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It is a difficult task to estimate the human transition motion without the specialized software. The 3-dimensional (3D) human
motion animation is widely used in video game, movie, and so on. When making the animation, human transition motion is
necessary. If there is a method that can generate the transition motion, the making time will cost less and the working efficiency
will be improved.Thus a newmethod called latent space optimization based on projection analysis (LSOPA) is proposed to estimate
the human transition motion. LSOPA is carried out under the assistance of Gaussian process dynamical models (GPDM); it builds
the object function to optimize the data in the low dimensional (LD) space, and the optimized data in LD space will be obtained
to generate the human transition motion. The LSOPA can make the GPDM learn the high dimensional (HD) data to estimate the
needed transition motion. The excellent performance of LSOPA will be tested by the experiments.

1. Introduction

3-dimensional (3D) human motion animation is applied in
many fields, such as video game and movie. It is necessary to
estimate the human transition motion for making all kinds
of 3D animations [1–4]. Estimating the human transition
motion is crucial to making the smooth animation of the 3D
humanmotion; it is a branch of humanmotion estimation. As
to technologies of human motion estimation, there are some
advanced methods in recent years, such as multiview image
segmentation [5], sparse presentation [6], and convolutional
neural network (CNN) coupled with a geometric prior
[7]. These methods focus on the reconstruction of the 3D
humanmotion from the 2-dimensional (2D) image sequence.
The needed data is the high dimensional data of the 3D
human motion model. The mapping will be built between
the model and the 2D image for each frame. However, it
is difficult to build the mapping without the overcomplete
prior information, as a result of the data complexity during
the optimization. Some human poses contain the ambiguity
of limbs; for example, it is hard to determine which thigh
is in the front from the silhouette. The right thigh or left
thigh cannot be confirmed. The problem is that if we have
enough prior information to distinguish the ambiguity, the

reconstruction will be achieved easily. Thus the generated
model of 3D human motion is necessary; the samples of the
model can be obtained to construct the prior information.
Besides, the generatedmodel can also generate the 3D human
motion for making 3D character movie. Then the generated
model can be built through the unsupervised learning.
The unsupervised learning of the model is the necessary
supplement of the advantaged methods above. In this paper,
how to generate the human transition motion will be mainly
discussed in the following sections

If there is a method that can estimate the valid human
transition motion, the animation making time will cost less,
and the work will get easier. Thus a new method called latent
space optimization based on projection analysis (LSOPA) is
proposed to estimate the human transition motion. LSOPA
needs to combine Gaussian process dynamical models
(GPDM) [8] to process the low dimensional (LD) data.
GPDM is the derivation of some dimension reductionmodels
[9–13]; it can provide the prediction of the LD data. After the
dimension reduction, LD data will be optimized by LSOPA,
so that the valid human transitionmotion can be generated to
achieve the estimation.Thehumanmotion is described by the
high dimensional data. If the HD data sample is searched in
its own dimensional space, the invalid data will be generated;
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it means the generated humanmotion in 3Dwill be abnormal
[14]. GPDM is an unsupervised learning model; it can learn
the high dimensional data (HD) sample and estimate the
new one, but it needs to process the LD data in the LD
space. In the LD space, the LD data can be searched, and
the corresponding valid HD data can be generated by the
mapping from LD data to HD data. Some methods [15–17]
can process the LD data, but the generated LD data are all
unreliable and undetermined during the optimization, as a
result of the randomization of these methods. The LSOPA
can do this work to process the LD data better and ensure
the valid transition motion can be generated. The excellent
performance of LSOPA will be tested by the experiments in
the corresponding section.

The human motion is described by a 3D human motion
model. The model has some markers to show the limbs
of human motion; it is the HD data. When we make the
3D human motion animation and only have the samples
of the two irrelevant human motions, it is necessary to use
the transition motion to connect the two irrelevant human
motions, so that the complete and smooth human motion in
3D is constructed. Meanwhile, the transition motion consists
of many poses, and the poses are all the HD data samples of
3D human model, thus how to estimate the valid transition
motion is a challenged task. However, the LSOPA can take
the advantage of the GPDM to generate the valid transition
motion and avoid generating the invalid pose of the transition
motion. The proposed method will be discussed in the
following sections.

