all o, -
= Bllog, 1) + 1A < In{ o2l 1’”), (21)
al (a) Bo
Nallco, 1,11 Ploo, [ 10 (aT (@)agollalles 1)) /B> (in (e (@VaBylallor -y )16o)] + NPloo, 117 <1 (22)
) al (a)
Nl oo, 1,1 "oo,[fln (o (@/agBolallos 1.1)/Boln (o (@/aoollallenr11)/B] < 2@ (23)
1V oo a1+ (24)

Then, the FFDE

(E): ‘DI y(t) =a()®(y (y(t) +b(t) (25)

has a solution u which belongs to the Gevrey class
Gy_1 ([-1,1]) and verifies the initial condition

(Ey) :y(-1)=A\ (26)

3. Proof of the Main Result

The proof of the theorem is subdivided in three steps.

Step 1. 'The localisation of the solutions of the equation:

2" 2%

3) : Por b A
(J):r= ol ( )II loo, 1,178 + =76l o, (-1,1 +IAI-

al (a)
(27)
The study of the variations of the function
oy2* .
H ittt e + r( )ubnm[ iy -
(28)

shows, under condition (21), that H is strictly decreasing on
[0,In (aT (@)/apBy2%llall oo, -1,11)/Bo] and strictly increasing
on [In(al (a)/epfy2*[lall s, (-1,1)/Bo> +o0[. But,



H(0) = Ilblloo[ Ly +IAI> 0, (29)

r( )"a"oo[ Lt ol (o)

. <ln(ocF (oc)/ocofi;)Z“||a||00,[1,1])>
0

———blloo, (1,17 + 1Al

F( )
B In(aT (a)/eaBy2*all o, -1.17) 0
Bo

(30)
Therefore, the equation () has on R* exactly two
solutions R, < R; and the following inequalities hold:

ln(ocr ((x)/(xoﬁoZa "a"oo, [
Po

0<R,< 1’U)<R1. (31)

Step 2. Proof of the existence of a solution u of the FFDE
(E) in C' ([~1, 1]) such that the initial condition (E,) holds.

Consider the operator T : C°([-1,1]) — C°([-1,1])
defined by the following formula:
T(f)(t) = CIfl (a. (Do foy)+b)(t)+A, te[-1,1].
(32)
We have for all f € A_, (R,)

1T Cf Moo, -1,1)
E @ o) Dy I

«

= al (o)

«

<
“al(a)

2% R 2¢
o (@ e + LBl o+ = R

2¢
||a||00[ 11]||(D f”oo[ Lt ol (a )||b||00[ L1] +[A]

24
Boll fllco,-1,1)

a oye +—7F b + A

” ”oo,[—l,l] 0 F( )” ”oo,[—l,l] | |

(33)
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Thence, the closed ball A, (R,) is stable by the operator
T. On the other hand, we have for all f, g € A, (R,)

IT(f) =T (Ploo,j-1,1)
Qe / (34)
Sm"a"oo,[—l,l]"q) ”oo,[—Ro,Rn]”f - g"oo,[—l,ll'

Since 0 <R, < (In (al (a)/ayBy2%allo,[-1,11)/Bo)> it fol-
lows from condition (23) that

2(1
(xr((x)"alloo’[_l’llu(bl"OO,[*RO,RO] < ]. (35)

Thence, T has, in A, (R,), a unique fixed point u.
Consider the sequence of functions ( f,),cy defined on
[-1,1] by the following formula:

fu =T (fo),

where f is the null function. Direct computations show that
the functions f, belonging to A, (R,) are of class C' on
[-1,1] and verify the following inequality:

nenN, (36)

1foor = Fullo < il @ meNe 37
where
2% .
Q:= m”a”oo,[—l,u“q’ oo [-o 0] (38)
Let us set for each neN,F, :=f,. - f, Since

Q € [0, 1], it follows that the function series ) F,, is uni-
formly convergent on [-1,1] to a function v € A, (R,)
which is a fixed point of the operator T. It follows that v = u.
Consequently, the function series ) F, is uniformly con-
vergent on [-1,1] to the function ue C°([-1, 1]).

