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We study the global existence and asymptotic behavior of the solutions for two-fluid compressible isentropic Euler-Maxwell
equations by the Fourier transform and energy method. We discuss the case when the pressure for two fluids is not identical, and
we also add friction between the two fluids. In addition, we discuss the rates of decay of L? — L9 norms for a linear system.

Moreover, we use the result for L? — L9 estimates to prove the decay rates for the nonlinear systems.

1. Introduction

We consider the Cauchy problem for the first-order nonlinear
two-fluid compressible isentropic Euler-Maxwell equations in
three dimensions. In the following system of equations, the first
equation is the conservation of the mass. The second equation

[ 0,n, +V.(n,u,) =0,

1

GE-VXxB=nu_-nu,

0,B+VXE=0,
VE=n,-n,
| V.B=0,

where n, =n, (t,x) € R? denotes the density of electrons

(n_) and ions (n,), u, = u, (t,x) € R* denotes the velocity

is conservation of the momentum, to which we added frictional
damping «, (4, — u;) besides the damping v,u,. Then, the
compressible two-fluid Euler-Maxwell equations can be
written as

Opuy +u, Vu, + . Vp,(n,) = +(E+u, xB)—v,u, —a, (u, —u;),
+

(1)

of electrons (u_) and ions (u,), E = E(t, x) € R® denotes
the electric field, and B= B(t,x) € R* denotes the
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magnetic field for t >0, x € R?. The initial data are given
by

[, us, B, B]| Zy = [140> thags Bgs Bo],  x € R, (2)
with the compatibility conditions
V.E, =n,y,—n_gy,
V.B, =0, (3)

x € R%.

The Euler-Maxwell system (1) is a symmetrizable hy-
perbolic system for n>0, and the initial value problems (1)
and (2) have a local smooth solution when the initial data are
smooth. The global existence of smooth solutions to the
initial boundary value problem has been given in [1] by the
compensated compactness method. The authors in [2, 3]
studied the existence of global smooth solutions for the
three-dimensional isentropic Euler-Maxwell system with
small amplitude, and the periodic problem was discussed by
Uedaet al. [4]. For the special case where the solution to the
Euler-Maxwell equation has asymptotic limits with small
parameters, see [5, 6]. The special case of the diffusive re-
laxation limit of the three-dimensional nonisentropic
Euler-Maxwell equation is considered in [7, 8]. Two

International Journal of Differential Equations

hierarchies of models of the ionospheric plasma for two-
fluid Euler-Maxwell equations were presented in [9]. The
Fourier transform method was considered by Duan [2, 10]
and Kawashima and Ueda [11]. Jerome [12] adapted the
classical semigroup-resolvent approach of Kato [13] to the
Cauchy problem in R* and established a local smooth so-
lution. In [2], Duan considered the case when the pressure
function p, (-) depend only on density, having the expres-
sion p, (n,) = A,n', with constants A, = A_>0 and the
adiabatic exponent y > 1.

In this paper, we consider the global existence of smooth
solutions for the two-fluid compressible isentropic
Euler-Maxwell equation extending the results of Duan [2].
In contrast to Duan, we suppose A, # A_, and we add the
friction a, (u, — u;) where o, = (a/n,)>0,a_ = (a/n_) >0,
and « is a constant.

Theorem 1. Let N >4 and (3) hold. There are &, >0and C,
such that if

{720 = 1. 00 Eos By ][y < S0» (4)

where ||.||y is the HN norm, then the Cauchy problems (1) and
(2) of the Euler-Maxwell system admit a unique global so-
lution [n, (t, x),u, (t,x), E(t, x), B(t, x)] with

[, (t,x) = Lu, (t, ), E(t, x), B(t, x)] € C([0,00); HY(R?)) nLip( [0, 00); H*'(R?)),

su(})) || [n, (t) — L, u, (t), E(t), B(t)] ||N < Co” (1,0 — 1, u,0 Ep> By HN

We obtain the decay rates of smooth solutions by the
Fourier transform. The main results are stated as follows.

Theorem 2. There are 8, >0and C, such that if
{720 = L tts0 Eq» Bol |15+ [1120 = 1. 1120 Eo» Bl || < 61,
(6)

where ||.|l;5 is the H norm, then the solution [n, (t,x),
u, (t,x), E(t, x), B(t, x)] satisfies that for any t >0,

. (B)] < Cy (1 + 07, (7)
e (0, E@®)], <Cy (1 4+ )" 2C, (8)
IB(t)lpa <C, (1 + £)” 21032, (9)

with 2 <q < oo. Furthermore,

[U. (#) = G(#) * U, < Cers (Vo) (1 +1) 2P (10)
where G (t,x) is Green’s matrix for the linearized system.

The proof of Theorem 1 and Theorem 2 is based on the
energy method and the Fourier transform, as in [2]. There
are three key steps: the first key step is the a priori estimate to
establish the global solution and has the form

(5)

Ey (V (1) + jo Dy (V(s)ds<Ey(Ve), (D)

where V (t) is the perturbation of solution (1) and
Ey (and @y (.) denote the energy functional and energy
dissipation rate functional as in [2]. This differs from [4, 10]
because the two-fluid system has a more complex structure
than one fluid, so obtaining energy estimates for the density,
velocity, and electric magnetic fields for Euler-Maxwell
require a different strategy. The time decay property of
solutions to the nonlinear system requires the construction
of functionals, capturing the optimal energy dissipation rate.
The second key step is linearizing the homogeneous form of
(1) and using the Fourier transform to obtain the L? — L4
time decay rate and the explicit representation of the so-
lution. The third step is combining the previous two steps
and applying the Fourier transform to obtain the time decay
rate of the solution to the reformulated nonlinear system to
finish the proof of Theorem 1. Thus, the solutions can be
represented by the solution of the linearized system and the
refined energy estimates using Duhamel’s principle.

We introduce some notations that we will use later in
this paper. For any integer N >0, HNand H'W denote the
Sobolev space HY (R?) and the Nt _order homogeneous
Sobolev space, respectively. Set L2 = H’. The norm of HY is
denoted by |- ||y with |-l =" Il,- The inner product in
L*(R?) is denoted by ¢-,-), i.e.,



International Journal of Differential Equations

(frg) = JRSf(x)g(x)dx, f=f(x),9=g(x) e L*(R).
(12)

We denote 0% = 0710207 = 0,'0,°05" for the multi-in-
dex a = [a, ap, a3], anci the length ofoc is ol = a; + a, + a5.
In addition, C and A denote some positive constants, where
both C and A may take different values in different places.

We organize this paper as follows. In Section 2, we
reformulate the Cauchy problem and consider the proof of
global existence and uniqueness of solutions. In Section 3,
we discuss the time rate of decay for linearized systems, and
we obtain the linearized system for 9 x 9. Finally, in Section
4, we discuss the time decay rate of solutions of the nonlinear
system (15) and complete the proof of Theorems and 2.

2. Global Solution for the Nonlinear System

2.1. Reformulation of the Problem. Denote by [n,,u,,E,B] a
smooth solution to system (1) with initial data (2) satistying
(3). Let

vE:Q;LMa)+j%J+[Ma)+J%J,
V.B=0,

£>0,

x € R,

with the initial data
Vleg = Vo = 040, 40o Eps By],  x € R>. (16)

Here, we have used the notation V, = [0, 0., Eg> By)

y-1 1
o0v, + v, Vo, + \/A+( o, + 1>V0+ = i(
T\2VA, ANV

for the special case where [n,, 1, E,, By] is substituted into
(13). Note that V, satisfies

3
. 2 ¢ (y-1)/2
o, (t,x) = \[A, . [ni<w,x)] -1,
7 7)
v, =—u,| —x|
TP \WVY
(13)
- 1 <t )
E=—E|l—x|,
Y Y
- 1 <t )
B=—Bl—x
| VP OAWVY
Define V = [o,,v,, E, B] and
2/(y-1)
—(r! _ % 14
¢«n)”_(2vﬁla++l) T L. (14)
Note that V satisfies
- ~ 1 1
—E+vi><B>—inm——yoci(vi—mr),
0,)+—=|v,,
" f[‘b ) ﬁ] '

(15)
= _ 1 99 9+0
V'EO_\/?[(/)( O)+\/A—:|+ |:¢(0+0)+\/A—+:|’
V.B, =0,
x € R3.

(17)



Suppose U = [n,,u,, E, B] is a smooth solution to the
initial value problem of the original Cauchy problems (1)
and (2), which satisfy (3). Now, we introduce another
transformation by setting p, (t,x) =n,(t,x) -1, then
U = [p,,u,, E, B] satisfies

(01, + Vou, = =V.(p,u.),

ou, +u,¥E+ A, yVp, = —u,.Vu,

~Ay[(pe + 1) 7 = 1]V,

& (uy % B) -t (u, - 1),
) O,E-VXB-u_+u,=p_u_—p,u,, (18)
0,B+VxE=0,
VE=p,-p.,
V.B=0,
t>0,

| x € R3,

{ exn (V1) =IV O3 + Ky Y0y <n-1 (€00, V0“0, ) +(0%v_, V0" 0_))
+k,
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with the initial data

Uly = Uy = [pags thar g By],  x € R, (19)
satisfying the compatibility condition
V.Ey=p,o—pP-or V.By=0, (20)

where p,, =n,,— L.