2. Dimension Reduction

When we have the sequence of HD data samples Y =[y1, ..., y𝑖, ..., y𝑁]T ∈ R𝑁×𝐷, y𝑖 ∈ R𝐷, the corresponding LD
data X = [x1, ..., x𝑖, ..., x𝑁]T ∈ R𝑁×𝑞, x𝑖 ∈ R𝑞 can be obtained
as the following equations from GPDM [8]:

𝑝 (Y | X,𝛽,W)

= |W|𝑁
√(2𝜋)𝑁𝐷 󵄨󵄨󵄨󵄨KY

󵄨󵄨󵄨󵄨𝐷
exp(−12

⋅ tr (K−1𝑌 YW2YT)) ,

(1)

𝑝 (X | 𝛼)

= 𝑝 (x1)
√(2𝜋)(𝑁−1)𝑞 󵄨󵄨󵄨󵄨Kx

󵄨󵄨󵄨󵄨𝑞
exp (−12

⋅ tr (KX
−1X2:𝑁X

T
2:𝑁)) ,

(2)

(KY)𝑖,𝑗 = 𝑘Y (x𝑖, x𝑗) = exp(−𝛽12
󵄩󵄩󵄩󵄩󵄩x𝑖 − x𝑗

󵄩󵄩󵄩󵄩󵄩2)
+ 𝛽−12 𝛿x𝑖x𝑗 ,

(3)

(KX)𝑖,𝑗 = 𝑘X (x𝑖, x𝑗) = 𝛼1 exp(−𝛼22
󵄩󵄩󵄩󵄩󵄩x𝑖 − x𝑗

󵄩󵄩󵄩󵄩󵄩2)
+ 𝛼3x𝑖Tx𝑗 + 𝛼4−1𝛿x𝑖x𝑗 ,

(4)

𝑝 (W) = 𝐷∏
𝑚=1

2
𝜅√2𝜋 exp(−𝑤2𝑚2𝜅2) , (5)

𝑝 (𝛼) ∝ ∏
𝑖

𝛼−1𝑖 , (6)

𝑝 (𝛽) ∝ ∏
𝑖

𝛽−1𝑖 , (7)

X,𝛼,𝛽,W = arg min
X,𝛼,𝛽,W

(− ln𝑝 (X,𝛼,𝛽,W,Y))

= arg min
X,𝛼,𝛽,W

(− ln (𝑝 (Y | X,𝛽,W)

⋅ 𝑝 (X | 𝛼) 𝑝 (𝛼) 𝑝 (𝛽) 𝑝 (W)) ,

(8)

Equations (1)-(7) are used to computing (8), then the X and
the other parameters can be got. In (1) and (2), we have the
sequences X ∈ R𝑁×𝑞, Y ∈ R𝑁×𝐷, respectively, Y denotes the
HD data samples of 3D human motion, and X denotes the
LD data of Y in the LD space after the dimension reduction.
In (3) and (4), KY ∈ R𝑁×𝑁 and KX ∈ R(𝑁−1)×(𝑁−1) are kernel
matrices, respectively, 𝛽 = [𝛽1, 𝛽2] and 𝛼 = [𝛼1, 𝛼2, 𝛼3, 𝛼4]
are their corresponding kernel parameters, and they satisfy
the relation of (6) and (7), respectively. Equations (3) and
(4) are showing the method of computing the two kernel
matrices KY and KX. W = diag(𝑤1, ..., 𝑤𝑚, ..., 𝑤𝐷) ∈ R𝐷×𝐷
is a scale diagonal matrix with the preset parameter 𝜅, x1
conforms Gaussian distribution of 𝑞 dimensions, and X2:𝑁
is the sequence X2:𝑁 = [x2, x3, ..., x𝑁]T ∈ R(𝑁−1)×𝑞. The
mapping from LD data to HD data can be built as follows:

y∗ = f (x∗) = 𝜇Y (x∗)
= YTK−1Y [𝑘Y (x1, x∗) , 𝑘Y (x2, x∗) , . . . , 𝑘Y (x𝑁, x∗)]T
= YTK−1Y kY (x∗) .