On the other hand, we have for all x € ] - 1,1] and
ne N*:

F1,1+1(x)
a—1
_%J (1-t)"a(-1+t(x+1)- (q)(fn(l//(—l+t(x+1))))—CD(fn1(1//(—1+t(x+1))))>dt
(x+1)* (! l
T(a) JO (1-t)" ta (-1+t(x+1))- (d)(fn(y/(—l +t(x+1) - O(fq (w(-1+t(x+ 1)))))dt
(x+1)* (! 1 , ,
T(a) .[o (1-""ta(-1+t(x+ 1))y (-1 +t(x+ 1) (O (f,(y(-1+t(x+1)))) -

o1 +t(x+ DN+ O (f (w(-1+t(x+ 1)) (f(y(-1+t(x+1))) -

O (fuy (W(=1+t(x+ 1))

Fra(W(=1+(x+1)))))dt
(39)
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Since a(-1) = 0, it follows that

"F',H'l”oo,[—l,l]

20‘ ! !
Sm"“ ||oo,[_1,1]||q’ "oo,[—RO,RO]"FHHOO,[—I,I]

20(
+ m”“' “oo,[—l,l] o], [-Ry.R, ] ||Fn||oo,[_1,u
20(

+ m”‘/’, “oo,[fl,l] lalloo, (1.1 ||q>” ”oo [*RO,RO]”fV,l”oo,[—l,l] ”F'l"oo,[—l,l]
(40)

20{
+ (x(a + l)r(a)”‘// “oo,[—l,l]”a”oo,[fl,l] “q)’"oo,[—RU,RO]"FV,l“oo,[—l,l]

< ral® loo. ool hoo fro 1 1o 0@

20!
al' ()
b2 a0 [ T o
ol () 00,[-1,1] 00, [Ry,Ry | I/ 7ll o, [-1,1] IV Tlco, [-1,1]

«

2
+ ol (@) ((x)”a”oo,[—l,l] ”(Dl "00 [~RosR,] "FV:”oo,[—l,l]'

To achieve the proof of this step we need the following ~ Proof. We have for all x € ] -1,1] and n e N*

result.

Proposition 1. The sequence (||f,'l||00’[_1)1])n€N* is bounded.

a—1
o (x) = % .[1 (1-9)*". (a(-1+s(x+1) - O(f,(y(-1+s(x+1))) +b(-1+s(x+1)))ds

();2—“1))“ J; (1-9)*"'s. (@ (-1+s(x+1)- O(f,(y(-1+s(x+ 1)) +b (-1 +s(x+1)))ds

( I ((X)) J’l ( ) IS ( ( )) ’ ’,( ( 1))1,(fn(‘/’( 1 S(X 1)))) f;/,(VJ( 1 S(x + 1)))d$
0

It follows from assumption (20) that Consequently, the following inequality holds for each
neN”

2“
||fr,z+1"00,[71,1] Sm <||“,||oo,[—1,1]||q)”oo, [~Ro:Ro] +||b/ ”oo,[—l,l])
2a
||fr[+1l|00,[71,1] Sm <||“’||oo,[—1,1]"q)”00> [-RoR] T "b,“oo,[q,l])

o«

+ m"a"m,[fl,l] : “W’ "OO,[—l,l]
+ Qlfalleo 101

’ “q),"oo,[—Ro)Ro]“ffrl"oo,[—l,l]' (44)
(42)
Since Qe [0,1[, it follows that the sequence

(1 falloo. - 1.1 nen: is bounded.
The proof of the proposition is complete.

