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This study develops a conceptual framework for evaluating the sensitivity of the ranking of forest fuel treatment strategies (FTSs) to
variation in managers’ risk attitudes and the importance ratings managers assign to fuel treatment objectives and demonstrates the
application of the framework using a case study. The conceptual framework involves (1) defining a utility function on an index that is
a weighted average of fuel treatment objectives and incorporates a manager’s risk attitude; (2) using the utility function to calculate
utility values for FTSs; (3) applying the stochastic efficiency with respect to a function method to utility values to obtain certainty
equivalents (CEs); and (4) ranking FTSs based on statistically significant differences in median CEs for pairs of FTSs. The case study
involves three (federal, state, and private) forested areas in Flathead County, Montana, USA, three FTSs (i.e., Community Wildfire
Protection Plan (CWPP) Priority; CWPP & Wildland-Urban Interface Priority; and No Priority), three treatment objectives (i.e.,
minimizing expected residential monetary losses from wildfire, minimizing expected deviation of forest ecological conditions from
their historic range and variability, and maximizing expected net returns from timber harvesting associated with fuel treatment),
two risk attitudes (i.e., almost risk neutral and highly risk averse), and 35 weight scenarios for treatment objectives. Case study
results are used to test the hypothesis that the ranking of FTSs is sensitive to manager’s risk attitudes and the importance ratings
for management objectives. The ranking of FTSs for the three forested areas was insensitive for an almost risk neutral manager and
sensitive for a highly risk averse manager. In general, the case study indicates that the ranking of FTSs is sensitive to both a forest
manager’s risk attitudes and the importance ratings assigned to fuel treatment objectives.

harvest rates in U.S. national forests have declined from 26.7
million cubic meters (mcm) in FY (fiscal year)-1987 to 6.8
mcm in FY-2016, or 75% [4], and current harvest rates are

Higher fuel loads, population growth in the WUT (wildland-
urban interface), and climate change (i.e., warmer summers,
lower precipitation, and milder winters) in the western U.S.
and elsewhere continue to drive an increase in wildfire
intensity and wildfire-related losses, especially for residential
properties located near public lands [1, 2]. In addition,
the ecological health of forest ecosystems has declined, as
evidenced by high departures of forest ecological conditions
from their historic range and variability [3]. One source of
these departures is the accumulation of fuels due to wildfire
suppression and reduced timber harvesting. For example,

considerably below their estimated long-term, sustainable
capability of 29.9 mcm [5].

Fuel reduction treatments have the potential to decrease
wildfire intensity or severity, yet the variable application or
prioritization of these treatments across the landscape is
necessary in order to efficiently reduce the adverse impacts
of wildfire [6-14]. For example, at a briefing in Florence,
Montana, USA, on August 24, 2017, the secretaries of Agri-
culture and Interior announced that their departments will
be working together to remove fuel from the nation’s forests
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and reduce the threat of catastrophic wildfires. During the
briefing, Interior Secretary Ryan Zinke said: “The issue before
us is ... making sure we have healthy forests, and going back
to reduce fuel so we don’t have these catastrophic events year
after year” [15].

A variety of fuel treatments have been promoted as a
means of restoring fire-dependent forests to conditions that
better resemble historical and healthy conditions that existed
prior to long-term fire suppression [16-20]. However, several
experts point out that it may not be financially, politically,
and/or physically feasible to decrease fuel loads enough to
significantly reduce wildfire losses [12, 21, 22]. This situation
implies that selective and efficient placement of fuel reduction
treatments is important.

A potentially important issue not addressed in previous
studies and addressed in this study is the extent to which
managers’ risk attitudes and the importance that they assign
to fuel treatment objectives influence forest management
decisions regarding preferred fuel treatments. For instance,
some managers may prioritize the reduction of future wildfire
hazards to private properties and structures over restoration
of forest stands, which would modify the conflagration, and
the types or amount of treatments on forest lands.

This study has two overarching objectives: (1) to develop
a conceptual framework for evaluating the sensitivity of
the ranking of fuel treatment strategies (FT'Ss) to variation
in managers risk attitudes and the weights assigned to
treatment objectives; (2) to demonstrate the application of
the framework using a case study. The case study involves
three distinct FT'Ss, three fuel treatment objectives, two risk
attitudes, and several scenarios for the importance of fuel
treatment objectives.

2. Previous Research

This section summarizes several studies exploring efficient
fuel treatment decisions, including (1) the effects of forest fuel
treatments on fuel and wildfire hazard; (2) the optimal spatial
arrangement of fuel treatments on a landscape for decreasing
wildfire losses; or (3) use of multiple objective/attribute
decision criteria to rank management alternatives.

Several studies have examined the design and efficacy
of different forest FTSs. Those studies indicate that a vari-
ety of factors influence forest managers’ placement of fuel
treatments on the landscape, including (1) priorities or con-
siderations outlined in policies, such as the Healthy Forests
Restoration Act and the Collaborative Landscape Restora-
tion Program; (2) the economic viability of treatments; (3)
prioritization of sensitive wildlife habitat; (4) limitations on
management efforts due to protected area designation; and
(5) the extent to which fuel treatments can help restore
forest stands to healthier conditions [23-27]. Taken together,
these factors create a complex set of decision parameters
for managers or collaboratives designing landscape-level fuel
treatments.

