
Research Article
Modelling and Simulating the Novel Coronavirus with
Implications of Asymptomatic Carriers

Ghassane Benrhmach ,1 Khalil Namir,2 and Jamal Bouyaghroumni1

1Laboratory of Analysis, Modelling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University, P.O. Box 7955,
Sidi Othman, Casablanca, Morocco
2Laboratory of Information Technology and Modelling, Faculty of Sciences Ben M’sik, Hassan II University, P.O. Box 7955,
Sidi Othman, Casablanca, Morocco

Correspondence should be addressed to Ghassane Benrhmach; ghassane.benrhmach@gmail.com

Received 6 May 2020; Accepted 30 June 2020; Published 7 October 2020

Academic Editor: Sining Zheng

Copyright© 2020GhassaneBenrhmach et al.'is is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

'e World Health Organization declared that the total number of confirmed cases tested positive for SARS-CoV-2, affecting 210
countries, exceeded 3 million on 29 April 2020, with more than 207,973 deaths. In order to end the global COVID-19 pandemic,
public authorities have put in place multiple strategies like testing, contact tracing, and social distancing. Predictive mathematical
models for epidemics are fundamental to understand the development of the epidemic and to plan effective control strategies.
Some hosts may carry SARS-CoV-2 and transmit it to others, yet display no symptoms themselves. We propose applying a model
(SELIAHRD) taking in consideration the number of asymptomatic infected people. 'e SELIAHRD model consists of eight
stages: Susceptible, Exposed, Latent, Symptomatic Infected, Asymptomatic Infected, Hospitalized, Recovered, and Dead. 'e
asymptomatic carriers contribute to the spread of disease, but go largely undetected and can therefore undermine efforts to control
transmission. 'e simulation of possible scenarios of the implementation of social distancing shows that if we rigorously follow
the social distancing rule then the healthcare system will not be overloaded.

1. Introduction

By the end of 2019, the city of Wuhan, China, and the rest of
the world have seen the apparition of a deadly virus, themost
recently discovered coronavirus, named “SARS-CoV-2” [1].
Few weeks later, COVID-19 spread widely in China and
other countries, making the World Health Organization
(WHO) to declare a global pandemic in March 2020 [2].
'ere have been 3,090,445 confirmed cases and 217,769
confirmed deaths in 212 countries around the globe until 30
April 2020 according to the World Health Organization.

In order to stop the rapid spread of the coronavirus,
many countries have introduced widespread physical dis-
tancing measures, population-level movement restrictions,
and health education knowledge [3, 4]. However, one of the
biggest problems is the existence of asymptomatic infection
(having very mild symptoms) among the infected people,
and unaware of their contagious ability increases the
transmission rate [5]. Recently, and to keep up with the

biologists, many mathematical models have been developed
to enable a more effective response to this hazard. In [6],
Peng et al. have numerically studied a SEIR model that
includes intrinsic impact of hidden exposed infected pop-
ulation to describe the epidemic of COVID-19. 'ey have
estimated the time of the outbreak of this epidemic in several
cities in China. However, they did not incorporate the
transmission paths and speed of such an epidemic. In [7], M.
Peirlinck et al. have introduce the effect of asymptomatic
infection on the outbreak of Covid-19 by proposing a SEIIR
model and focusing in decomposing the infectious pop-
ulation into a symptomatic and an asymptomatic group and
assuming a similar transmission rate β for both groups.'ey
found that the large asymptomatic population is associated
with a high risk of Covid-19 spread. On the other hand, the
epidemic progresses across countries, and hospital staff are
faced with a massive influx of patients and a large number of
deaths, causing a huge problem in resource management.
Motivated by these reasons, we propose a SELIAHRDmodel
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including eight states (Susceptible, Exposed, Latent,
Symptomatic, Asymptomatic, Hospitalized, Recovered, and
Death) taking into consideration the total population as
susceptible, age, and population structure is not considered
[7, 8]. 'is model was developed based on studies of
COVID-19 and the H1N1 influenza epidemic model pro-
posed by Lopez et al. [9] however, in this model, they
suppose the existence of vaccinated people and used Gen-
eralized regression neural network for simulation without
taking in consideration the social distancing scenarios.