We will assume N >4 is an integer. In addition to
V = [o,,v,, E, B], define the full instant energy functional
Ey (V(#)) and the high-order instant energy functional
E];\, (V (t)) via

Y (@ (v, -v. ), VOEy -k, ¥ (VxdEdE), (21)
la] < N-1 la| < N-2
8’;\, V(1)) = ||VV(1.‘)||%\,_1 +k, | |Z ((8“U+,VB“0+> +{0%v_, Va“m))
1<|a|<N-1
- - 22
tky, Y (%(v,-v ), VOEy -k, Y (Vx0°E 0B, (22)
1<|a|<N-1 1<|al < N-2

where 0 <k; <k, < k; <1 are constants to be chosen later
in the proof such that k;, (i =1,2,3) are small enough
compared to 1 and satisfy

En (V (1) ~ " [0'1’ Uy E, B] ”if’

h o (23)
& (V (D) ~ |V[os v, B B]| -

{QZN V) =|[vev ]y +[V[on o ]|, +IVIE BllR_, +IEI* +]o, — |

{2k 7 @) =19 100 Wy 19 00 I+ VB  +IVEE 90, =)

Proposition 1. Suppose initial data V= [0, V.4, Eq, By]
satisfies (17). Then, there exist & (-) and D, (-) having the
forms (21) and (24), respectively, such that if € (V) >0 s
sufficiently small, the Cauchy problems (15) and (16) admit
a unique, global, nonzero solution V = [o,,v,,E, B,
satisfying

Define the dissipation rates 9, (V (¢)) and 9}1'\,(V(t))
by

2
>

(24)

(25)

V € C([0,00); HY(R*)) nLip( [0, c0); HY"'(R?)),
(26)

& (V (D) +1 JO D (V()ds < &y (V). (27)

for any t>0.
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Remark 1. The solutions obtained in Proposition 1 indeed
represent the decay rates in time under some regularity and

integrability =~ conditions on initial data
Vo = 10,0 Vo> Ep» Byl and set
€n (Vo) =[Voll, + [ [vs0- Eor Bo] |- (28)

for the integer m >4.

Remark 2. Note that the existence result in Theorem 1
follows from Proposition 1, the derivation of rates of (7) and
(9) in Theorem 1, and Proposition 2. The proof of Propo-
sition 2 is analogous to that of Lemma 5.2 in [10].

dt

Proof. Performing the energy estimate, we obtain the fol-
lowing results:

Step 1. We apply 0" to the first equation of (15) and then
multiply that equation by 0% ,; also, we apply 0 to the

L (V1) + 12y (V (1) <C[&y (V)" + &y (V (1) Dy (V (1)

2.2. A Priori Estimates. In this section, we obtain uniform-
in-time a priori estimates for smooth solutions to the
Cauchy problems (15) and (16) by using the classical energy
method.

Theorem 3. Let 0<T<oco be given. Suppose that
= [o,,v,,E,B] € C([0,T); HY (R?)) is smooth, that o
satisfies

sup [lo. ()] <1, (29)
0<t<T

and that V solves system (15) for t € (0,T). Then, there exist

&y () and Dy () having the forms (21) and (24) such that for
all 0<t<T,

(30)

second equation of (15) and then multiply that equation
by 0%v,; after many steps, we get

1d 1
2 e VIR + oo R <OV I (1o I+ 19000 ), (31)
Step 2. We rewrite the first and second equations of
(15) by putting the linear terms on the left-hand
sides and the nonlinear terms on the right-hand
sides:
y-1
9,0, + A,V -v, Vo, -+—o0a,V-v, = f], (32)
-1
3,0 +VAV-v_=-v_-Vo_ -7 5oV v = fi> (33)
1 v
ov, + A, Vo, —v = (v, —v_)
A R G
-v, - Vu, —YT0+VG+ +v,xB= f;,
1 v a
o,v_++AVo_+—E+—v_+—(v_-v,)
VYWY VY ! (35)
:—v,~Vv,—y; o.Vo_-v_xB:=f,.

Let |a| <N —1. If we apply 0° to (34), multiply by
V0”0, integrate in x, and then combine the result with

an application of 0“ to (35) after which we multiply by
Vo%o_ and integrate in x, then we get
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d_ine 2 o o |
—& (V) +/1( Ve, o |y, +l——=-—= )
N1 IvI - VA, VA |y (36)
2 =112 2
<C[[vsv ]y +Clllow 0m v v Bl | V]ow 0 v v ] s
where Step 3. We subtract equation (35) from equation (33) to
A get
eV = ) (@, V3%, +(3", Vo0 )).
la] <N-1
(37)
3,(v, - v.) + (A, Vo, - VA Vo) jE = (v, v,) + (v, ;)
Y
-1 -1 - -
- YTB“ (0,Vo,) + YTB“ (0.Vo_)-0%(v, xB)—0"(v_xB)  (38)
La"‘(vv v_u_) la"‘[oc (v,-v)—a_(v_-v,)]
W +Y4+ =Y y +\Y+ - -\Y- +/1
Now, we apply 0 to (38), multiply by 0°E, integrate by
parts in x, and replace 0°E with the third equation of
(16). Then, we have
d int 112 2 2 ~
3N (V) + MEly < Cllve>v ]|y +Cllowo ]y + Clllvss v ]| IVBIy-» -
39

+C|loy, 0 0,0, Bl |Vow 0 v v ][5

where

BR 0= Y @ (o, -0)0B) foral<N -1

llal<N-1
(40)

Step 4. We apply 0" to the third equation of (15),
multiply by 0°V x B, integrate by parts in x, and use the
relation

[0°0.:B|| =[0A™ 'V x (V x 8*B)| < ||V x "B

)
for each 1<i<3. Then, we obtain

d in 5 =
388 (V) + MBI, <C v, v B[R,

+Cllo o ]V ool
(42)

where
g () =- Y (Vx0'Ed"B) forallla]<N -2,

la] < N-2
(43)

Step 5. Utilizing steps (1)-(4) above, we can now prove
(30). Define

3 .
Ex (V) =IVV O+ Y XV @), (44)

i=1

and note that constants 0 <k; <k, <k, <1 are to be de-
termined. We observe that if 0<k; <1 for i=1,2,3, are
sufficiently small, then & (V) ~ ||V||§\, holds. Furthermore,
by letting 0 < k; < k, < k; < 1 be sufficiently small, taking
k3? < ks, and taking the sum of (31), k;x (36), k,x (42), and
k,x (42), we find that there exists A >0and C >0 such that
(30) is satisfied:
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1d Vi d o o o o
3 E"Vllfv + \/—‘)_/" [v+,v,]||i, + klalagN(@ v,,Vd%a,) +<0%v_,Vo“a_))
2 o o | d
+ kM Ve, o ]| +—==-—=| |+k~ (0% (v, —v_),0"E)
1 (" [ ]"N VA, VA N) 2dt|a|gzz:v71 ( )
~ d — = ~
+hMElN, ~ksy. Y. (Vx3“E,0"B) + kyAIVBIy_,
de lal < N-2
(45)
<CVIy([ o +[VIo0 o vnv ], ) + kiClLono ]

+k,C|| [0y, 0, v, 0L, B3| VIowm 0m v v ][5y

[ e I | s [T -

+ k2C” [0,,0_,v,,v_,B] ”i,"V [0,,0_,v,,0_] ”iu

+ksCll[ v Bl + ksCllo o 19 [0 v
If we now let then

Ivi<&"”,
||[U+,G,,v+,v,,1~3]”§\, =& (46)
IVlo,ov., U—]“il—l =Dy
4 [||V||i, +ky Yo <n (0%, VO%0, ) +<0"v_, V00 )) +k, Z 0% (v, —v_),0"E) — k3i Z (V x 0"E, B“B>]
dt lao SN-1 dt | R
+ 25 [y v || + KAV 0w 0], + KAIVBIZ , + KAIVEIR
VY
g z =112 2
+kA ﬁ - ﬁ N < C[ ||V||N||V [0, 0., v,,0 ] ”5\1_1 + le" [0.,0_,v,,v_,B] ”N"V [0,,0.,v,,v ] ”N—l]'
(47)
It follows that
d v, ~
FENV @)+ 7?” [0, 0 1% + KAV [0,0 0], + KsAIVBIY,
(48)

2
o, o

VA, VA |y

<c|(viy +[¥ o vn v ], )IVIowon v vl |

+ kz)lIIVEIIi,_2 + AMEI + kA
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Thus,
d
SEN V() +ADy (V (1) <C[Ex (V(0)" + 8y (V ()] Dy (V (1), (49)
Ul,.g = Uy = [poo> thegr Eg» By,  x € R, (52)
and this concludes the proof. O = 0= [Psorttz00 Eo: Bo]

2.3. Proof of Global Existence. We consider the global ex-
istence of the smooth solution to the isentropic
Euler-Maxwell system for a quasilinear symmetric hyper-
bolic system (15). Therefore, we combine those a priori
estimates with the local existence of solutions to extend the
local solution up to infinite time by using the continuity of
En (V(1)).

