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To expand the server capacity and reduce the bandwidth, P2P technologies are widely used in video streaming systems in recent
years. Each client in the P2P streaming network should select a group of neighbors by evaluating the QoS of the other nodes.
Unfortunately, the size of video streaming P2P network is usually very large, and evaluating the QoS of all the other nodes is
resource-consuming. An attractive way is that we can predict the QoS of a node by taking advantage of the past usage experiences
of a small number of the other clients who have evaluated this node. Therefore, collaborative filtering (CF) methods could be used
for QoS evaluation to select neighbors. However, we might use different QoS properties for different video streaming policies. If a
new video steaming policy needs to evaluate a newQoS property, but the historical experiences include very few evaluation data for
this QoS property, CF methods would incur severe overfitting issues, and the clients then might get unsatisfied recommendation
results. In this paper, we proposed a novel neural collaborative filtering method based on transfer learning, which can evaluate the
QoS with few historical data by evaluating the other different QoS properties with rich historical data.We conduct our experiments
on a large real-world dataset, the QoS values of which are obtained from 339 clients evaluating on the other 5825 clients. The
comprehensive experimental studies show that our approach offers higher prediction accuracy than the traditional collaborative
filtering approaches.

1. Introduction

In recent years, video content accounts for a large proportion
of global Internet consumption. Video steaming is gradually
becoming themost attractive service [1–3]. However, Internet
does not provide any quality of service guarantees to video
content delivery. To expand the server capacity and reduce
the video streaming bandwidth, P2P technologies are widely
adopted by many content delivery systems [4–7]. In a P2P
network, a peer not only downloads the media data from
the network but also uploads the download data to other
clients in the same network. To get a better user experience
of watching videos, each client (or node) in the P2P network
should select someother nodes as its neighbors in terms of the
quality of service (QoS) for this client [8–10]. For example, a
client might prefer to select nodes with high bandwidth. Due
to the different locations and network conditions, different
clients might have different QoS experience for the same

node. To get the neighbors with the best QoS, onemight want
to evaluate the QoS of all the other nodes for each client.
Unfortunately, the video streaming P2P network usually
includes an extremely large number of users, and evaluating
the QoS of all the nodes is time-consuming and resource-
consuming.

An attractive way is that we can predict the QoS value
of a node by taking advantage of the past usage experiences
of a small number of the other clients who have evaluated
this node. This refers to a famous technology, collaborative
filtering (CF), which has been extremely studied in rec-
ommender systems [11–13]. With the help of CF method,
each client only needs to know a small number of the real
QoS values of the other nodes to select neighbors. The core
idea is that if two clients have similar evaluation values
of a specific QoS for some known nodes, they might also
have similar QoS evaluation values for the other unknown
nodes.
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However, the neighbor selection policy might need to be
changed to improve the quality of video content delivery.
If the new policy uses the new QoS property to select
neighbors, but the historical user experiences include very
few data of this new QoS property, CF methods would
incur severe overfitting issues, and then each client might
get worse neighbor recommendation list. Transfer learning
aims to adapt a model trained in a source domain with rich
labeled data for use in a target domain with less labeled data,
where the source and target domain are usually related but
under different distributions [14–16]. Recently, deep neural
networks have yielded remarkable success on many applica-
tions, especially on the computer vision, speech recognition,
and natural language processing. Deep neural networks are
powerful for learning general and transferable features.There
are two major transfer learning scenarios, fine-tuning the
pretrained network or treating the pretrained network as a
fixed feature exactor. Instead of random initialization, we
can initialize the network with a pretrained network, or we
can freeze the weights of some layers of the network [17–
19].

Unlike many supervised transfer learning tasks, we can-
not simply fine-tune or freeze the weights of the network.
The only information about the nodes in the video streaming
P2P network is their identifiers (IDs) and the QoS evaluation
historical experience. There is no raw feature for each node,
and we need to lean abstract features for the nodes using
embedding. Freezing the embedding features seems unrea-
sonable. Furthermore, different QoS properties have different
value ranges, and fine-tuning will make the final weights
differ greatly from the initial weights pretrained in the
source domain. Due to the sparsity of target domain labeled
data, fine-tuning too much would incur severe overfitting
problem.