'is article begins with a section that describes the
proposed epidemic model and gives an idea about each
compartment of the model. 'e second section presents a
discussion of the well-posedness and equilibria of the
proposed model. 'e stability of the disease-free equilib-
rium, the use of next-generation operator to get the basic
reproductive number R0, and the proof of the global stability
of the disease-free equilibrium are presented in the third
section. 'e results of the numerical simulation and their
discussion are given in the fourth section.

2. Proposed Epidemic Model

As per the recent report from the WHO, a significant
number of COVID-19 patients have very mild symptoms.
'is means the existence of asymptomatic infections, which
increase the transmission rate dramatically in some
countries.

To take into consideration the effect of undetectable
infected persons, we propose the SELIAHRD model in-
cluding eight compartments shown in Figure 1.

'e susceptible state is a person without the disease at
time t. 'e exposed state refers to those near the infected
person and has higher risk to get infected. 'e exposed
persons who got infection but not yet infectious are called
latent people. From the latent compartment, we can classify
the people as symptomatic and asymptomatic people; the
symptomatic people will be admitted to the hospital.
Asymptomatic and hospitalized people have the probability
to go either to the recovered compartment or to the death
compartment.

'e model equations are listed below (system 1):

dS(t)

dt
�

− βS(t)[L(t) + A(t) + I(t)]

N
,

dE(t)

dt
�
βS(t)[L(t) + A(t) + I(t)]

N
− μE(t),

dL(t)

dt
� μE(t) − μ1α1 + μ2α2􏼂 􏼃L(t),

dI(t)

dt
� μ1α1L(t) − μ3σ1 + 1 − σ1( 􏼁􏼂 􏼃I(t),

dA(t)

dt
� μ2α2L(t) − μ4σ2 + 1 − σ2( 􏼁􏼂 􏼃A(t),

dH(t)

dt
� μ3σ1I(t) − μ5c1 + 1 − c1( 􏼁􏼂 􏼃H(t),

dR(t)

dt
� μ4σ2A(t) + μ5c1H(t),

dD(t)

dt
� 1 − σ1( 􏼁I(t) + 1 − σ2( 􏼁A(t) + 1 − c1( 􏼁H(t) − δD(t).

(1)
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Figure 1: SELAIHRD model.
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Table 1 shows the definition of symbols in the proposed
model.

3. Well-Posedness and Equilibria

'e existence, the positivity, and the boundedness of so-
lutions of the proposed system (1) need to be proved to
ensure that the model has a mathematical and biological
meaning.

System (1) can be rewritten as follows:

dZ � P(Z(t)), (2)

where

Z(t) �

S(t)

E(t)

L(t)

I(t)

A(t)

H(t)

R(t)

D(t)
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, (3)

and P is a C1 function mapping R8 into itself, defined by

P(Z) �

p1(S, L, E, I, A, H, R, D)

p2(S, L, E, I, A, H, R, D)

p3(S, L, E, I, A, H, R, D)

p4(S, L, E, I, A, H, R, D)

p5(S, L, E, I, A, H, R, D)

p6(S, L, E, I, A, H, R, D)

p7(S, L, E, I, A, H, R, D)

p8(S, L, E, I, A, H, R, D)
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�

− βS[L + A + I]

N

βS[L + A + I]

N
− μE

μE − μ1α1 + μ2α2􏼂 􏼃L

μ1α1L − μ3σ1 + 1 − σ1( 􏼁􏼂 􏼃I

μ2α2L − μ4σ2 + 1 − σ2( 􏼁􏼂 􏼃A

μ3σ1I − μ5c1 + 1 − c1( 􏼁􏼂 􏼃H

μ4σ2A + μ5c1H

1 − σ1( 􏼁I + 1 − σ2( 􏼁A + 1 − c1( 􏼁H − δD
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. (4)

Table 1: Definition of symbols.