(9)

The GPDM has a dynamic process. It can predict the LD
data in the latent space (also called LD space) and generate
the needed HD data of human motion, so that it has better
performance than other dimension reduction models. Thus
GPDM can be selected to learn the samples of the two
different human motions; then the LD space can be built to
find the needed LD data of the transition motion, so that
corresponding poses can be generated through the mapping
of (9).
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Figure 1: The LD data of the two irrelevant human motions.

3. Latent Space Optimization Based on
Projection Analysis

3.1. The LD Data of the Transition Motion in the LD Space.
After the dimension reduction, the HD data samples of the
two irrelevant human motions can be seen in the LD space.
The LD data of two difference sequences can denote the
corresponding poses of the two irrelevant human motions.
It can be found that there is an obvious distance between
the two LD data as Figure 1 shows. From the two sets of
LD data, we can know the needed transition motion can be
generated through the LD space, but it needs to construct an
appropriated curve to connect the two sets of LD data in the
LD space. Thus, the optimized work will be started.

3.2. Optimization in the LD Space. Assume that X1 =
[x11, x12, ..., x1𝑁1]T ∈ R𝑁1×𝑞, X2 = [x21, x22, ..., x2𝑁2]T ∈ R𝑁2×𝑞 are,
respectively, the LDdata of the two irrelevant humanmotions
after dimension reduction, the first motion has 𝑁1 frames,
and the second motion has 𝑁2 frames. The positions of the
corresponding LD data can be seen in Figure 2. In Figure 2,
the derivations of 𝐿 can be got as follows:

𝐿

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x󸀠𝑖 − x1𝑁1) − (x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1) (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
, (10)

A = (x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩
. (11)

From Figure 2, we can see 𝐿 denotes the distance from the LD
data sample x󸀠𝑖 ∈ R3 to its projectionA in (10), andwe can also
see the vector (B−x1𝑁1) is the projection of the vector (x󸀠𝑖−x1𝑁1)

in the plane 𝜔. Assume the set of bases B∗ = [b1, b2, ..., b𝑞] ∈
R𝑞×𝑞 in the plane 𝜔, b𝑖 ∈ R3, 𝑖 = 1, 2, ...𝑞 is the vector from
the plane 𝜔; we can get

Proj𝜔 (x󸀠𝑖 − x1𝑁1) = (B − x1𝑁1) , (12)

(x󸀠𝑖 − x1𝑁1) − Proj𝜔 (x󸀠𝑖 − x1𝑁1) = Projc𝜔 (x󸀠𝑖 − x1𝑁1) . (13)

ProjH denotes the projective operation, which means obtain-
ing the projective vector or plane of H. ProjcH denotes the
complement of the projective operation ProjH, which means
obtaining the vector perpendicular to projective vector from
the operation ProjH. In (12) and (13), the complement of the
projection vector is perpendicular to the plane 𝜔; thus the
equation can be got from (13) as follows:

B∗T ((x󸀠𝑖 − x1𝑁1) − Proj𝜔 (x󸀠𝑖 − x1𝑁1))
= B∗TProjc𝜔 (x󸀠𝑖 − x1𝑁1) = 0.