In this paper we proposed a novel neural style collabo-
rative filtering method, DTCF (Deep Transfer Collaborative
Filtering). We can first train the model using the QoS
evaluation data in the source domain and then adapt the
model in the target domain with different QoS property. The
core idea is that we only use the weights of first several layers
to initialize the same layers of themodel in the target domain,
and randomly initialize the remaining layers. To control
the degree of fine-tuning, we integrate the maximum mean
discrepancy (MMD)measurement into the loss function [20–
22]. The main contributions of our work are as follows:

(i) We propose a novel neural collaborative filtering
model for QoS prediction using transfer learning
technology.

(ii) We provide a novel interaction layer to represent the
relationship between latent embedding factors of the
nodes.

(iii) We adopt partial fine-tuning andMMDmeasurement
to train the target domain model to implement
domain adapting.

The remainder of this paper is organized as follows: We
introduce the related work in Section 2. Section 3 presents

the design details of our method. Section 4 describes our
experiments and Section 5 concludes this paper.

2. Related Work

Distributed user-generated videos delivery poses a new chal-
lenge to large-scale streaming systems. To stream live videos
generated by users, many existing video streaming systems
rely on a centralized network architecture [23–25]. Even these
streaming systems use Content Delivery Network (CDN) for
video delivery, such a kind of solution is not cost-effective
[26–28]. The unit price of content delivery over the Internet
has dramatically decreased in recent years. However, there
are higher requirements in terms of resolution, frame rate,
or bitrate than before. Therefore, the amount of bandwidth
consumed per user has grown at a faster rate. To reduce the
bandwidth or the costs and improve the user experience, the
P2P architectures can be adopted instead.

Collaborative filtering is a rational QoS prediction tech-
nology to select neighbors for each client in the P2P video
streaming network [29–31]. To select the best neighbors with
high delivery quality for the clients, CF should predict the
QoS values between the clients and then select the top 𝑘 best
neighbors in terms of the QoS values. Each client only knows
partial information about the QoS values for all the nodes
in the network. Memory-based CF methods are some kinds
of generalized k-nearest-neighbors (KNN) algorithms [32,
33], which have two types of models: user-based and item-
based.Model-based CFmethods aremore popular, which act
like generalized regression or classification algorithms, but
they deal with abstract features not concrete or raw features.
Amongmanymodel-based CFmethods, matrix factorization
has become themost popular technology to handle such kind
of issues [34–40]. Probabilistic Matrix Factorization (PMF)
model considers that the QoS values obey a normal Gaussian
distribution, and the latent factors should be learned from
zero-mean Gaussian distribution [41]. Nonnegative matrix
factorization (NMF) can learn the nonnegative latent factors
for the users or items, but it usually deals with the implicit
feedback [42–44].

However, even if matrix factorization CF algorithms have
obtained remarkable success, they have difficulty in dealing
with cross-domain learning tasks if the output values of
the source and target domain have different ranges. Deep
neural networks can easily learn general and transferable
features. More and more cross-domain applications adopt
deep learning technologies and have yielded remarkable per-
formance [45–47]. However, the exploration of deep neural
networks on recommender systems or QoS prediction has
received relatively less attraction. Recently, some studies have
proposed some deep learning-based collaborative filtering
models. Two impressive technologies are Google’s Wide &
Deep [48] and Microsoft’s Deep Crossing [49]. The input of
these models is side information, not the interaction between
the users and items. Neural Collaborative Filtering (NCF)
models are designed purely for user and item interactions
[50]. However, none of them are designed for cross-domain
QoS prediction.
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3. DTCF Model

For the cross-domain QoS prediction in the video stream-
ing P2P network, we are given a source domain D𝑠 ={⟨𝑥𝑠𝑖 , 𝑥𝑠𝑗, 𝑟𝑠𝑖𝑗⟩}𝑖 ̸=𝑗 with 𝑛𝑠 examples, which is characterized by
the probability distribution 𝑝 and a target domain D𝑡 ={⟨𝑥𝑡𝑘, 𝑥𝑡𝑙 , 𝑟𝑡𝑘𝑙⟩}𝑘 ̸=𝑙 with 𝑛𝑡 examples which is characterized by
the probability 𝑞. Usually the size of examples in the target
domain is extremely small, 𝑛𝑠 ≻ 𝑛𝑡. Our work aims to build a
deep neural network to learn transferable features that bridge
these two domains’ discrepancy.