Lemma 1 (local existence of smooth solution, see
(2, 13, 14]). Assume V,, € HN (R?) satisfies (17). Then, there
exists T, >0 such that the Cauchy problems (15) and (16)
admit a unique solution on [0,T) with

Ve C([0,T,); HY(R)) nLip( [0, To); HY'(R?)).
(50)

Proof of Proposition. 1. Since (15) is a quasilinear symmetric
hyperbolic system, the global existence of smooth solutions
follows from the local existence result in Lemma 1 (see also
Section 16 of [14]). In addition, the a priori estimate (30) in
Theorem 3 and the continuity argument show that
&y (V(t)) is bounded uniformly in time under the as-
sumption that &y (V,) >0 is sufficiently small. Therefore,
global solutions satisfying (26) and (27) exist. This concludes
the proof of Proposition 1. O

3. Linearized Homogeneous System

3.1. Linearized Equations. To obtain the time decay rates of a
solution to the nonlinear system (15) or (18), we consider the
linearized homogeneous equations of system (18):

op, +V-u, =0,

ou, +u, +a,u, —a,u-¥E+ A, yVp, =0,
0,E-VXB-u_+u, =0,

3,B+V xE =0,

] (51)
VE=p,-p.,

V.B=0,

t>0,

| x € R3,

with the given initial data

which satisfies the compatibility conditions
V.Ey=p.o—pg V.By=0,xeR’. (53)

Throughout this section, we let U = [p,,u,, E, B] be the
solution to system (51). Moreover, in this section, we in-

troduce some notation about Fourier transform
f: R — R, defined by
P = e fx,
R3
(54)

3
x-k:= ijk]-, 4k € R?,
=1

where i is the complex number, and we use the energy
method to the initial value problems (51) and (53) in Fourier
space to show that there is a time-frequency Lyapunov
inequality, which leads to the pointwise time-frequency
upper-bound of the solution.

We will use the energy method to the initial value
problems (51) and (53) in the Fourier transform to show that
there is a time-frequency Lyapunov functional which is
equivalent to |U (¢, k)|?> and moreover its dissipation rate can
be represented by itself.

3.2. Representation of  Solution. Denote by
U = [p,,u,, E, B] = ''U, the explicit solution to the Cauchy
problems (51) and (52), satisfying (53). In this section, we
study the representation of U.

First, we take the time derivative for the first equation
and the divergence of the second equation of system (51) and
substitute V- E = p, —p_. So,

Oyps + 0,V - uy =0, (55)
V-ou, +V-u, +a, V- (u, —u;)¥V-E+ A, yAp, = 0.
(56)
By combining the two equations (55) and (56), we have
attpi + (1 + ‘xi)atpir - ‘X:ratpx * (P+ _P—) - AiyApi =0,

(57)
with the initial data given by
+(py =P )0 = £(pyo—pPo) = £ V-E,
{ (s =P )lizo (Pro = P-0) 0 (58)
atPiIt:o:_v'“w
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Then, taking the Fourier transform of the second-order
ODE (57) with (58), we get

O0ups + (1 +a.)0p, — a.0,p; (P, —P) + Acylk’p, = 0,
(P =P )| 1=0= % (Pro —Po) = +ik-Ey,
0P l t=0 = —ik - Uyq.

(59)
Now, set
X, = pw
X, =X = at13+’
X3=p_, (60)
X, = X3 =0,p_,
T
X =[xy, Xy, X3, X4]
Then,
x, = A(k)x, (61)
where
0 1 0 0
“1-AykP? -1+« 1 a
Ak) = +Y ( +) +
0 0 0 1
1 o -1-A_ylkl* -(1+a.)
(62)

Note that the eigenvector of the matrix A (k) is given by

[ (1+ A pkP)+ (1 +a )+

a () = [(1+ A plklP) + (1 +a)d+1%]A )
I+a )

i (1+a_A)A ]
r 1+a,ld ]
(1+a, M)A
(1+ A k) + (1 +a, A+ 17

L[(1+ Aplel) + (1 +a,)) + 472

(63)

a,(A) =

In the next two sections, we provide an estimate for
il,,p,, E, and B. In Section 3.2.1, we estimate for &, and p,,
and in Section 3.2.2, we estimate for #,, E, andji. To do so,
we set k = k/|k|, and we use the relation 71, = kk -1, — k x
(k x u,) where we refer to kk - i, as the “parallel part” and
kx (kxu,) as the “perpendicular part.”

3.2.1. Parallel Part. We proceed with the asymptotic ex-
pansion of eigenvalues: let )Lj(k),j =1,2,3,4, be the ei-
genvalues of the matrix A (k). Taking the determinant, we
see the eigenvalues satisfy

det(A-AD) =M+ (2+a, +a )V’ +(3+a, +a_+ A, ylkl’
+ A ylk*)2?
+(2+ A yIk + Aylk + a A ylkl® + a, A ylk|?)A

+ Ayl + A ylk]* + A_A Y IK|* = 0.

(64)

(i) First we consider when |k| — 0, since det (A — AI) =
0 satisfies

A4+ 1)(A2+(1+a,+a+)/\+2) =0, (65)

A; (k) has the following asymptotic expansion:

A (k) =27+ Ak +APIE 4 (66)

where each coefficient A](”) is given by direct compu-
tation as

/‘«fO) = Al(l) = 0:

1
M == (Ay+Ay)

A0 =1,
MY =0,
1O _ Ay+Ay+aAy+a,Ay

2 2—a, —a_ ’

2

A(O)_—(1+oc++oc_)—\/(1+oc++oc_) -8 (67)
3 T 2 4
MY =0,
AP =0,

© —(1+¢x++a_)+\/(1+oc++(x_) -8
4 = 2 >
AV =0,
A2 =o.

Thus, the approximation of the eigenvalue when
k| — 0 is
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_ —% (A,y + A_y)K’, B(t) = [al ()M ay()e ay (s)e a, (A,)eM ]’
(69)

then the Green matrix G for (61) is given by

G(t) = B(t)B 1 (0), and the solution is

A=l _[A+y+ Ay+a Ay+ “+A_Y:|k2,
2-a, —a_

y . (68)

-T+a,+a)-\(1+a, +a_) -8

/‘,3 = P 4 X = G(t)xo. (70)
~(1+a, +a )+ \/ (1+a, +a )’ -8 Thus, after a series of calculation using symbolic ma-

Ay = ) : nipulator, we have

Therefore, if we define

(Oe*+ome ™)  (0Me®+0)e ™)  (0OMe ®+0M)e® ")  (O(1)e®+0(1)e*")

X X1,0
x| [(0Me®+0me k) (O(e ® +0(Me *k) (O(e ® +0(1e *k*) (O(De ® +0(1e k) || xy
X3 (Oe®+0(Me ™) (O(e® +0(e*1)  (0(De ™ +0(1)e ™) (0(e® +0 (e ®) || %30 |
XA [(0e® +0()e 1) (0(e ™ + O (Ve * k) (O(1)e™® +O0(1)e” k) (O (e + 0 (1)e”*1k?) |L*40
(71)
where 6 is the sum of real parts of A, j = 1,2,3,4. Thus,
5, (£,k) :<O(l)e_9t N 0(1)e‘9k2f)p+0 —<O(1)e‘9f N 0(1)e‘9k2f>ik T,
+<O(1)e_6t N 0(1)e—9k2f)p_0 —<O(1)e‘f’f " O(l)e_0k2t>ik g,
ik-@, (6.K) = (ou)e* o LO()e 9"2%2),10 —<O(1)e’9f N O(l)e’ekztk2>ik g
+(o<1)e*9f N 0(1)59"2%2),10 —(0(1)5‘% N O(l)e’ekztk2>ik g,
(72)
5 (LK) =<0(1)e‘9k2f +O(l)e_8t>f)+0 —<O(1)e‘9sz N 0(1)e“‘”>ik T,
+(O(1)e*9"” + 0(1)e*9f)p_0 —(O(l)e*‘”‘zf " 0(1)5‘”)1'1( g,
ik (k) = (0(1)5 o L O(1)e szsz)pm —<0(1)e*9f + O(l)e’ekztk2>ik i
+<O(1)e_6t N 0(1)e‘9k2fk2>,3_0 —(O(ne‘ef N O(l)e’akztkz)ik iy
In fact, we know that Therefore, plugging (73) in the second and the fourth

equations of (72), we obtain

i, = kk -, —%X(Exﬁi)impliesﬁﬁ-ﬁi =1, +%><(k><ﬁi).

(73)
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Ikl

|l

Ikl

(i) When |.k| — 00,1 j (k) has the following asymptotic
expansion:

Ak = uihe+ 4

where each coefficient ‘u;”) is given by direct compu-
tation as

! =ivADy,

o _ (I+a)
#1 - 2 b4

WY = -iVAT,

o_ (I+a)
”2 - 2 >
(76)
W =iVAy,
o_ _(1+a,)
3 5
' =—iVAy,
o_ (1+a,)
M4 - 2 N
X, O(1)e
X, O(De k| O(1)e
P OMe k™ O)e
X, OoMe * O@1)e k™!