(14)

In (14),B∗ ∈ R𝑞×𝑞; thenProj𝜔(x󸀠𝑖 −x1𝑁1) is a vector of the plane𝜔, and (15) can deduced from this:

Proj𝜔 (x󸀠𝑖 − x1𝑁1) = B∗ỹ = 𝑦1b1 + 𝑦2b2 + . . . + 𝑦𝑞b𝑞. (15)

In (15), Proj𝜔(x󸀠𝑖 − x1𝑁1) ∈ 𝜔 can be denoted by the bases b𝑖 ∈
R3, 𝑖 = 1, 2, ...𝑞 and coefficients ỹ = [𝑦1, 𝑦2, ..., 𝑦𝑞]T ∈ R𝑞;
then B∗ = [b1, b2, ..., b𝑞] ∈ R𝑞×𝑞. Substituting (15) into (14),
the following equation can be deduced:

B∗T ((x󸀠𝑖 − x1𝑁1) − B∗ỹ) = 0. (16)

Simplify (16), compute the least squares estimator of ỹ, and
get the equation as below:

ỹ = (B∗TB∗)−1 B∗T (x󸀠𝑖 − x1𝑁1) . (17)

Substitute (12) and (17) into (15); the following equation can
be obtained:

Proj𝜔 (x󸀠𝑖 − x1𝑁1) = (B − x𝑁1)
= B∗ (B∗TB∗)−1 B∗T (x󸀠𝑖 − x1𝑁1) .

(18)

From (15) to (18), we have ỹ ∈ R𝑞, and the bases b𝑖 ∈ R𝑞, 𝑖 =1, 2, ..., 𝑞 are linearly independent.
Our task is to find the optimal LD data sequence of the

transition motion between x1𝑁1 and x21; thus we can build the
constraint functions to describe position of the needed LD
data sequence X󸀠 = [x󸀠1, x󸀠2, ..., x󸀠𝑁󸀠]T ∈ R𝑁

󸀠×𝑞 as follows:
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Figure 2: The analysis of the optimized models.

(x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩
= 𝑖 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1) ,

𝑖 = 1, 2, . . . , 𝑁󸀠.
(19)

Equation (19) denotes confirming the projection distance in
the vector (x21 − x1𝑁1) from each x󸀠𝑖 ∈ R𝑞, 𝑖 = 1, 2, ...𝑁󸀠; then,
we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(x󸀠𝑖 − x1𝑁1) − (x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1) (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑙 (𝑖) 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1) = 𝐿, 𝑖 = 1, 2, . . . , 𝑁󸀠.
(20)

Equation (20) denotes confirming the distance between x󸀠𝑖
and Proj(x21−x1𝑁1 )x

󸀠
𝑖 ; meanwhile, we can get

arccos B󸀠TC
(󵄩󵄩󵄩󵄩B󸀠󵄩󵄩󵄩󵄩 ‖C‖) < 𝜃 (𝑖) , 𝑖 = 1, 2, . . . 𝑁󸀠. (21)

In (21), B󸀠 = (B − x𝑁1) is a vector of Proj𝜔(x󸀠𝑖 − x1𝑁1)
which is perpendicular to the plane 𝜔. C is a preset vector
in the plane 𝜔; it can be seen as the reference of computing
the angle of (21). In (19)-(21), the LD data of the transition
motion can be described in the LD space and 𝑙(𝑖) is the preset
values of adjusting the value of 𝐿. 𝜃(𝑖) is preset angle which
is describing the deviation of the LD data position. Then the
projection and corresponding vector can be used to build
these constraint functions, so that an object function with
constraints can be obtained as follows:

argmin
x󸀠
𝑖

󵄩󵄩󵄩󵄩󵄩y󸀠𝑖 − y󸀠𝑖−1
󵄩󵄩󵄩󵄩󵄩 = argmin

x󸀠
𝑖

󵄩󵄩󵄩󵄩󵄩f (x󸀠𝑖) − f (x󸀠𝑖−1)󵄩󵄩󵄩󵄩󵄩 , x󸀠0 = x1𝑁1 , 𝑖 = 1, 2, . . . , 𝑁󸀠,

𝑠.𝑡.

{{{{{{{{{{{{{{{{{{{{{{{

(x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩
= 𝑖 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(x󸀠𝑖 − x1𝑁1) − (x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1) (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 𝑙 (𝑖) 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1) ,

arccos B󸀠TC
(󵄩󵄩󵄩󵄩B󸀠󵄩󵄩󵄩󵄩 ‖C‖) < 𝜃 (𝑖)

𝑖 = 1, 2, . . . , 𝑁󸀠.
(22)

The optimized object function of (22) ensures that the frames
of the transitionmotion can be varying regularly and the valid
transition motion will be seen in the vision. The solution of
(22) can be obtained by the method in [18].