Symbol Definition
S Number of susceptible person
E Number of exposed person
L Number of latent person
I Number of symptomatic person
A Number of asymptomatic person
H Number of hospitalized person
R Number of recovered person
D Number of death person
N Total number of person
β Transmission rate
μ Exposed rate
α1 Symptomatic infection rate
α2 Asymptomatic infection rate
σ1 Symptomatic hospitalized rate
σ2 Asymptomatic recovery rate
μ1 'e velocity of latent person becomes symptomatic person
μ2 'e velocity of latent person becomes asymptomatic person
μ3 'e velocity of symptomatic person becomes hospitalized person
μ4 'e velocity of asymptomatic person becomes recovered person
μ5 'e velocity of hospitalized person becomes recovered person
c1 Recovery rate
δ Normal death rate
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By the fundamental theory of functional differential
equations, system (1) has a unique solution (S(t), E(t),

L(t), I(t), A(t), H(t), R(t), D(t)) with respect to the initial
data Z0 such that

S(t)≥ 0, E(t)≥ 0, L(t)≥ 0, I(t)≥ 0, A(t)≥ 0, H(t)≥ 0, R(t)≥ 0, D(t)≥ 0. (5)

If we put S + E + L + I + A + R + H + D≤N, then the
following theorems hold.

Theorem 1. 6e following biological feasible region of system
(1) B � (S,E,L,I,A,H,R,D) ∈R8

+;(S + E + L + I + A + H+ R +

D≤N) is positively invariant and attracting.

Theorem 2. Let t0 > 0 and the initial conditions satisfy
S(t0)> 0, E(t0) > 0, L(t0)> 0, I(t0)> 0, A(t0)> 0, H(t0)> 0,

R(t0) > 0, D(t0)> 0, then the solution S(t), E(t), L(t),

I(t), A(t), H(t), R(t), D(t) of system (1) are positive for all
t≥ 0.

Proof. From the first equation of system (1), we have

S(t) � S(0)e
− β/N 􏽒

t

0
[L(u)+I(u)+A(u)]du

. (6)

Hence, S(t) is nonnegative for all t≥ 0. From the other
equations of system (1), we set

E(t) � E(0)e
− μt

+ 􏽚
t

0
e

(u− t)μ β
N

S(u)[L(u) + I(u) + A(u)]du,

E(t) � E(0) +
β
N

􏽚
t

0
e
μu

S(u)[L(u) + I(u) + A(u)]du􏼢 􏼣e
− μt

,

L(t) � L(0) + μ􏽚
t

0
e

u μ1α1+μ2α2( )E(u)du􏼢 􏼣e
− μ1α1+μ2α2( )t

,

I(t) � I(0) + μ1α1 􏽚
t

0
e

u μ3σ1+ 1− σ1( )( )L(u)du􏼢 􏼣e
− μ3σ1+ 1− σ1( )( )t

,

A(t) � A(0) + μ2α2 􏽚
t

0
e

u μ4σ2+ 1− σ2( )( )L(u)du􏼢 􏼣e
− μ4σ2+ 1− σ2( )( )t

,

H(t) � H(0) + μ3σ1 􏽚
t

0
e

u μ5c1+ 1− c1( )( )I(u)du􏼢 􏼣e
− μ5c1+ 1− c1( )( )t

,

D(t) � D(0) + 􏽚
t

0
e

uδ 1 − σ1( 􏼁I(u) + 1 − σ2( 􏼁A(u) + 1 − c1( 􏼁H(u)􏼂 􏼃du􏼢 􏼣e
− δt

.

(7)

'erefore, E(t), L(t), I(t), A(t), H(t), andD(t) are all
nonnegative for all t≥ 0.

From the seventh equation of system (1), we can easily
deduce the positivity of R(t) for all t≥ 0.