P, (k) =0(e "5, —0(We k| ik -1,y + O (e "k p_, —O(1)e ik -7,
Uik ., +0(We "5, —O0(e k| ik -,

—ik - @, (t,k) = O(1)e *|klp, - O(1)e”

(ome“” + o<1)e‘9’<2fk2)p+0 +(o<1)e‘9f N

+ﬁ<0(1)e‘9‘ +Oo(1)e 9"2%2)@0 +(O(1)e_9t

O(Me *kI™ O(1)e ¥|k|™!

11

o(1)e sztkz)kk [,

+o(1) ‘sz’kz)%% i,
(74)
k(ou) f L O(1)e Ftk )p+0 (0(1)5 +O(1)e *tg )Eﬁ.aw
+_k(o(1)e*‘*+0(1)e oK )po (0(1)59‘+o<1)e*9"sz2)E%.a,0
‘u](.*z)k*2 + [4](.73)k73 +..., (75)

The approximation of the eigenvalue when |k|] — oo
is

1
A= —( J;“‘) +iJA_yk,

(I+a)

by = ==~ iVA Yk,

(77)

1
Ay = —( -;oc+) + ALYk,

- (1+oc)

AT,

So, G = B(t)B~1(0) is the Green matrix for (61), and
the solution is

x = G(t)x,. (78)

Thus, after a series of calculation using the symbolic
manipulator, we obtain

O(1)e® X10

O(Me ®  O)e k™" || x20
oMe ®  O)e k™" || x50 |
O(1)e” 9t|k| O(1)e” o X4,0

(79)

p_ (k) =0(e "k 'p,o —O()e ik -7,y +O(1)e "5, —O(1)e k| ik -,

—ik-7_(t,k) =0(1)e *p,, —O()e "k ik - 1i,g + O(1)e "klp_y — O (e ¥ik -7,



12 International Journal of Differential Equations

Therefore, after plugging (72) into the second and
fourth equations of (79), we obtain

- - — — ik kk
i, (t,k) = -k x(kx1,) +<O(1)e9fz‘kk P+ O(De "kk -7,y + 0(1)59%,3_0 + 0(1)5‘%ﬁ : a0>,
B - (80)
- - _g ik _gkk ot e
_(t,k) = —kx(kxa.) +(O(1)e 9%,10 +0(1)e Gfm T, +0()e Yikkp_y + O(1)e "kk - a_o>.
(iii) When 0 < |k| < 0o, we consider the Routh-Hurwitz It can be shown that, in our case, the conditions cor-
stability condition of the characteristic polynomial  responding to (82) are given, respectively, by
(64). That is, if we write (64) in the form
boA* + b, A7 + 6,07 + b+ b, = 0. (81)
The system stability requires
b, >0,
bib, —bybs >0,
X (82)
(byb, = bybs))bs; — bib, >0,
b, >0.
2+a,+a)>0,
[+a, +a)(3+a, +a + Ayl +Aylk?)] -(2+ A, plkl” + Aylkl” + a A ylk* + a, A_ylk|*) >0,
[(4 +2a, + 20+ A plkl® + A_ylk® + 3a, + o + 2a,a +a, A, plk|> +3a_ + o’ + oc_A_yIkIZ)
(83)
(2 + Akl + A ylkl® + a A ylk + o, A ylkl*)]
—[@+a, +a (Al + Aylkl’ + A Ay IKIY)] >0,
A ylk* + A_ylk|* + A_A Y |k|*> 0.
M, (t,k) = —kx(kxa,(t,k),
It is not difficult to show that the above inequalities are o
satisfied, and this implies that all roots of the characteristic M, (t,k) = —kx (k x U_(t, k)), (84)

equation have negative real parts. N

Although the eigenvalues may coalesce, the computa- M (k) = — ’f x (If % f (t. k)),
tions in (i), (ii), and (iii) show that coalescence occurs when M, (t,k) == —kx(kxB(t,k)),
the real parts of the eigenvalues are negative. Therefore, the

stability conditions are satisfied. when ¢ >0 and |k| # 0. Taking the curl of the second, third,

and fourth equations in system (51), we get

3.2.2. Perpendicular Part. Now, we consider

O, (Vxu)+Vxu, +a, (Vxu,)—a, (Vxu)-VxE=0,
O, (Vxu )+ Vxu_ +a_(Vxu)—a (Vxu,)+VxE=0,
0,(VXE)-VXx(VxB)+Vxu, -Vxu_=0,
0,(VxB)+Vx(VXE)=0.

(85)
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Now, taking the Fourier Transform and multiplying by
—ik, we obtain
oM, + M, +a,M, — a,M, — M, =0,
oM, +M,+a_M,—a_M, +M,;=0,
(86)
0,M, —ik x M, + M, - M, =0,
O, M, +ikx M;=0.

Subtracting the first equation from the second equation
in (86), we obtain

0, (M, — M) + (M, - M,) +a_(M, - M,) (87)
+a, (M, - M,)+2M,; =0,

and we simplify the above computation by letting
M, =M, - M,.
So,

O,Ms+(1+a, +a_)Ms+2M; =0. (88)

Thus,
O,Ms=—(1+a, +a_)Ms—2Ms,

0,M, = ik x M, + M, (89)
0, M, = —ik x M,

where we write the initial data in the form
[My, My, Ms]|,_y = [Ms0, My, Ms], (90)
with
M, = -k x(% x (u_ - ﬁ+))

, (91)

Taking the time derivative of d,M; and substituting
0,Ms and 0,M, as given in (89), we get that

OpMy =k x(kxM;)-(1+a, +a_)Ms—-2M;.  (92)
From k - M, = 0, we find k x (k x M;) = —|k|*M; thus,
O3y Ms +(2+[k* )My = —(1 + &, + a_)Ms. (93)

Now, taking the time derivative of (93) and replacing
0,M; by the first equation of (89) and taking the sum with
(93), we get

M + (1+ o, + )0, My +(2 +|k[*)9, M, o0
94
+(1+a, +a )k’M,; =0,

with the initial data

13
M; l t=0 — Ma,o’
0, M3 | =g = ik x Mo + Ms,,
0yMs | o= —(1+a, +a_)Ms, —(2 +|k|2)M3)0.
(95)
Note that the characteristic equation of (94) is
F(x)=y +(1+a, +a )y +(2 +|k|2)X
(96)
+(1+a, + oc,)|k|2 =0.
Set
x, = Ms;,
X, =X
N (97)
X3 = X,
T
x =[xy, %0 %3]
Then, equation (94) is written as
x = O (k)x, (98)
where
0 1 0
@ (k) = 0 0 1 .
~(1+a, + o )k H2+k) —(1+a, +a)
(99)

Asymptotic Expansion of Eigenvalues. Let A;(k) be the
eigenvalues of the matrix ® (k). We will find the asymp-
totic expansion of the eigenvalues )Lj (k) forlk| — 0
and|k| — oo.

The eigenvalues A, (k), j = 1,2, 3, are the solutions of the
characteristic equation which can be written as

det (@ (k) —AI) = A* + (1 + &, + o )A* +(2 +]k*)A
+(1+a, +a )k = 0.
(100)

The eigenvector for @ (k) is

bA)=| A |
112

(101)

(i) When |k| — 0, /\j (k) has the following asymptotic
expansion:

L) =20+ A+ AP+ (102)

where each coefficient A](-”) is given by the direct
computation as
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A = —% (1+a, +a )i,

PICIPYS
. N —(1+oc++oc,)+\/(l+oc++oc,)2—8
Al(z):—i(1+oc++oc,), 2o 2
(1+oc++cx,)+\/(1+oc++cx,)2—8 2
A(O)_—(1+oc++oc_)+\/(1+oc++oc_)2—8 - 4 *(104)
2 = ) >
-1+a, +a_)- \/(l+oc++oc,)2—8
Az(l) =0 A =
i 2
103 _ 2 _
@ —(1+0c++0c_)—\/(1+(x++0c_)2—8 (103) _l(1+a++“) \/(1+“++“*) 8]k2
AZ = > 4 '
4
0 (l+a,+a)- \/(1 fara )2 s Therefore, if we set
5 2 ’ D) =[b(L)eM" b(hy)et b(hy)e |, (105)
)Lél) =0, the Green matrix G for (98) is given by G(t) =
D(t)D'(0), and the solution is represented as
A(Z)_—(1+a++oc_)+\/(1+oc++oc_)2—8 x = G(f)xy, (106)
3= :
4
where each component of this solution is itself a 3 x 3
Thus, the approximation of the eigenvalue when diagonal matrix. We integrate the first and the third
lk| — 0 is equations of (89), and we get the following expressions:

t t
M; (t,k) = M5, (k)e_t(lm*m’) +2¢ t(rara) [J c, (ke (ravotn)s g | J ¢t (v ra+f)s (¢, (k)cos ws + ¢4 (k)sin ws)ds |,
0 0

t
M, (t,k) = M, (k) — ik x J c; (k)e™ + s (¢, (k)cos ws + ¢5 (k)sin ws)ds,
0

(107)

where

1

= LMo (k) + (1 +a, +a_ +n)liM5, (6 k) +(1+a, +a_ +7)ikx M,,(t, k)|,

“a 3'12+2(1+oc++oc_)’7+2+|k|2[ oMo (bR + (1 +a, o+ mlMyg () + (v, v+ ) s )]
1 2 .
2= 3+ 2(1+a, +a )y +2 +|k]? [0 M (6 R) + (24 (14 @y + ) + IR+ 2)LM (8K) = (14, + @+ )ik x My (0],
2