3.3. The Procedure of the LSOPA. When the two irrelevant
human motion samples are obtained, the two samples are

denoted by Y1 = [y11, y12, ..., y1𝑁1]T ∈ R𝑁1×𝑞, Y2 =
[y21 , y22, ..., y2𝑁2]T ∈ R𝑁2×𝑞. Then, we have the following.

LSOPA

(1) Let Y = [YT
1 ,YT
2 ]T; use the method called principal

component analysis (PCA) to initiate Y and get the
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Input: Y1, Y2; Output: Ynew, Xu, 𝛼u, 𝛽u,Wu

Preset 𝜃(𝑖), 𝑙(𝑖), 𝑖 = 1, 2, ...𝑁󸀠, C, 𝛼, 𝛽,W;
Y = [YT

1 ,YT
2 ]T;

Use PCA to process Y, and get X = [XT
1 ,XT
2 ]T;

X,𝛼,𝛽,W = arg min
X,𝛼,𝛽,W

(− ln𝑝(X,𝛼,𝛽,W,Y));
For i=1 to𝑁󸀠
argmin

x󸀠
𝑖

󵄩󵄩󵄩󵄩y󸀠𝑖 − y󸀠𝑖−1
󵄩󵄩󵄩󵄩 = argmin

x󸀠
𝑖

󵄩󵄩󵄩󵄩f(x󸀠𝑖 ) − f(x󸀠𝑖−1)󵄩󵄩󵄩󵄩 , x󸀠0 = x1𝑁1 ,

𝑠.𝑡.

{{{{{{{{{{{{{{{{{{{{{{{

(x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1 )󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩
= 𝑖 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(x󸀠𝑖 − x1𝑁1 ) − (x󸀠𝑖 − x1𝑁1)T (x21 − x1𝑁1) (x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1 )󵄩󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 𝑙(𝑖) 󵄩󵄩󵄩󵄩󵄩(x21 − x1𝑁1)󵄩󵄩󵄩󵄩󵄩(𝑁󸀠 + 1) ;

arccos B󸀠TC
(‖B󸀠‖ ‖C‖) < 𝜃 (𝑖)

y󸀠𝑖 = f(x󸀠𝑖 );
End For
X󸀠 = [x󸀠1, x󸀠2, ..., x󸀠𝑁󸀠 ]T;
Y󸀠 = [y󸀠1, y󸀠2, ..., y󸀠𝑁󸀠 ]T;
Xnew = [XT

1 ,X󸀠T,XT
2 ]T;

Ynew = [YT
1 ,Y󸀠T,YT

2 ]T;
Xu,𝛼u,𝛽u,Wu = arg min

X,𝛼,𝛽,W
(− ln𝑝(Xnew,𝛼,𝛽,W,Ynew));

End the procedure.

Algorithm 1: The brief procedure of LSOPA.

initiated LD data X = [XT
1 ,XT
2 ]T. Preset the values of𝜃(𝑖), 𝑙(𝑖), and C.

(2) Preset 𝛼,𝛽,W. Then, compute X,𝛼,𝛽,W =
argminX,𝛼,𝛽,W(− ln𝑝(X,𝛼,𝛽,W,Y)), update X,
and get 𝛼, 𝛽,W.

(3) Compute argminx󸀠
𝑖
‖y𝑖 − y𝑖−1‖ = argminx󸀠

𝑖
‖f(x󸀠𝑖 ) −

f(x󸀠𝑖−1)‖, x󸀠0 = x1𝑁1 , 𝑖 = 1, 2, ...𝑁󸀠 and the corre-
sponding constraint functions in (22), and get the LD
data X󸀠 = [x󸀠1, x󸀠2, ..., x󸀠𝑁󸀠]T ∈ R𝑁

󸀠×𝑞 of the transition
motion.