Hence, the positivity of solution has been proved. □

4. Stability of Disease-Free Equilibrium

'is section is devoted to studying the stability of the dis-
eases-free equilibrium U0 of system (1).

'e equilibrium of the model is obtained by setting dS

(t)/dt � dE(t)/dt � dL(t)/dt � dI(t)/dt � dA(t)/dt � dH

(t)/dt � dR(t)/dt � dD(t)/dt � 0, and the given system has
a disease-free equilibrium given by U0 � (N, 0, 0, 0, 0, 0, 0, 0).

In the proposed model, we have multiple types of infected
individuals, and then to investigate the stability of the
disease-free equilibrium, we will define the basic repro-
ductive number (R0) using the next-generation operator
[10], who define R0 as the spectral radius of the next-
generation operator.

Theorem 3. If R0 < 1, then DFE (disease-free equilibrium)
U0 is locally asymptotically stable (LAS). If R0 > 1, then the
DFE is unstable.

Let Y be the vector of infected classes, such as infectious,
exposed, carrier, etc., and X be the vector of uninfected
classes, such as susceptible, recovered, etc.
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dX

dt
� W(X, Y),

dY

dt
� f(X, Y) � F(X, Y) − V(X, Y).

(8)

Let U0 � (X∗, 0) ∈R8
+ denote the disease-free equilib-

rium, that is, f(X∗, 0) � W(X∗, 0) � 0, where F(X, Y) is the
vector of new infection rates (flows from X to Y) and
V(X, Y) is the vector of all others rates (not a new infection).

'ese rates include flows from Y to X (for instance, recovery
rates), flows within Y, and flows leaving the system (for
instance, death rates). For each compartment, inflow in V is
negative and outflow inV is positive.'e formula of the basic
reproductive number (R0) is defined by the maximum ei-
genvalue of FV− 1, where F � (zF/zY)(X∗,0) and
V � (zV/zY)(X∗,0), andFV− 1 is called the next-generation
matrix.

F �

0 β β β 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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,

V− 1
�

1
μ

0 0 0 0 0

1
J

1
J

0 0 0 0

μ1α1
J d

μ1α1
J d

1
d

0 0 0

μ2α2
Je

μ2α2
Je

0
1
e

0 0

μ1α1( 􏼁 μ3σ1( 􏼁

J dm

μ1α1( 􏼁 μ3σ1( 􏼁

J dm

μ3σ1
dm

0
1
m

0

C C T
1 − σ2

eδ
1 − σ2

mδ
1
δ
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where
J � μ1α1 + μ2α2,

d � μ3σ1 + 1 − σ1( 􏼁,

e � μ4σ2 + 1 − σ2( 􏼁,

m � μ5c1 + 1 − c1( 􏼁,

C �
μ1α1( 􏼁 1 − σ1( 􏼁

J dδ
+

μ2α2( 􏼁 1 − σ2( 􏼁

Jeδ
+

1 − c1( 􏼁 μ1α1( 􏼁 μ3σ1( 􏼁

J dδ
,

T �
1 − c1( 􏼁 μ3σ1( 􏼁

m dδ
+
1 − σ1

dδ
.

(10)

Multiplying F and V− 1 together and calculating the
spectral radius, we have

R0 �
β
J

+
βμ1α1

J d
+
βμ2α2

Je
,

R0 �
β

μ1α1 + μ2α2
+

βμ1α1
μ1α1 + μ2α2( 􏼁 μ3σ1 + 1 − σ1( 􏼁( 􏼁

+
βμ2α2

μ1α1 + μ2α2( 􏼁 μ4σ2 + 1 − σ2( 􏼁( 􏼁
.

(11)
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4.1. Global Stability Condition for Disease-Free Equilibrium.
In this section, we present two conditions, and if they are
satisfied, they allow us to say that the disease-free equilib-
rium is globally asymptotically stable. First, system (1) must
be written in the following form:

dX

dt
� W(X, Y),

dY

dt
� G(X, Y), G(X, 0) � 0.