~ 1 —(32) = 3/2)n (1 + &, + ) —(2+k| )'

=7 3 I,M;, (t, k)
3 +2(1+a, +a)n+2+k| w

l+a, +a_+ T+a, +a )+2+|k? —(1+a, +a_)2/2) + (3/2)* +(2 +]k|?
CELE n(n(1+a, +a) ||)13M3)O(t,k)+(( L a)'/2) + (B2 +(2 +IKE)

2w w

ik x My, (£,) |-

(108)
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After a series of calculation using the symbolic ma-
nipulator and definition (84), the solution can be written as

(<kx(kxa))-(-kx(kxa,)) =0e *[(<kx(kxa_y)) ~(-kx(kx,))]
+(0me ™ —ome ™ )(Fx(kxE,)) +(0e ¥ ~0me ™ - oie ")
-(~k x(kx By)),
—k x (kx E) =(0(1)e”* =0 (1)ie™")(~k x(k x Ey)) +(0()ie”*)(~k x (k x By)),
—k x (k x B) =(O(1)ie"6t)( (~ x E )) (O(l)e‘w —O(l)ie_w)(—% X(EXBO)).

(109)
By using (73) and substituting (74) in the first equation
of (109), we obtain
5 —@, = l’%(ou)e*ef ‘ 0(1)e*9"2fk2)p+0 +<O(1)e*9f ; 0(1)e*9’<2fk2>%% T
N %(om ro()e Wsz)p,o +(o<1)e*9f N 0(1)e*9’<2fk2)%% i,
Ikl (110)
+ O M (e (Rxaiy)) ~(Fx(kxi,y))] +(0e ™ =0 (e ™) (x(kx Ey))
+(O(1)e_6k2t —0()e ¥ - O(l)ie_9t>(—% x(% X BO)).
- =~ ik
Furthermore, we know from (51) that E=-kx(kxE)- I (P, —p-)- (112)
V-E=p, —p, (111) o . . .
Multiplying the first and the third equation of (72) by k
and substituting the result into equation (112), we
and thus obtain
~ - % 2 2
E-= |li| [(O(l)e ro(1)e * f),3+0 —<O(1)e_gt +o(1)e * f)ik-a+0

+(O(1)e_9t + O(l)e_9k2t>/3_0 —<O(1)e_ o, o(1)e“‘”‘2f>ik . a_o] (113)

+(O(1)e’ o _ O(l)ie_et)(—ﬁ x(% X Eo)) + O(l)ie_et(—% X(E x EO)).

Now, since kk - B = 0, we have

B=(0()ie”™)(-k x(kx Ey)) +(0(1)e”* —0O(1)ie ) (~k x (k x By)). (114)
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Moreover, taking the sum of the first and the second
equations of (86), we obtain
0 (M, + M) + (M, + M,) + (M, - M,)(a_ - a,) = 0.
(115)

Thus,

(—Ex(%x@)) ( kx(kxu )) ’Gt[( ~><(%
[0 (xR x i) ~(Kx

Next, substituting (74) into the above computations, we
obtain

i, (t,K) + (1K) = 7(0(1) -or

—0k*t72
i’ 0(1)e k)

k ot
+m<0(1)e

+e_9t[(—%><(%><ﬁ+0))+(—E><(E><u )] +om(e* - e ) [(Rx(fx

+O(1< )

ro)(e ™ - t)(kx kxgo))_om(e-ﬂf_e-f)(_zx(ixEO))_om(e-fh_e-f -

Now, taking the sum and difference, respectively, of
(110) and (118), we obtain

ik

HO(1)e~ % —0(1)e~* - O(1)ie™*)(~k x (k x By))

International Journal of Differential Equations

M+ M, =e (Mg +M,y,)

t 116
. j 90, M) (- a))ds.
0

Substituting the first and the second equations of (84)
into equation (116), we get that

) +(Rx(Rxiy))]

(k X u+0))] +(O(1)e’9k25 - O(l)e’es)(—‘l% x(% X EO)) (117)

ds.

(0(1) +o<1)e‘9"2’k2)ﬁ.a+0

0(1)e*9k2fk2),10 +(o<1)e* o 0(1)e*"k2‘k2)kk i,

w6k = (O(l)efg' +O(1)e % tk2>p+0 (ou)e*"‘ " 0(1)59"2%)@ Ty

+m<O(1))e 9t+O(1)€ o tk2>p +< (1 )E_Gt+O(l)e_6kztk2>%%,a70

+0e ™ (Fx(Rxig)) -(Fx(Rxig)) +(0me ™ ~0(e ™) (kx(kxEy))

+(o<1)e“’k2f —o(1)e?

+O(1e "kk -1, +

(i) When |.k| — 00,4 i (k) has the following asymptotic
expansion:

O(yie” ™ )(-Ex(kxBy)) +%o<1) 05+ O)e TR 71,

e (R x(Rxt,)) +(-Fx(kxay))]

+0Me % L oe ® —0)e ® +0()e * +0(1)e " -

(118)
(119)
||O(1) gtA
o(ie * —0o()e!
L) = Pk + KT P L (120)
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Each coefficient ‘u](") is given by direct computation as The approximation of the eigenvalue when |k| — oo is
1 _
# =0 M=-1+a, +a),
W = (14 a, + ),
) 2 2.0 4
u =1, by mik=gk =gk (122)
(0) _
1)
2., 4 _
ny _ 2 Ay = —ik +?k ! —§k 2,
== i
t 3
(-2) _ 4 (121) Hence, the Green matrix G for (98) is given by
2 9 G(t) = D(t)D"1(0), and the solution is represented as
1 _
3 =1 x = G(t)x,, (123)
(0) _
Hy =0,
N2 where each component of this solution is itself a 3 x 3 di-
plé_ = 37 agonal matrix. After a series of calculation using the sym-
! bolic manipulator and equation (84), the solution can be
/4(_2) _ _f_ written as
} 9

(—% x(% X 17,)) —(—E x(% X ﬁ+)) = O(l)e’gt [(—% x(% X 11,0)) —(—E x(% X ﬁ+0))]

P x (B + Qe - G (ox(xB)),

kx(kxE)=-0)e " +0(1)e % [(—% X(E X ﬁ_o)) —(—E x(% X ﬁ+0))]

(124)
FO() F(Fx (R x By)) + e (Ex(kx By))
AT o))
~kx (kx B) = 0(Vilkle” * [~k x(kx @y)) ~(-k x (k x71,))]
- o(l)i|k|e_9t(—§ x(% X EO)) + O(l)e_ekizt(—ﬁ x(% X EO)).
By using (73) and substituting (80) into the first equation
of the above computation, we obtain
1\~
a -1, (O(l)e‘efkk ok o >p+0 (O(l)e_et - O(l)e"etm)kk STy
ik -
(O(l)e_et— -0(1)e” zkk)p o (O(l)e‘f’f— -0(1)e ‘9‘>kk ‘T,
] ] (125)

+OWe "[(-kx(kx o)) ~(-kx(kx,))]

o) _geoys ~ 1~ = oW o O g\, 7 (r =
+ O 0 (xR By)) 4 (|k| v Ol )(—kx(kaO)).
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Therefore, multiplying the first and the third equation
7 of (79) by k and substituting into the above equation, we

B- _Ex(ExE)_I% (3, ~7.). (126)  obtain

Furthermore, we have

E=-[(0()-0MIkl™)e "B, —(OMIKI™ —0(1))e ik - 11,

+(OMIK™" —0m)e "p, —(0(1) + Ok )e ¥ik - i, ]

- - - - - (127)
+(-0We " +oe ) [(kx(Rx i) ~(Fx(kx )]
F O (Rx(fxB)) + S0 (xR x By)).
Since kk - B = 0, we get
B=0ilkle ® " (~kx(kx_y)) - (-kx(kxa,,))
(128)
- o(l)ilklefet(—% X(E X EO)) + O(l)efek_zt(—ﬁ x(% X EO)).
Substituting the first equation of (124) into equation
(116) results in
(Fx(fxa,)) +(Fx(Rxn ) = e *[(Fx(Exg)) +(Fx(Fxiiy))]
o[ e [ome@s(_z (i g)) ~(F x(Fx i) 129)

G () e - G ) o

Next, substituting equation (80) into equation (129), we
obtain
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a, (t,k)+a_(tk) = (ou)e‘“kk O(l)e_9|:| >p+o (O(l)e_at—O(l)e_g'f%>§§-ﬁ+0

(O(l) ‘f’fmkl—ou)e i%%)po (

+e [( k><(k><u )) (

+o<1)<e‘9"’2f

(e =) (R x(RxBy)).