Now, we set

But, according to assumption (24) and (35) we have
2!X
ala+ 1IN («)

lalloo, 1Y oo, o1y “q),"oo,[—RU,RO] <Q<lL 0

(43)



20( ! !
R A v X N

o
+(xr((x)"a"oo,[l,1]"q)” “oo,[—RO,RO] (45)

. su}Z "fr,z”oo,[—l,l])'
neN

Then, we can write

"F',Hl”oo,[fl,l] <6Q" + Q"FV,l"oo,[—l,l]’ neN". (46)

Direct computations show then that
“Ffllﬂnoo,[—l,l] <onQ" +||F1'||oo,[_1,1]Q"> neN".  (47)
Since Q € [0, 1[, it follows that the function series Y’ E, is

uniformly convergent on [-1, 1]. Thence, the function u is of
class C! on [-1,1] and satisfies the following relation:

T (@a(@ouoy)+b)+A=u. (48)

Consequently, according to assumption (20), we can
write for all t € [-1,1]

‘DX u(t) = D [T, (a.(® o u o y) +b)] (t)

(49)

=a (D)@ (u(y (1)) +b(@).
So, u is a solution of the FFDE (E) which belongs to
C'([-1,1]) and fulfills the relation u(-1) = A. O

Step 3. Proof that u belongs to the Gevrey class
Gy ([-1,1]).
Since the function A defined on [0, min(1,0)[ by
A : [0, min(1,0)[ — R,

. ||a||oo,[—1,1]"q)’”oo,[—Ro,Ro]’
0+— —— max ’

al' ()
||a||oo,[,171]||®||00, [Ro.R, ] +||b||00)[,1,1]

(2 + S)(x ||a"00)[*1v1]s||q),||00, [*RO,RO]S’

>0
$ — al' ()

||a||00)[,1’1]s ||(D||00, [_RO‘RO]S + ||b||00,[71,1]s
(50)

is continuous on [0, min(1,0)[ and verifies by virtue of
assumptions (22) and (23), the inequality A (0) < 1. It follows
that there exists s; €]0, min(1,0, TW)[ such that

A([0,5,]) c [0, 1], (51)

where 7, is a §(I)-threshold of y. Let d be an arbitrary but
fixed element of ]-1,1[. Thanks to remark 4, there exists
s, €]0,s;[ such that the functions a and b are both hol-
omorphic on [-1,1]% and the following condition holds:
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y([-1L, 1057 € [-1,1%%", neN". (52)

Consider the sequence of functions (w, : [-1, 1]
— C),,cn+> Where

w,(2)=0, forall ze€ [_1,1]’“52’1’
(53)
a rl
W (2) = (Zrzj)) [Cams
(a(—1+s(z+1))®(wn(1//(—1+s(z+1))))+)ds+)t,
+b(-1+s(z+1))
(54)

for each n € N* and z € [-1,1]%". Then, direct compu-
tations, based on (52), show that the function w,, is for every
n € N* holomorphic on [-1,1]%%",

Proposition 2. The inclusion o, ([-1, 112" ¢ [-R,,
Ry ks, holds for every n € N*.

Proof. We denote the last inclusion by P (n). We denote for
every z € C by z the closest point of [-1, 1] to z. It is obvious
that P (1) is true. Assume for a certain n € N* that P(p) is
true for every p € {l,...,n}. Since the function w,,, is
holomorphic on [-1, 152" we have then for each
ze[-1, 1]k,sz,n+1

0(@p41 (2), [-Ro, Ry])

< |wn+1 (Z) — Wy (2)|

1 .
S@Lj'z—(l Ha (D@ (@, (y (O))]1d¢]
1 -
+WJ;,Z'Z‘(' Ib({)1.1d¢]

(2+5,)"
< o (@) (IIaIIOO’[_M]k,sz,nIIGDIIOO, [RoRo,.,., +"b”00,[_1)1]k)52v")

° Q(Z) [_1) 1])

<A(sy)s, (n+ 1)~

<s,(n+ 1)7(1”{).

(55)

Thence, the assertion P(n+ 1) is true. Consequently,
P (n) is true for all n € N*.