(12)

(H1) for dX/dt � W(X, 0), X∗ is globally asymptotic
stable (GAS), (H2) for G(X, Y) � QY− 􏽢G(X, Y), 􏽢G(X, Y)≥ 0
for (X, Y) ∈ B, where Q � (zG/zY)U0

is an Metzler matrix
(M-matrix, the off-diagonal elements of Q are nonnegative).
If the system satisfies these two conditions, then the fol-
lowing lemma holds.

Lemma 1. 6e disease-free equilibrium U0 � (X∗, 0) of
system (2) is globally asymptotically stable (GAS) provided
that R0 < 1 and assumptions (H1) and (H2) are satisfied.

Now, we state the following theorem.

Theorem 4. 6e disease-free equilibrium of system (1) is
globally asymptotically stable if R0 < 1.

Proof. Let X � (S, R) and Y � (E, L, I, A, H, D). We will
have

W(X, Y) �

− βS[L + I + A]

N

μ4σ2A + μ5c1H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13)

At the point (X, 0),  W(X, 0) � (0),  X∗ � (N, 0) is
globally asymptotically stable for dX/dt � W(X, 0). On the
other hand,

G(X, Y) �

βS[L + I + A]

N
− μE

μE − μ1α1 + μ2α2􏼂 􏼃L

μ1α1L − μ3σ1 + 1 − σ1( 􏼁􏼂 􏼃I

μ2α2L − μ4σ2 + 1 − σ2( 􏼁􏼂 􏼃A

μ3σ1I − μ5c1 + 1 − c1( 􏼁􏼂 􏼃H

1 − σ1( 􏼁I + 1 − σ2( 􏼁A + 1 − c1( 􏼁H − δD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

In addition, this follows that Q � (zG/zY)U0
,

Q �

− μ β β β 0 0

μ − μ1α1 + μ2α2( 􏼁 0 0 0 0

0 μ1α1 − μ3σ1 + 1 − σ1( 􏼁( 􏼁 0 0 0

0 μ2α2 0 − μ4σ2 + 1 − σ2( 􏼁( 􏼁 0 0

0 0 μ3σ1 0 − μ5c1 + 1 − c1( 􏼁( 􏼁 0

0 0 1 − σ1 1 − σ2 1 − c1 − δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)
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'e off-diagonal elements of Q are nonnegative, i.e., an
M-matrix and

􏽢G(X, Y) � QY − G(X, Y) �

β[L + I + A] − μE

μE − μ1α1 + μ2α2􏼂 􏼃L

μ1α1L − μ3σ1 + 1 − σ1( 􏼁􏼂 􏼃I

μ2α2L − μ4σ2 + 1 − σ2( 􏼁􏼂 􏼃A

μ3σ1I − μ5c1 + 1 − c1( 􏼁􏼂 􏼃H

1 − σ1( 􏼁I + 1 − σ2( 􏼁A + 1 − c1( 􏼁H − δD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

βS[L + I + A]

N
− μE

μE − μ1α1 + μ2α2􏼂 􏼃L

μ1α1L − μ3σ1 + 1 − σ1( 􏼁􏼂 􏼃I

μ2α2L − μ4σ2 + 1 − σ2( 􏼁􏼂 􏼃A

μ3σ1I − μ5c1 + 1 − c1( 􏼁􏼂 􏼃H

1 − σ1( 􏼁I + 1 − σ2( 􏼁A + 1 − c1( 􏼁H − δD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽢G(X, Y) �

(β[L + I + A]) 1 −
S

N
􏼒 􏼓

0

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Since S≤N,  1 − (S/N)≥ 0, and thus 􏽢G(X, Y)≥ 0. So,
the conditions (H1) and (H2) of Lemma 1 are satisfied, and
then this completes the global asymptotic stability of the
disease-free equilibrium of the proposed system (1) for
R0 < 1. □

5. Numerical Results and Discussion

In this section, we present the simulation of our
SELIAHRD model in two different scenarios. In order to
adjust the social distance, we multiply the transmission rate
β by a social distancing factor in order to obtain the two
scenarios.