Now, taking the sum and difference, respectively, of

equations (125) and (130), we obtain

19
—Gt — 0t ~
O(1)e W_O(l) )kk
x(kxiiy))]+OMW) (e —e ") [(~kx(kxt,)) +(-kx(kxiiy))]
) k>< k><E0 +O(1)(e_6t—e_t)(—%x(%xlg’o))+0(1)
(130)

ai(t,k)=(O(1)e_9tﬁ—0(1)e |ik| >P+o ( o()e " -0(1)e ‘9’|k|>kk i,

ik
+ O lefetl—
< (1) T

+O(e

+|I%o<1)e‘9‘p o

Ik|

+oMe o) * 4

Theorem 4. Let 1< p,r<2<q<o00, andl>0 and let m=>0
be an integer. Define

1 1 . .
I+3-——- +1, whenr#2orq#2orlisnotaninteger,
I+3(——- =
.

where [-]_ denotes the integer part of the argument. Suppose
U, satisfies (53). Then, for any t >0, V"e''U, satisfies the
following time decay property:

"Vm tLUOHLqSC(l +t)—(S/Z)(l/p—tl/q)—(m/Z)

’ "UOHLP

(133)

(Fx () +(Fox(Rxig))] + O (R (ExEO))+< e _?]fli)e@th)(_'z;x(zxgo))

e "kk -1,y —ikO()e *p_,+O(1)e "kk -7y +

+ C(l + t)—l/z'|Vm+[l+3(1/f—tl/q)]+U0 -

_o(1)e"ti%%>po <O(1)e ‘”|k| O(1)e 9f>75%.a_0x

O(1) _g

e M(Fx(kx ) +(Fx(Rxiio))]

oMme *—ome * " —o)e .

(131)

(132)

whenr = g = 2andlis an integer,

where C = C(p,q, 1,1, m).

Theorem 5. Let 1< p,r<2<q<00, andl>0 and let m=>0
be an integer. Assume U (t) = e'LU, is the solution of the
initial value problems (51) and (52) with initial data
(P10 Urg» Eg» Byl which satisfies (53). Then, for any t >0, U =
lp,,u,, E, B] satisfies
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|7, (O], < C 1+ ey OPW VNS g ], + Cllpsos hao

)

+C(1 + t)—(3/2)(1/p— 1/q)-((m+1)/2) " [uio’ EO:B()]”Lp +C(1+ t)—(l+1)/2 ||Vm+[l+3(1/r— /9], [ui()) E()>B()]||L,7 (135)

LY‘)
(134)

”Vmuir (t)"Lq <Ce t/2<“pt0"“ n ||Vm+[3(1/r— g, [Pio’ uio]

”VmE(t)"Lq <C(1+ t)—(S/Z)(l/p— 1/q)—((m+1)/2)“ [”ioa E())B()]"Lp +C(+ t)—l/2||vm+[l+3(1/r— 1/q)], [uio’ Eo: B()]”L,’ (136)
[V"B()], <C(1+ ey PPN 1y BB, + CO+ TR ek BB (137)
_ _ . m M M
;;hgr;ﬁ] =C(p,q-r.L,m) and [1+3(1/r — 1/9)], is defined "V p. (t k)“LZ §C|||k| Pi“m’ (en ™t C|||k| pi"m' (K1
' (138)
Proof. Let 1< p,r<2<gq<o00, and m be a nonnegative in- We estimate the first term of (138) using the Holder
teger. Let g satisfy 1/q+1/q=1. Using the Haus-  inequality 1/q' = 1/p' + (p' —q')/p'q" with 1/p' +1/p=1
dorff-Young inequality, we prove (134) as follows: and fixing € > 0 sufficiently small; that is,
mrs -~ -6t —lelzt]
|I|k| (P> Thao) [e te 1 (K<1)
- |||k|—(P’-q’)/P’q’ (S—s)|k|M+((P’—q')/P’q') (-9 [Bros o] [e— b, o 6Iklzt]
= L9 (kl<1)
—G-g||~(P'-d)r'd " me(p'-q)p'd 1~ ~ [ 6t —lelzt]
<k k R + ,
1 i R | s P (139)
<N (('-a)pd) -5 = [ — 6 —e\kﬁz]
—”|k| [PeorTuol € +e 2 (k<)
-0t 1~ =~ —-(312) (1g' - 1/p ) ~(m+1/2) || [~ =~
<Ce [ pans ]l gy + Gl 17O ) 0Bl gy
-6t ~3/2(1/p-1/q)~(m+1/2)
<Ce " [Pio’u10]||Lp(|k|g1)+C(t+ 1) e " [Pio’”¢0]|le(|k|g1)'
Now, we estimate the second term; by taking e€>0
sufficiently small and using the Hélder inequality 1/q’ =
Ur'+ (r' —=q'Ir'q") with 1/r' + 1/r = 1, we find
PRI [ o —0|k|2t]
||| | [Pio “:0] € € I (k> 1)
_ —(r’—q’/r’q')(3+£) m+(p'—q'/p'q')(3+s) —~ ~ — 6t
_“lkl |k| [pio’ uio]e qu(lklzl)
—(3+¢) -(r'-q'1"'q) m(r'=q'1r'q ) (3+e) [~ =~ -0t (140)
S|||k| ”'kl [PiO’uiO]e Lr'(‘k|21)
m+(1/q'— 1/r')(3+s) ~ —~ — 6t
SCH|k| [ptO’uiO]e Lr'(|k|21)
-0t || omH3 (1/r-1/9)],
Sce ||V [PtO’uiO] Lr’(lklZD'
k™, (65|, =|lIkI"e™" [Pr0» a0 Bo]|
We prove (135) similarly. That is, ”l i ( )"Lq (Ikl<1) “l | [Pio *0 0] La
m "M M m =0t [~ = T R ,
[V )]y S IR -y + CIR ] oy ] 1kme [pags gy Bos Bo) |,

Okt T~ . ~ o~
(141) +|'|k|me | It[pio,uiO,EO,Bo] e
where (142)
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We estimate of the first term of (142) using the Holder
inequality 1/q' = 1/p" + (p' —=q')/p'q" with 1/p' +1/p =1
and fixing € > 0 sufficiently small:

i\ 1/q
<J ||k|me_t/2[ﬁ¢0>ato)go]|q) '

R3

(/.

Se—t/2|||k|—(3—s)

< e—t/Z |||k|m+(Pr_qf/Prq:)(3—€) [ﬁto]

e o ol

! Py / "Ip'q ’ I/q,
Iklf(p ~4'Ip'q )(375)|k|m+(p -q/pq )(37 s)e—t/z [ﬁﬂ), ﬁ+0,EO] 'q )

—(P’—q’/P’Q’)"|k|m+(p’—q’/p’q’) P20

|LP’ (k| <1)

v (kI <1) <Ce ™ “ [ﬁtO] “Lp’ (kl<1)

< Ce_m“ [Ps0] IILP (kl<1)

We estimate the second term of (142) by

(.
(/.

<l

< e—f/2|||k|m+(P -q'1p'q") (3-9) [Pool]

5 q 1/q'
m+1l _—0lk|t [~ o D
k| e™ " @, Eo, By | )

Jiki"e ™ [ .01 By By

N\ /g
|k|_(P'_q’/p’q’)(3—£)|k|m+(P’_q//prq;)(3_6)6_ 0|k|zt [a+0’ EO) EO] |q )

_(Pl_qr/prqr) m+(pr7qr/prql —9|k|2t . ~ =~
”lk' € [uiO’ Eo BO] "LP’ (kl<1)

|LP' (kl<1) = Ce_t/z" [Pl "LP’ (i <1)

<Ce 2 || [P+0] ”LF (kI < 1)

We estimate the third term of (142) in two parts. First, where
take € >0 sufficiently small and use the Hélder inequality
1/q =1/r"+ (r' -=4'Ir'q") with Ur' + 1/r = 1.

[kt (810l = [V [P s B

’
L4

+ |'|k|m676t [ﬁiO’ 40, By, E0]

!
L4

+

2

L4
(145)

ml okt~ -~ 3
|K| me Ht[/’io’”tmEo’Bo]

|||k|me—t/2 [P0 100 Eo] "Lq, = <JR3|Ik|me—t/2 [P0 o Eo 'q’ )w

(/.