3.1. Model Architecture Overview. We propose a novel neural
architecture, outlined in Figure 1. The source domain and
the target domain share the same network architecture. The
input of the model is the identifier number of the nodes. For
example, if size of nodes in the P2P network is 𝑛, the ID of
each node is an integer number from 1 to 𝑛. The output of the
mode is the QoS value that the node 𝑥𝑖 evaluates on the node𝑥𝑗.

Since we do not use any concrete feature for each node,
we need to learn abstract features for them. Here, we use
embedding layer to learn a continuous latent vector/factor u
for each node. The details of designing embedding layers are
described in Section 3.1.

If we get two latent vectors for 𝑥𝑖 and 𝑥𝑗, u𝑖 and u𝑗, one
might expect that we should concatenate these two vectors
and then use affine function W [u𝑖 u𝑗]T + b to transform
the latent vectors into the input of the other hidden layer
above. However, there is no interactive action between the
latent factors, but only weighted summation of elements of
the vectors. Some studies use the dot product of the vectors
to represent the interaction, which is described as follows.

u𝑖 ⊙ u𝑗 = ⟨𝑢𝑖,1 × 𝑢𝑗,1, 𝑢𝑖,2 × 𝑢𝑗,2, ⋅ ⋅ ⋅ , 𝑢𝑖,𝑑 × 𝑢𝑗,𝑑⟩ (1)

Unfortunately, it is too simple to completely represent the
complex interaction between nodes. In this paper, we propose
a novel interaction layer to tackle this problem, which has
powerful representation capacity. We will give the design
details in Section 3.2.

Above the interaction layer, we use ReLU as the hidden
layer. We might need multiple ReLU layers. The ReLU
activation function is as follows.

z𝑜 =Wa𝑖 + b

a𝑜 = (0, z𝑜) (2)

Finally, we use a fully connected layer to generate the
output. When training the model in the source domain, we
use the regression loss. We then use the all the layers of the
pretrainedmodel but the last FC layer to construct the model
for target domain. The weights of these layers are kept as the
initialized weights of the target domain model, but the final
FC layer is initialized randomly. To avoid the overadaptation
problem, we use both the domain loss and regression loss to
train the target domainmodel.Wewill describe how to design
the domain loss in Section 3.3.

3.2. Embedding Layer. Since we can assign a unique integer
number as the identifier for each node in the network, we can
use a one-hot vector to represent the identifier. If we have at
most 𝑛 nodes in the network, the 𝑖th nodes can be expressed
as follows.

k𝑖 = [V𝑖,1, V𝑖,2, . . . , V𝑖,𝑛]
V𝑖,𝑟 = {{{

1, 𝑖𝑓 𝑟 = 𝑖, 1 ≤ 𝑟 ≤ 𝑛
0, 𝑖𝑓 𝑟 ̸= 𝑖, 𝑟 ≤ 𝑙 ≤ 𝑛

(3)

Our embedding layer is defined as follows:

u𝑖 =Wk𝑖 (4)

whereW is a 𝑑 × 𝑛matrix. Expanding the formulasWk𝑖, we
can see the following.

Wk𝑖 =
[[[[[[[

𝑤11 𝑤12 ⋅ ⋅ ⋅ 𝑤1𝑚𝑤21 𝑤22 ⋅ ⋅ ⋅ 𝑤2𝑚... ... ⋅ ⋅ ⋅ ...𝑤𝑘1 𝑤𝑘2 ⋅ ⋅ ⋅ 𝑤𝑘𝑚

]]]]]]]

[[[[[[[[[[[[[[[[[[

00...1......0

]]]]]]]]]]]]]]]]]]

[[[[[[[[[[[[[[

𝑤1𝑖𝑤2𝑖...𝑤𝑖𝑖...𝑤𝑘𝑖

]]]]]]]]]]]]]]

(5)

Therefore, u𝑖 is the 𝑖th column of matrix W. Since the
node identifier number is transformed to a one-hot vector,
the result of matrix multiplication is exactly a specific latent
vector for each node. This weight matrix is jointly trained
with the other parameters of the whole network.