(a) 'e mean incubation period was 5.2 days (95%
confidence interval) [9]. 'erefore, μ1 � 0.1923.

(b) 'ere is a mean 5-day delay from symptom onset to
detection/hospitalization of a case. 'e duration
from illness onset to the first medical visit for the 45
patients with illness onset before January 1 was
estimated to have a mean of 5.8 days [11]. So, we set
μ3 � 0.1724.

(c) 'e recovery rate c1 � 0.15 is determined by the
average duration of recovery D of infection. After
this period, they enter the recovery phase.

(d) Since there were no data on the proportion of
asymptomatic infection of the virus, we simulated
μ1 � μ2 and μ4 � 0.08.

(e) Symptomatic and asymptomatic infection rates
α1and α2 are defined as follows:

α1 �(symptomatic infected)/susceptible.
α2 �(asymptomatic infected)/susceptible.

In this first simulation, we assume that there is no social
distancing and a total population of 1.5 million. In this
scenario, Figures 2 and 3 show that the model predicts in the
next 85 days the total symptomatic infected person will reach
a peak of 31000 and the healthcare system will be overload
(only 15,869 of them get treatment). As a result, the model
predicts that the peak of deaths would be 15,665.

In the second simulation, we assume that 90% of pop-
ulation obey the rule of social distancing.

As can be seen in Figures 4 and 5, the peak of symp-
tomatic infected cases drops significantly to 50 and
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asymptomatic infected cases to 6, making the healthcare
system not overloaded at all and only around 5 deaths.

'e simulation results show that after 150 days, with the
presence of asymptomatic infection the basic reproduction
number R0 of coronavirus was 3.25 if there is no social
distancing and the healthcare system will be overloaded. On
the other hand, if the lockdown is fully operational (90% of
population respect of social distancing) even with the

presence of asymptomatic infection, the basic reproduction
number becomes R0 � 0.68 after 150 days and the healthcare
system will not be overloaded. 'e paper [12] proposed a
SEIAR model to simulate the epidemic dynamics of “SARS-
COV-2” and demonstrate the efficiency of quarantine and
government measure but didn’t take in consideration the
velocity of transition between different stages and the effect
of lockdown on the healthcare system.
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Figure 3: Simulation for the number of Dead, Hospitalized, and
Symptomatic infected.
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Figure 4: Simulation for the number of Exposed, Symptomatic
Infected, and Asymptomatic Infected with 90% of population
obeying the rule of social distancing.
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Figure 2: Simulation for the number of Exposed, Symptomatic
Infected, and Asymptomatic Infected.
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Figure 5: Simulation for the number of Dead, Hospitalized, and
Symptomatic Infected with 90% of population obeying the rule of
social distancing.
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6. Conclusions

'e world continues to pay a heavy price as the COVID-19
pandemic spreads. 'is paper proposes the mathematical
model SELIAHRD (Susceptible, Exposed, Latent, Symp-
tomatic, Asymptomatic, Hospitalized, Recovered, and
Death), with two kinds of infected people, that is, symp-
tomatic and asymptomatic. We assume that asymptomatic
people will not be hospitalized and have the probability to go
either recovered or dead. We calculate the basic repro-
duction number R0 and dynamics of disease-free equilib-
rium for the “SARS-CoV-2” using the proposed model.

'e SELIAHRD model will provide in the presence of
asymptomatic infected the number of hospitalized and of
deaths for the public authorities to develop the prevention
policies (cities lockdown, social distancing, testing, contact
tracing, etc.).'e simulation shows the importance of the social
distancing in making the number of infected and deaths de-
crease significantly even with the presence of asymptomatic
infection and not overloading the healthcare system.
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