<e t/2|||k|—(3+s) "—(r -q'Ir'q )I||k|m+(r -q'1r'q") (3+e) [A+0]

i\ 1/q
k—(r’—q’/r’q’)(3+s) km+(r'—q’/r’q’)(3+s) —t2[~ o~ £ q
Ik Ik e " [Paor a0 Bo |

|Lp’ (k| <1)

<e t/2|| |k|m+(1/q’— 1/r') (3+e) [A

0] |LP’ (k| <1)

<Ce” t/2||vm+[3(1/r— 1/q)], [ﬁio] o

21

(143)

(144)

(146)
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To estimate the second part of the third term, we have

L ek~ -~ =
”|k|mme I [Pio,”:ro»Eo’Bo]
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=<J |1k e " [, B B”")W
L . +0> 20> 2o

N
= <JR3 |k|’(?’,*q’/i’,q’)(3+€)|k|m+(r'—q'/r'q')(3+€)e—9t/|k|2 [aiO’EO’ BOHq
oA ) (g i ) Gre) - OKE [ B R (147)
< i O B By
Se—at/\k\2 |k|V”+l+3(I/ql_l/r,)|k|_(l+l)[uio,Eo,Bo] ' (k<)
<C(1+ t)*(l+1)/2uvm*{l+3(1/r7l/q)],r [utO’EO)Bo] -

where we used

2
—0(t+1)/]k| SC(I +t)_(l+l)/2.

|z+1@ (148)

sup
ki<t |k

The proofs of (136) and (137) are similar.

Note that we transformed to the Fourier space to find the
solution representation. Now, we go back to the physical
space x (t) and obtain the decay rates for the solutions to the

lo. ] < Ce ] [pugr ol

| IB®I<C (1 + 1) [us0, Eg» By

“”1 (t)“Loo < Ce_t/zll [pi()] ||L1 ﬂH2 +

IBI <C (1 + )| [1s0- Eo» By

{

Proof. The results of Corollary 1 are particular cases of
Theorem 5.

For example, we explain how we get the decay rates for
u,. From (135) for L?, take g =2,p =1,m =0, = 3/2, and

r=2:
)

19" 0= Ce ™ ([pual s+ [puori]
+C(1+ t)_5/4||V[1+”2]” [uio,Eo,Bo]"Ll.

Il
(152)

+C(1+1)"""*[us0- E» By

Thus,

ooz ()] < Ce™ 2| [pao]|| + C (1 + ) 4| [t40» Eg» By
IEOI <C(1+ )| [tag5 Eg» Bol| 1 1 >

IE ()l 0 <C (1 + )| [t420> Eo» By
| 1B(®)llpe0 <C (1 + )| [t410 Eg, By

[v¥ (B, Bl C o[

linearized system. Fundamental properties of the system are
given by the following corollary based on Theorem 5. [

Corollary 1. Assume U (t) = e'LU,, is the solution of the
initial value problems (51) and (52) with initial data
(P10 Usg» Eg> Byl which satisfies (53). Then, U = [p,,u,, E, B]
satisfies

]"LlnHz’

Ios o= Ce ] It -

(149)
]”Ll nH>
C(1+ )| [ta> Eo» Bol|| 1 > (150)
]"L1 nH®
]"Ll nH>
]"LlnH“" (151)
”¢0)E0’BO]”L1 ne"
“ui (t)an < Ce”/2|| [Pso] ” +C(1+ t)75/4|| (1440, Eo» By ”L1 nH"
(153)

Now, for L®, take g =00, p=1,m=0,l =3, and r = 2:

vaui (t)”Loo <Ce tn(”pio”Ll + ||v[3/2]+1 [pirO’ uirO] Lz)

+C(1+ 1) [0 Eg» Byl || s

+ C(1+ ) 2| VI [uy, By, By

L
(154)

Thus,
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otz Ol = Ce™ N lpsoll e + © 1+ 7[00 Eos Bol

(153)

4. Decay Rates for Nonlinear Systems

4.1. Decay Rates for System (15). In this section, we apply the
linear LP — L1 time decay property of the homogeneous
system (51) to the nonlinear case. Throughout this section,
we suppose that U = [p,,u,, E, B] is the solution to the
Cauchy problem (15) satistying (16).

By Duhamel’s principle, the solution U can be formally
written as

t
U=eu,+ Jo eIk [91(5), 95 (5), g5 (5),0]ds,  (156)

where e'LU,, is as defined in Section 3.2 and
g = -V. (ptui)’
9y = —y.Vui, — Ai)’[(/’i + l)y_z - l]vpi t (ui X B)

oty (uy — ug),

gz =p-u_—pu,.
(157)

Remark 3. Note that in (156), [g, (), g, (5), g5(s),0] sat-
isfies the compatibility condition (53). Thus, =9~ acts on
[g1(5),g,(s),g5(s),0] for all 0<s<t.

Proposition 2. Suppose initial data V= [0,4, V., Eq, By]
satisfies (17). If ey, (Vo) >0 is small enough, then the so-
lution V = [o,,v,, E, B] satisfies

IVl <Ce, (Vo) 1+, (158)
for any t >0. Moreover, ey, (V) >0 being sufficiently small
implies that the solution V = [o,,v,, E, B] satisfies

IVV (£)lly_y <C.. (Vo) (1+18)7", (159)

e (

for any t>0.

Lemma 2. Suppose V = [0,,v,, E, B] is the solution of the
initial value problems (15) and (16) with initial data V, =
(0., v,, Ey, By] satisfying (17) as described in Proposition 1. If
&N (V) is sufficiently small, then

d

Z&y (V) +AD (V (1)) <0.

& (160)

Proof. Let I>0. Multiplying equation (160) by (1 + t)', we get

E%N VO)A+) +ADy (V) (1 +8)<0.  (161)

dt

Integrating over [0, 1], we find

Jt Qe (V()(1+5) ds+2 r (1+9)Dy (V(5))ds <0,
odt 0

(162)
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which implies

1+ Ex (VD) +A Jt (1+ 5Dy (V(s))ds
! (163)
<&y (V,) + ZJ (1+59) 7'y (V(s))ds.
0
Recalling
€5 (V (1) gc(gzN V(1) +IBI +|o, + 0. ||2), (164)

we obtain

(1 +0'E (V(5) + ) Jt (1+ 9Dy (V())ds
0
<&y (V,) +ClI Jt (1+ s)l‘l(gN (V&) +IBI +|o, + 0. ||2)ds
0

+cl J (149 1Dy (Vs
0
(165)

Similarly,

(140" B V) +1 [ 19190 v (9ds
<&y (Vo) +Cl-1 I; (1+s)?
(2 V@) +1BI 4o + 0| )ds
fCl+1 J; (1+9) 2Dy, (V(s))ds,

M Fna VO En (V) +1 | DV (9)ds

< gN+2 (VO)’
(166)

for 1<1<2. Thus,

1+ t)l%N V@E)+A J; 1+ 5)19]\, (V(s))ds

<&y (Vo) +C jo 1 +9" (1B +]o, +o_ ).
(167)

To estimate the term on the right-hand side of (167),
define

Enoo < (1+9)7& (V (s)). (168)

Applying Duhamel’s principle for t >0 along with the
linear estimate on B from (149) to (156), we get

IBOI< (1 +6) I [100 E» Bo]l,, . 2
(169)

+C J.o (1+s) 3/4" [92(5), 95 (S)]"Ll nH”

forall 0<s<t.
Since
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"92 (S)lly = J'_“¢~V”¢ - A:V[ (ps + 1)%2 - I]th
+ (uy x B) + o, (uy —ug)|ds

< j|—ui.Vui|ds + J|_“¢ x B|ds

ds,

+ “Y[(l +p.)'t-1]vp,
(170)

we can apply the Sobolev imbedding theorem along with the
Holder and Cauchy inequalities to obtain

lo @l =C(Iva] o +1814[vp.l). (70
los @l = [lo.os (172
Thus,
g+l <Clp.] + ] 173)

Therefore, we get

2
ool =3
+

(”t x B) Toy (”1 - ”x)l)'

D* (_urvu: - AiY)[(pi + 1)%2 - l]vpi

(174)
Thus,
"92 (t)"HZ < I|VU(t)"2||uir’ B (t)“Lm,

2

ol = 3 1)

a=1

(175)

Thus,
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l9s Ol < 19U O [ps 1] o (176)
Therefore,
|| [9,(5), 95 (s)]”LlnHzSC%N U (s)). (177)
Notice that
EnU(s)<CEN (V(£¥9) (178)
From (168),
En (VT < (L+ 79 &ye (V(F),  (179)
for any 0<s<t.
Then,
1192(9) 95 O], 2 SCA+ VT )& 00 (V(VF))
(180)

Substituting (180) in (169), we get
1B < 1+ (| [14200 Eo» Bo) |1 12
+C(1+ 5)73/2%1\,)00 (V(\/)_/t)))
< (148" (| {4200 Eo» Boll 11 i + E oo (V(VFED),
(181)
which implies
IBOI*< (1+ t)*3’2(|| [v20- Eos Bol[: s +(E o (v(\/?t)))z).
(182)

Finally, we need to show the uniform-in-time bound of
&N (V (1)) which implies the decay rates of the energy
functional &y (V (t)). Using I = 3/2 + € in (172) with €>0
sufficiently small and using (181), we get

1+)P*E (V) + A Jt (1+ )P, (V (s))ds
0

t
<C8ya (Vo) +C [ (149" (1BF +]o, + o)
0

(183)

- - - i 2
<CEyt (V) + (140 (CU+ 0 [v200 B B[} e + C1+ 9 (B0 (VD))

<C&y,, (Vo) +C( + t)e<|| [uﬂ,,EO,BO]lli] i H(Eneo (V(t)))2>,

which implies

(1+ 0%, (V (1) < c('gN+2 (Vo) +|| [v20> B Bo] |
+H(BEneo V),

(1+ 6" (By 00 (V) SC<€N+2 (Vo) +(neo (V<f)))2>-
(184)

Now, from the definition (28) and since €y,, (V) >0 is
sufficiently small, &y ., (V(£)) <ey,, (V,)* holds for any
t>0, and we get

IV (B)lly <C(&Ex (V1) < Cenpy (Vo) (1+),
(185)

which is the proof of (158) in Proposition 2. O
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4.2. Time Rate for the High-Order Energy Functional. In this
section, we determine the time decay estimates of the high-
order energy functional IIVVIIi,, that is, the proof (159) of
Proposition 2. To do so, we investigate the time decay es-
timates on |VB| and VY [E, B]|| using the following lemma.