3.3. Interaction Layer. There are two inputs of the interaction
layer, u𝑖 and u𝑗. Suppose any single vector is a column vector,
and concatenating the two inputs will get a longer vector.This
concatenation vector will be transformed to another vector,
encoding interactive information between these two inputs.
The transformation process is outlined in Figure 2.

Suppose the output of interaction layer is a vector h, the
length of which is 𝑘.The 𝑠th element of the vector h is defined
as follows.

ℎ𝑐 = [uT𝑖 uT𝑗 ]W𝑠 [u𝑖u𝑗] + 𝑏𝑠 (6)

If the length of u𝑖 is 𝑑,W𝑠 is a 2𝑑×2𝑑 squarematrix. ℎ𝑐 is a
scalar, the value of which is determined by thematrixW𝑠 and
the bias 𝑏𝑠. If the length of h is 𝑘, we need 𝑘 weight matrices
and biases.
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Figure 1: DTCF architecture.
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Figure 2: Interaction layer.

ℎ𝑐 include all the possible interaction relationships
between u𝑖 and u𝑗. Denote UT = [uT𝑖 uT𝑗 ] =[U1,U2, . . . ,U2𝑘], and we can see that ℎ𝑐 = ∑𝑤𝑖𝑗𝑠 U𝑖U𝑗 + 𝑏𝑠,
where 𝑤𝑖𝑗𝑠 is the element at the 𝑖th row and the 𝑗th column in
the matrixW𝑠

3.4. Domain Loss. The output of the last ReLU layer of the
model in the source domain is denoted as h𝑠, and the output
of the last ReLU layer of the model in the target domain
is denoted as h𝑡. If we want to avoid the overadaptation
problem, one possible way is to minimize the differences
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between the distributions 𝑝 = Pr(𝑥𝑠𝑖 , 𝑥𝑠𝑗, h𝑠(𝑥𝑠𝑖 , 𝑥𝑠𝑗)) and 𝑞 =
Pr(𝑥𝑡𝑖 , 𝑥𝑡𝑗, h𝑡(𝑥𝑡𝑖 , 𝑥𝑡𝑗)), where 𝑥𝑠𝑖 = 𝑥𝑡𝑖 and 𝑥𝑠𝑗 = 𝑥𝑡𝑗.

Let (X, 𝐷) be a metric space, and ⟨𝑥𝑠𝑖 , 𝑥𝑠𝑗, h𝑠(𝑥𝑠𝑖 , 𝑥𝑠𝑗)⟩ ∈ X,⟨𝑥𝑡𝑖 , 𝑥𝑡𝑗, h𝑡(𝑥𝑡𝑖 , 𝑥𝑡𝑗)⟩ ∈ X. LetF be a class of functions𝑓:X 󳨀→
R, and the MaximumMean Discrepancy (MMD) is as [22]

MMD [F, 𝑝, 𝑞] = sup
𝑓∈F

(Es∼𝑝 [𝑓 (s)] − Et∼𝑞 [𝑓 (t)]) (7)

where s = ⟨𝑥𝑠𝑖 , 𝑥𝑠𝑗, h𝑠(𝑥𝑠𝑖 , 𝑥𝑠𝑗)⟩ ∈ S and t = ⟨𝑥𝑡𝑖 , 𝑥𝑡𝑗, h𝑡(𝑥𝑡𝑖 , 𝑥𝑡𝑗)⟩ ∈
T.

Denote ⟨𝑥𝑠𝑖 , 𝑥𝑠𝑗⟩ ∈ S𝑥 and ⟨𝑥𝑡𝑖 , 𝑥𝑡𝑗⟩ ∈ T𝑥. The biased
empirical estimated of the MMD is defined as follows.

MMD [F, S,T]
= sup
𝑓∈F

1󵄨󵄨󵄨󵄨S𝑥 ∩ T𝑥
󵄨󵄨󵄨󵄨 ∑
s𝑖 ,t𝑖∈S𝑥∩T𝑥

([𝑓 (s𝑖)] − [𝑓 (t𝑖)]) (8)

If the function class F is too large, it is not practical
to work with this rich function class in the finite sample
setting. A rational choice of the function class is a universal
reproducing kernel Hilbert spaceH, named universal RKHS.
Therefore, we have that 𝑓(𝑥) = ⟨𝑓, 𝜙(𝑥)⟩H, where 𝑓 ∈ H.
The kernel function 𝑘(𝑥, 𝑦) is equal to ⟨𝜙(𝑥), 𝜙(𝑦)⟩.