(4) Compute the transition motion y󸀠𝑖 = f(x󸀠𝑖 ), 𝑖 =
1, 2, ..., 𝑁󸀠, let Y󸀠 = [y󸀠1, y󸀠2, ..., y󸀠𝑁󸀠]T, and
output the 3D transition motion model.
Finally, let Ynew = [YT

1 ,Y󸀠T,YT
2 ]T, Xnew =

[XT
1 ,X󸀠T,XT

2 ]T, compute the Xu,𝛼u,𝛽u,Wu =
argminX,𝛼,𝛽,W(− ln𝑝(Xnew,𝛼,𝛽,W,Ynew)), and
update Xu, 𝛼u, 𝛽u,Wu. End the whole procedure.

The method LSOPA can be written as pseudocode in
Algorithm 1 for the transition motion estimation.

4. Experiment and Evaluation

We test the proposed method LSOPA in the performance of
the vision and error test. We choose the line initialization
[8] (LI) and random initialization [17] (RI) as the compared
methods. LI means that the LD data of the transition motion
is obtained linearly between the LD data of the two different
motions. RI means that the LD data of the transition motion
is obtained randomly between the LD data of two different
motions. The LD data samples (green ones) in the LD space
can be seen in Figures 3(a)–3(c), which denotes the transition
motion. The tested transition motion is a total of 15 frames
and the tested database is the Carnegie Mellon University
(CMU)motion capture databasewhich is shortened forCMU
database.

The three methods can estimate the corresponding tran-
sition motions, but the transition motions are obviously
different. Let us see the effect in the vision from Figures
4(a)–4(c). In the estimation of the transitionmotion between
walking and playing golf, we can find that the transition
motion generated by the LSOPA is smoothly and naturally
in vision. The transition motions generated by the other
two methods are invalid and messy; they are abnormal
human transitionmotions obviously. In aword, the transition
motions of LI and RI are not like playing the golf. It is
demonstrated that the performance of LSOPA is the best in
the visual effect among the three methods.
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Figure 3: The LD data samples of the LSOPA, LI, and RI.

Then, the error and mean error of estimating the tran-
sition motion are tested. How to compute the error can be
seen in [19], but the scale of markers in the 3Dmodel must be
considered. The error can be computed as follows:

𝐸𝑟 = 1
𝑀𝑎𝑟
𝑀𝑎𝑟∑
𝑚𝑎=1

󵄩󵄩󵄩󵄩󵄩Bx𝑚𝑎 − Bx󸀠𝑚𝑎
󵄩󵄩󵄩󵄩󵄩 . (23)

In (23), Bx𝑚𝑎,Bx󸀠𝑚𝑎 ∈ R3, Bx𝑚𝑎, and Bx󸀠𝑚𝑎 are, respectively,
the true position and the estimated position of the marker in

the 3Dmodel; both are the jointmarker in the 3Dmodel.Mar
is the number of the markers in the 3D model.

The transition motion includes four transition motions;
they are walking and playing golf, walking and dancing,
walking and swimming, and walking and playing football,
respectively. The contrast of the true data and the estimated
data can be seen in Figures 5(a)–5(c).The error of each frame
in the transition motion generated by LSOPA is the lowest
among the three methods, so is the mean error. Generally
speaking, the error of some frames will be close, but the
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(c) The transition motion of RI

Figure 4: The visual evaluation of the methods.

error of LSOPA will be kept low and stable on the whole.
The tested result can also reveal that the LSOPA has the best
performance in the error test.

5. Conclusion

The LSOPA is proposed to solve the problem of estimating
the human transition motion. The LSOPA is tested in the
experiments of the vision and error test, and we can find that
the performance of the LSOPA is the best among the three
methods. However, the LSOPA still cannot process some
complex human transition motion well, and its initialization
of optimization cannot be random; thus the LSOPA need
to be improved in the future research. Then, the improved
method can carry out the unsupervised learning of the
two complex irrelevant human motions and estimate their
smooth and valid transition motion. The 3D human motion

model will also be replaced by other exquisitemodels [20–22]
in the future research.
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