Lemma 3. Suppose V = [ai,vi,E, B] is the solution to the
Cauchy problems (15) and (16) with initial condition V, =
(00> Vo> Ey» By ] satisfying (17) as obtained in Proposition 1. If
&N (V) is sufficiently small, then there exists the high-order
energy functional &% (-) and the high-order dissipation rate
9?\,(-) such that for all >0,

E%’I@ (V (1)) + 12", (V (1)) <C|VB|~ (186)

dt

By comparing the definitions of %’}I(] (V(t)) (22) and
9];\, (V (#)) (25) and based on Lemma 3 equation (186), we have

d _ _
ag’;q (V (1) + A& (V (1)) <C(IVBI* + |V [E, B]|

+v (o, + o)),
(187)
which implies

g (V) <e Mg (V) +C j; e MI(IVB(s)I?

HYEBI O] 49 (0. + o) OF).
(188)

Now, to estimate the time integral term on the right-
hand side of inequality (189), we have the next lemma.

Lemma 4. Suppose V = [o,,v,,E, B] is the solution of the
initial value problems (15) and (16) with initial condition
Vo = (04, vy, Ey» By) satisfying (17) as obtained in Proposition
L Ifen,¢ (V) is sufficiently small, where defined in (28), then
for all t >0,

IVB@)I +[VVE @, BOI +|V™ (0, () + o_ ®)][
< éEnse (Vo)2 (1+1)
(189)

The proofs of Lemmas 3 and 4 are analogous to those of
Lemmas 5.1 and 5.2 in [10].

Now, we suppose that the above lemma is true. Then, by
putting (188) into (186), we get

(V1) <e MEL (V) + Cenye (Vo) (1+1)2, (190)
in which (159) in Proposition 2 holds.
4.3. Decay Ratein L1. In this section, we determine the decay

rates in L1, 2<q< + 00, of (7)-(9) for solutions U = [p,,
u,, E, B] to the Cauchy problems (51) and (52. Suppose that

25

€,5 (V) is sufficiently small. In addition, for N >4, Prop-
osition 2 shows that if ey, (V) is sufficiently small, then

U (8)lly < Cenya (Vo) (1 + 1), (191)
and if ey, (V) is sufficiently small, then
IVU ()l < Cenig (Vo) (1 + )7 (192)

We establish the estimates on B, [u,,E] and p, as
follows.

To estimate the L? decay rate on ||B| 4, note that from
(191), we obtain

IB(t) < Ceq (V) (1 +1) . (193)

To estimate the L™ decay rate, note that the L™ estimates
on B in (150) to (156) give

1Bl <C (1 +8) | [0, Eo» Bol |1 1 o

+C JO (1+£=9""[92(s), g5 ]| 1 o yes:
(194)

From (191), we obtain

1[92 () g5 ()]|,1 - 2 < CIU (D7 < Ceg (V) (1 +1) 72,

(195)
and thus
IB(£)]l 0 < Ceg (Vi) (1 + )7 (196)
Moreover, by L2 - L™ interpolation,
1B ()]0 < Ceg (Vo) (1 + )22, (197)

for 2<g<oco.

To estimate [|u,, E| 4, note that for the L* decay rate, we
can utilize the L? estimate on u, and E in (149) to (156). That
is,

e =01+ 6 ol 0 Eo Bl )

re ) =9 Loyl #1160, Ol

IEON<C+ )| [0, Eo B[ 1 1 12

+C j; A+t =9 " [g2(5) g3 ()] s
(198)
From (191),
lg: O] +1192 0. g5 O], <N DI < Ce2 (Vo) (1 + 1),
(199)
and it therefore holds that

s (8), E()]| < Ceg (V) (1 + )7 (200)

For the L* decay rate, we can utilize the L™ estimates on
u, and E in (150) to (156). That is,
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s ] <CA+ 07 (o200l 2 2 +1 (420 Eo> Boll s )
+CJ; (1+1=9"(lg: O e
#1929, 95 91 0 y5¢) s,

IE ()0 <C 1+ ) || 14100 Eo» Bo] |1 ¢
+C J; (1+t=5)[92(), g5 D], , geds.

(201)

Since

l9: Oz 2 + 1192 (0, 5 O g5, e < IVU (g
<Ce, (Vo) (1+1) 77,

|Lg2®. s O], <CIU DI Ju. (O] +IVU @)1
<Cleg (Vo) (1+ )] - [e)p (V) (1 + )]
<Cely (Vo) (1 +1)7%

(202)

it holds that

oex (6), E(6) oo < Cer3 (Vi) (1 +£) 72 (203)

Moreover, by L* — L* interpolation,

ety (£), E(#)|];0 < Ceys (Vi) (1 + 1) 229, (204)

for 2<g<oco.
To estimate the L? decay rate on [|p,[|;4, we utilize the L?
estimate on p, in (149) to (156). We get

lo- < e [[paos o] + jo e [91(9) 92 9] s
(205)
Since
[1g: (), 9, O] < CIVU @)1 + ] O] - 1B B0
<Cey (Vo) (1 +1)77,
(206)

lo- ()] < Ceyp (Vo) (1 +1)" 2. (207)

(205) implies the slower decay estimate:
Moreover, after estimating ||[g, (), g, (t)]]l and utilizing
the previous slower decay estimate, we obtain
L9 ®. g ®)]] < Clus )] oo (IVo O] + Ve O] +1B ()1
<l (5. O], +1vu, 0], < Cers (Vo (1 + 07
(208)
and it follows from (205) that

o (O] < Ceys (Vo) (1 + )7 (209)

For the L® decay rate, we utilize the L™ estimates on p,
in (150) to (156). We have

International Journal of Differential Equations

los (10 < C lpsor vl

+C J; e [g, () g2 ][ 2 s
(210)
and it is simple to check that
1191 (0. s D] 12 < CIVU DNy (o5 O] + ]tz (8, BO)] o
Vs (), )] )
<Ceys (Vo) (1+1) 12

(211)
Applying (210), we obtain
lps (O] 0 < Cers (Vo) (1 +1)” M, (212)
Thus, by L* — L interpolation,
lps ()]|0 < Cers (Vo) (1 + )71, (213)

for 2 < g < 0co. Note that (197), (204), and (213) correspond to
(9), (8), and (7), respectively. This completes the proof of
Theorem 1.

Now, to obtain the decay rates of smooth solutions from
(156) let G(t) * u,, = e'LU,. For the L? decay rate, by ap-
plying (156) and (157), we have
2

t
U= U =[] e 19,(9.909.95 (5000

8 J (919, 9209, 95 (), 0] s,
(214)

since

low O = ¢ (9. o e

t
< j eI (piui)uzds
0

<Cey (Vo) (1+1)77,

”92 (t)”il =

2

J~t e(t_s)L(—us“i — AJ[ (p, + 1)V‘2 _ 1]VP¢
0

+ (u, x B) + a, (u, —uy))ds|’

t
< J =91
0

—u,.Vu, — Ary[(Pi + 1)}’72 - 1]VP1

+ (u, xB) +a, (uy — ui)”zds

<Cey (Vo) (1+1)77,

t
[ e o = pyau)as

2

”93 (t)”il =

t
< J e(tfs)L"p,u, —p+u+”2ds
0

<Cey (Vo) (1 +1)"2
(215)
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Therefore,

U =" Uy . < Cero (Vo) (1 + )2 (216)

For the L™ decay rate, by applying (156) and (157), we
get

lgs )

sup
0<s<t

t
sup J- eIV, (p,u,)|ds
O<s<t J 0

<Ceps (Vo) (1+1)72,

t
(t=sL)( _ _ y-2
J-Oe ( u,.Vu, Aiy[(pi +1) 1]

t
J eI (V. (p,u,))ds
0

IN

lg. ®] . = sup

0<s<t

Vp, + (u, x B)) + a (uy — us))ds|

t
< sup J eIt

—u,.Vu, — Aiy[ (pi + 1)Y_2 - 1]

(
b oosL
195 Ol = suposcl | € (puat. = p,u) ds|

0
<supice [ M pu— pyuslds
<Ces (Vo) (1 +1)72
(217)
Thus,
|U = " Up| o0 < Cers (Vo) (1 + 1) (218)
So, by L? — L* interpolation,
|U = " Uy||,0 < Ceys (Vi) (1 + )22, (219)

for 2<g<co. This completes the proof of Theorem 2.
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