Denote 𝑓 = 𝜙(𝑎) = 𝑘(𝑎, ⋅), and we can get the
mean embedding of the distribution 𝑝; that is, 𝜇𝑝(𝑎) =⟨𝜇𝑝, 𝑘(𝑎, ⋅)⟩ = E𝑥𝑘(𝑎, 𝑥). From [22], we can obtain the
following.

MMD [F, 𝑝, 𝑞]2
= [ sup
‖𝑓‖H≤1

(Es∼𝑝 [𝑓 (s)] − Et∼𝑞 [𝑓 (t)])]2

= [ sup
‖𝑓‖H≤1

⟨𝜇𝑝 − 𝜇𝑞, 𝑓⟩H]
2 = 󵄩󵄩󵄩󵄩󵄩𝜇𝑝 − 𝜇𝑞󵄩󵄩󵄩󵄩󵄩2H

= Es,s󸀠 [𝑘 (s, s󸀠)] − 2Es,t [𝑘 (s, t)] + Et,t󸀠 [𝑘 (t, t󸀠)]

(9)

Similarly, the empirical estimate can be defined now as
follows.

MMD [F, S,T]2 = 1𝐿2
𝐿∑
𝑖=1

𝐿∑
𝑗 ̸=𝑖

𝑘 (s𝑖, s𝑗)
+ 1𝐿2

𝐿∑
𝑖=1

𝐿∑
𝑗 ̸=𝑖

𝑘 (t𝑖, t𝑗)
− 2𝐿2

𝐿∑
𝑖=1

𝐿∑
𝑗=1

𝑘 (s𝑖, t𝑗)
(10)

In this paper, we use the empirical estimate of MMD2
as the domain loss. What we need to do is to select suitable
universal kernel function. Here, we adopt Gaussian kernel
function, which is defined as follows.

𝑘 (𝑥, 𝑦) = exp(−󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩22𝛿2 ) (11)

3.5. Algorithm. The total loss of target domain includes
regression loss and MMD loss. We use the minibatch to
train the model. Only a small group of examples are used
to compute the loss per training iteration. Denote the set of
the minibatch examples in the source domain M𝑠 and the
set of the minibatch examples in the target domain M𝑡. The
loss function of the model in the source domain is defined as
follows.

L (M𝑠) = 1󵄨󵄨󵄨󵄨M𝑠󵄨󵄨󵄨󵄨 ∑ (𝑟𝑖𝑗 − 𝑟𝑖𝑗)2 (12)

However, the loss function of the model in the target domain
is defined as

L (M𝑡) = 1󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨 ∑ (𝑟𝑖𝑗 − 𝑟𝑖𝑗)2 +MMD [F, S,T]2 (13)

where S𝑥 ∩ T𝑥 =M𝑡.
To optimize our model, we need to compute the gradient

of eachweight. For anyweigh related to both of the regression
and domain loss, its gradient is computed as follows.

𝜕L (M𝑡)𝜕𝑤
= 1󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨 ∑

𝜕 (𝑟𝑖𝑗 − 𝑟𝑖𝑗)2𝜕𝑤 + 𝜕MMD [F, S,T]2𝜕𝑤
= 2󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨 ∑

(𝑟𝑖𝑗 − 𝑟𝑖𝑗) 𝜕𝑟𝑖𝑗𝜕𝑤
+ 2MMD [F, S,T] 𝜕MMD [F, S,T]𝜕𝑤

(14)

𝜕MMD [F, S,T]𝜕𝑤
= − 2󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨∑𝑖 ̸=𝑗 exp(−

󵄩󵄩󵄩󵄩󵄩h𝑡𝑖 − h𝑡𝑗
󵄩󵄩󵄩󵄩󵄩22𝛿2 )󵄩󵄩󵄩󵄩󵄩h𝑡𝑖 − h𝑠𝑗

󵄩󵄩󵄩󵄩󵄩 𝜕h𝑡𝑖𝜕𝑤
− 2󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨∑𝑖 ̸=𝑗 exp(−