The proof of the proposition is then complete. O

By virtue of the Proposition 2, we have for all n € N*\{1}
and z € [-1, 1]k
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lwn+1 (Z) - wy, (Z)|

|z +1]¢
- INa)

+s(z+1)) - @ (w,_; (y(-1+s(z+ 1))))|ds

(2+s,)"
< W"a"m’[_l’llk,szgﬁ-l

|

<A(s,)|

Jl 11-s*Ma(-1+s(z+ 1) |®(w,(y(-1
0

o S

Wy, = (wn—ll [—l,l]k’sz’") 00, [~1,1]552"

w, — (wn—ll [71’1]k,52.n> oo [—1,1 ]2

(56)
It follows that

Wy — (wnl [_l)llk,sz.nﬂ )

”“’2 ~(@yap2)
<

00,[-1,1]522 n *
< A(sy)’, neN"\{1}
A(sy) (&2)

(57)

||w2 - (wll [71)1];(,3-2,,,)

Let us set ), := w,; and denote, for all n € N*\{1}, by Q,,
the function

Qn . [_1’ 1]k>sz,n+1 N C,

zZ— w,,, (2) - w,(2).

(58)

Then, the function Q,, is holomorphic on [-1, 1]fsn 1

for each n € N*. Furthermore, the following relations hold
for every n € N*\{1} :

”‘"2 _(“’u[—1,11’“2’1)"00,[_1,1]k.52,1
A(sy)

(A(s2))"

"Qn"oo,[71,1]"’52'”+l <

in[d,l] = fn—l'
(59)

Since A(s,) € [0, 1], it follows then from (59) that the
function series )’ Q,,(_1 ) is uniformly convergent on [~1, 1]
to the function u. However, we know, according to relation
(4) of Remark 1, that the following inclusion hold:

”0””00, [CRYP <
Quan = fo1>

The relations (61) entail, thanks to the main result of
[41], that u;;, belongs to G, ([d,1]), for each d e
] —1,1[. Thence, since u is of class C! on [-1, 1], it follows
that u belongs to the Gevrey class G, _, ([-1,1]).

The proof of the main result is then complete. O

4. Examples

To obtain examples illustrating our main result, we need first
to prove the following proposition.

Proposition 3. The function
Z:C—C,
(62)

z—2e"2 g

satisfies the property S(I) for every I € ]0,1].
Proof. Letl¢€]0,1],e €]0,1] and z € [-1,1]°. We have
Z(z) =27 -1, (63)

It follows that
Re(Z(z)+1)>0. (64)

A(sy)

[d 1)k, € [F1, 157, neN”. (60)
It follows then that
00, [~1,1]%22 n "
(A(sy))", meN*\{1},
(61)

n e N*\{1}.

We consider then the principal argument arg (< (z) + 1)
of Z(z) + 1 which satisfies the following estimates:

larg (£ (z) + 1)| = |Im2(z)| < (1 +§>tan €. (65)

But, direct computations prove that

tan € — (¢ + (£2/3))

0<
83

4
<tanl — 5 (66)

Thence, we have

€ £ & 4\ 5
<1 +—>tans§(1 +—> s+—+<tan1 ——)s
2 2 3 3

(67)
3 2
Ss+<—tan 1- 1)8 .
2
It follows that
3 2
arg(fZ(z)+1)Se+(Etan1—l)s. (68)

On the other hand, we have



|Z (2) + 1] = 2¢"eE@D"?