󵄩󵄩󵄩󵄩󵄩h𝑡𝑖 − h𝑡𝑗
󵄩󵄩󵄩󵄩󵄩22𝛿2 )󵄩󵄩󵄩󵄩󵄩h𝑡𝑖 − h𝑠𝑗

󵄩󵄩󵄩󵄩󵄩 𝜕h
𝑡
𝑗𝜕𝑤

+ 4󵄨󵄨󵄨󵄨M𝑡󵄨󵄨󵄨󵄨 ∑ exp(−󵄩󵄩󵄩󵄩󵄩h𝑠𝑖 − h𝑡𝑗
󵄩󵄩󵄩󵄩󵄩22𝛿2 )󵄩󵄩󵄩󵄩󵄩h𝑠𝑖 − h𝑡𝑗

󵄩󵄩󵄩󵄩󵄩 𝜕h
𝑡
𝑗𝜕𝑤

(15)

Note that h𝑠𝑖 is not used for computing gradients, because
we only train the target domainmodel after pretraining in the
source domain. The training process is described as follows:

(i) We first train the model of the source domain using
the loss functionL(M𝑠). The gradient of each weigh
is computed according to formula (13).

(ii) After training, we use the weights of this model to
initialize the model in the target domain except the
weights of the last FC layer. The last FC layer of the
model of the target domain is initialized randomly.
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(iii) While training themodel of the target domain, we use
the loss functionL(M𝑡).

(iv) For each training iteration, we randomly select exam-
ples in the dataset, and compute the gradient accord-
ing to formulas (14) and (15).

(v) We use ADAM (AdaptiveMoment Estimation) as the
optimizer.

4. Experimental Results

4.1. Dataset and Evaluation Metrics. We conduct our exper-
iments on a publicly large accessible dataset, WS-DREAM
dataset#1, obtained from 339 hosts doing QoS evaluation on
the other 5825 hosts. There are two types of QoS properties
in this dataset: response time and throughput. Here, we use
the response time as the source domain, and the throughput
as the target domain.

For the source domain, we randomly extract 30% (den-
sity) of the data as the source training set. For the target
domain, we construct 5 different training sets with different
density of 0.5%, 1%, 1.5%, 2%, 2.5%, and 3%. Consequently,
the remaining data is the test set.

We adopt a common evaluation metric: Mean Absolute
Error (MAE), which is widely employed to measure the QoS
prediction quality.

𝑀𝐴𝐸 = ∑(𝑖,𝑗,𝑟𝑖,𝑗)∈Q𝐸 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗 − 𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Q𝐸󵄨󵄨󵄨󵄨 (16)

4.2. Performance Comparison. We compare our methods
with some traditional collaborative filteringmethods: UPCC,
IPCC, UIPCC [34], and matrix factorization (MF). UPCC
is a user-based CF method, which uses PCC (Pearson
Correlation Coefficient) to calculate the similarity between
users. IPCC is similar to UPCC, except that it calculates the
similarity between items. UIPCC combines the advantages
of these two methods by balancing the proportions of them
in the final results. For UPCC, IPCC, and UIPCC, different
tradeoff parameters 𝑘 = 5, 10, 15, 20, 25, 30 (the parameters
of top 𝑘 similar users or services) are tried, and finally we
choose 𝑘 = 10. For MF and DTCF, the sizes of latent factors
are also set to 10. For DTCF, different hidden ReLU layers
and different hidden unit sizes are tried. Here, the maximum
number of hidden layers is limited to 5. We tested the batch
size of [128, 256, 512, 1024], the learning rate of [0.0001,0.0005,
0.001, 0.005], and the training epoch of [10, 20, 30, 40, 50,
60, 70, 80]. The bandwidth 𝛿 is set to the median pairwise
distance on the source training data.

We conduct 10 experiments for each model and each
sparsity level and then average the prediction accuracy values.

The results are reported in Figures 3 and 4. We can make
the following observations:

(i) As the sparsity level increases, the MAEs of all the
models decrease.

(ii) Our DTCFmethods outperform the other traditional
collaborative filtering methods, especially when the
training set is extremely sparse.

UPCC
IPCC
UIPCC
MF
DTCF

0
20

40
60

80
M

A
E

0.010 0.015 0.020 0.025 0.0300.005
Density

Figure 3: MAE with respect to density.

(iii) DTCF model has more weights that need to be
trained than the other models, but it gets the best
performance, which indicates that the relationship
between nodes is very complex, and shallow models
cannot capture these structures.

Although shallow models are not easily overfitting when
the target domain training dataset is extremely sparse, they
cannot transfer rich information from the source domain.
The deep models might easily incur overfitting problem,
but they can learn common latent features from the source
domain. To balance this dilemma, we need to control the
degree of fine-tuning the deepmodel.This experiment shows
that MMD domain loss is an efficient way of controlling the
adapting degree.

4.3. Impact of the Network Depth. The network depth usually
has important impact on the prediction performance. Here,
the number of neurons of each ReLU is set to 128, and we add
the number of ReLU layers from 1 to 6 to see how the MAE
values change.The experimental result is outlined in Figure 5,
from which we can see the following:

(i) Adding more ReLU layers can get better prediction
performance, but when the depth exceeds a limited
value, the performance starts to become worse.

(ii) Although adding more ReLU layers can improve the
performance, it seems that enlarging the size of the
training data would be more helpful.

(iii) Sometimes, adding more layers would not improve
the performance anymore, but it also does not get
worse prediction performance. This indicates that
deep neural network has some kind of regularization
property.

Actually, if the training dataset is very large, adding more
layers usually does not incur overfitting problems, but for the



International Journal of Digital Multimedia Broadcasting 7

UPCC
IPCC
UIPCC
MF
DTCF

0
10

20
30

40
50

60
70

(a) Density=0.5%

UPCC
IPCC
UIPCC
MF
DTCF

0
10

20
30

40
50

60
70

(b) Density=1%

UPCC
IPCC
UIPCC
MF
DTCF

0
10

20
30

40
50

60
70

(c) Density=1.5%

UPCC
IPCC
UIPCC
MF
DTCF

0
10

20
30

40
50

60
70
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Figure 4: MAE comparison for each density.
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Figure 5: MAE with respect to number of ReLU layers.

cross-domain learning, the target domain has very little data,
so the network depth needs control.

4.4. Impact of the Gaussian Kernel Bandwidth. Another
hyperparameter that we need to determine is the Gaussian

Density=0.5%
Density=1.0%
Density=1.5%
Density=2.0%
Density=2.5%
Density=3.0%

25
30

35
M

A
E

1.0 1.5 2.00.5
Gaussian Kernel Bandwidth Scale

Figure 6: MAE with respect to Gaussian kernel bandwidth scale.

kernel bandwidth. By default, it is set to the median pairwise
distance on the source training data. We scale the default
value from 0.25 to 2.0, and the experimental result is outlined
in Figure 6.
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(i) Obviously, the default value is a rational choice,
and scaling too small or too large would get worse
prediction performance.

(ii) If the bandwidth is too large, the kernel will be
approximately equal to 1, and the nodes would look
the same. We cannot propose personal recommenda-
tion for them.

(iii) If the bandwidth is too small, the kernel will be
approximately equal to 0, and the nodes cannot find
similar neighbors to follow their past experiences.

5. Conclusion

Selecting neighbors in terms of the QoS is an effective way
of providing high quality contents in video streaming P2P
networks. Due to the heterogeneous network conditions,
the QoS between any pairs of nodes is different. However,
evaluating the QoS of all the nodes for each user is resource-
consuming. An attractive way is to adopt collaborative
filtering technologies, which use only a small amount of past
usage experience.

Unfortunately, the video content providers might often
choose different QoS properties to select neighbors. Tra-
ditional CF methods cannot solve the cross-domain QoS
prediction problem.This paper proposed a novel neural style
CF method based on transfer learning. We first outlined our
model architecture and then introduced the details of impor-
tant parts of thismodel. To avoid the overadaptation problem,
we combined domain loss and prediction loss together to
train the model of the target domain. We adopted MMD
distance as our domain loss, and we also provide its principle
and how to compute the gradient. Finally, we conducted our
experiments on a real-world public dataset.The experimental
results show that our DTCF model can outperform the other
models for cross-domain QoS prediction.

Data Availability

The WS-Dream data used to support the finding of this
study is owned by a third party, which is an open dataset
and is deposited in “https://github.com/wsdream/wsdream-
dataset”.
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