<26.9/2 (69)
But, we know that
1 e &
20 =2+e+e Y ——
¢ ere ZO (n+2)12n+2
(70)
3\ 2
S2+s+(\/_ _§>8 .
It follows that
3
| L (z) + 1] <2 +e+( Ve —=)e (71)
2

We derive, from the estimates (68) and (71), the fol-
lowing inclusion:

Z([-1L,1]) ¢ [-1,1]5%, (72)

where

3 3
:=max|(—tanl -1, - =
¢ (2 ve 2)
(73)
3
=—tanl1-1>0.
2

Let n € N* and A €]0, 1/ul[. We have
An+ 1)71/1 + yAz (n+ 1)72/1 — An M

Ui 1—1/l nl/l
— An (1+_) A
( n) T ) ) (74)

1 -1/1 A
sAn”l(<1+—> +ﬂ——1).
n n

But, we have

-1/ —
<1+1>1 +&_1 L(l/‘ul)) (75)

n n n—+00 n

It follows that there exists an integer N 4; > 1 such that
the following inequality holds for every integer n>N 4, :

An+ 1)+ puA’(n+ 1) <an, (76)
Consequently, we have

-1/1 -
3’( [-1,1]40D ”) cl-LU*", axN,, (77

that is,
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2(-1,1") ¢ -1, n2N g, (78)

It follows that the function satisfies the property S(I).
The proof of the proposition is then complete. O

Recall that the following estimate holds for every z € C

max ([sin (2)], [cos (2)]) <. (79)

It means that the functions @, :=sin and O, := cos
satisty the estimates:

|0 (2)|<ae™, zecC j=1,2 (80)

with &y = 3, = L.

Example 1. Let C € C and y €]-1, 1[. We assume that
r 1-
ol (a) |Y|). (81)

0<ICl < min<2a+le(2”‘/aI‘(a))y|+l’ 5

Consider the FFDE
(El) 2D f(x)=C(x+ l)sin(f(Ze("_U/2 - 1)) +ysin(x+1)
(82)
with the initial condition
(E}): f(-1=0. (83)
Consider then the following entire functions:
D, : z+—> sin(z),
a,:z—C(x+1), (84)
b, :z+—ysin(z + 1).

It is clear that a, is not identically vanishing and that
a, (-1) = b, (1) = 0. Furthermore, we have

i
"al "00, [-1,1] ”CDI "00) [7 In (ocl"(tx)/ocoﬁo ”“1 "00'[71)1])//30,1n (otl"(oc)/otoﬁo ||ul ||OO)[71,1])/[30]

al ()

<2|Cl< ,
20(

20 2
m“blum,[—m + [01= mlyl
1 al ()
n e2a+1|c|
_ 1n(ocF(oc)/e%/)’o2“||“1||oo,[71,11)
Bo '
(85)
We also have
(86)

"al ”OO’[’LI]”(DI ”oo, [—ln (ocl"(ot)/aoﬁollm ||w,[,1,1])/ﬂ0,ln (rxr(a)/txuﬁoual ||m,[7l)l])/ﬁo] * “bl "00,[*1,1]

<2(Cl + [yl < 1.
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Consequently, it follows from the main result that the
problem (E!) - (E%) has a solution which belongs to the
Gevrey class G, _; ([~1,1]).

Example 2. Let #>0 and A € C. We assume that
r
q<min<a—w 1). (87)

2+’
Consider the FFDE
(Ez) :°DY, f(x) =7 sin(x + l)COS(f(ze(x—l)/z B 1))
(88)

with the initial condition
(ED): f(-1) = (89)
Consider then the following functions:
®, 1 z+—— cosz,
a,:z+——nsin(z + 1), (90)
b, :z+—0.
It is clear that a, is not identically vanishing and that

a,(-1) = b, (~1) = 0. Furthermore, we have the following
inequalities:

ln(ocT(06)/@%/302“||“2||oo,[—1,1])

2¢ al ()
el =1 ) <

Bo ’

al' («) (91)

||a2||00’[_1'1]||®2,“oo, [—(ln (ocl"(a)/aoﬁoual|Im,[,1_1])/ﬁn,)(ln (lxr(lx)/lxoﬁ()"ul"m)[,l,ll)/ﬁo)] SH< e

o2l ol o (aronpint)s). o (arc@rmoil )] PPobonscn =<1

Consequently, it follows from the main result that the
problem (E?) - (E?) has a solution which belongs to the
Gevrey class G, _; ([-1,1]).
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