Design and implementation of fuel treatments for a
forested landscape can be influenced by variation in risk
attitudes and the importance of fuel treatment objectives
among forest managers. For instance, psychological theory
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and wildfire research both indicate that some managers may
be more risk averse when prioritizing wildfire management
actions that reduce losses to private property, while others
may be more focused on landscape restoration [28-31].

There have been a number of research efforts that seek
to evaluate and prioritize fuel treatments based on multiple
management objectives. For instance, Wei et al. [32] devel-
oped a mixed-integer programming model that allocates fuel
treatments across a landscape based on spatial information
for fire ignition risk, conditional probabilities of fire spread
between raster cells, fire intensity levels, and values at risk
from fire. Bradstock et al. [33] estimated the percent of a
landscape that would need to be treated with prescribed
burning to reduce wildfire hazards to people and property
in Australian eucalypt forests based on 2050 climate change
scenarios. Ferreira et al. [34] developed a stochastic dynamic
programming model to determine the impact of wildfire risk
on the optimal stand management schedule for maximizing
expected discounted net revenue for a Maritime pine forest
in Leiria National Forest, Portugal. He et al. [35] used the fuel
module in LANDIS to simulate the impacts of alternative fuel
treatments on fire risk dynamics. Fire risk was measured by
potential fire intensity and fire probability.

Lessons from the above literature indicate that various
management objectives have been used to evaluate and
determine preferred fuel treatments. For instance, Ager et
al. [24] evaluated fuel treatment prioritization to maximize
protection and conservation of old growth ponderosa pine
(Pinus ponderosa) stands and found that outcomes were
sensitive to trade-offs in parameters related to fire intensity
and treatment size. Hessburg et al. [36] noted how protection
of watersheds and areas near private development influenced
the structure and placement of fuel treatments in their pri-
oritization scheme. Konoshima et al. [37] applied a dynamic
optimization model to a hypothetical landscape to evaluate
how various biophysical and socioeconomic characteristics
influence optimal fuel treatments, including weather, slope,
and treatment costs under a variety of discount rates. They
found that the net value of timber and the probability of
loss to timber value interacted to influence fuel treatment
optimization.

The variety of objectives that influence optimal fuel
treatments and the complex nature of the trade-offs facing
managers when selecting fuel treatments pose a significant
challenge for forest managers [27, 30, 38]. Multiple criteria
decision-making (MCDA) techniques have emerged as a
popular approach for addressing natural resource manage-
ment decisions in a way that balances the trade-offs between
economic, environmental, and social values or preferences
of stakeholders [39]. Numerous multiple objective/criteria
decision-making methods have been used to address natu-
ral resource management issues, including multiple objec-
tive/attribute utility theory [40], multiple objective/attribute
value theory [41], ELECTRE [42], Analytic Hierarchy Process
[43], balancing and ranking method [44], and fuzzy Tech-
nique for Order Preference by Similarity of Ideal Solution
[45, 46]. These methods essentially determine preferred
management alternatives for a natural resource system by
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taking into account multiple management objectives and the
importance of those objectives.

This study builds on the work cited above to quantify
the outcomes of FTSs using a multiple objective utility
function and uses those outcomes to evaluate the extent to
which different risk attitudes and weights for management
objectives influence the ranking of FTSs.

An increasing number of studies use MCDA approaches
to design or research optimal fuel treatments. For instance,
Ohlson et al. [47] evaluated the influence of fuel management
on wildfire risk accounting for uncertainty about multiple
attributes of fuel management alternatives as measured by
the expected value and risk profile (probability distributions)
for those attributes. Their study compared four FTSs based
on six fuel treatment objectives. Prato and Paveglio [46]
evaluated the effects of three FTSs on three fuel treatment
objectives (i.e., expected residential property losses due to
wildfire, expected deviation of ecological conditions from
their historic range and variability, and expected net returns
from timber harvesting associated with fuel treatment).
Driscoll et al. [48] used multiattribute utility theory to
assess outcomes of 22 prescribed fire scenarios on eight
management objectives including home loss and minimizing
soil loss. They found a small number of solutions that
minimized conflicts among objectives, but noted that no
scenario improved outcomes for all objectives. Schroder et
al. [49] used multiple objective optimization techniques to
evaluate trade-offs between fire hazard reduction, wildlife
habitat, and sediment delivery in an Oregon municipal
watershed.

Marques et al. [50] used multiple criteria decision-
making methods to incorporate wildfire risk in a multiple
objective planning framework that generates information
about trade-offs among multiple objectives. Ferreira et al.
[51] developed a forested landscape management scheduling
model that addresses the risk of wildfires as measured by
wildfire occurrence and damage probabilities and tested the
model by using a mixed-integer programming to determine
the location and timing of management options (e.g., fuel
treatment, thinning, and clearcut) that maximize expected
net revenues for the Leiria National Forest in central
Portugal.

Although research about fuel treatments has addressed
complex trade-offs facing forest managers, there is less under-
standing about how managers’ risk attitudes influence their
fuel treatment decisions. Most studies prescribe “optimal”
treatment solutions and expect managers to implement those
solutions. This approach does not necessarily reflect a deci-
sion environment where managers face political and public
pressure to implement fuel treatments, including pressure
to protect private property and ecological values, or reduce
firefighting costs [28, 29, 38]. In summary, although the
studies described above and other studies have contributed
to an understanding of efficient fuel treatment decisions,
no studies have explicitly examined the sensitivity of the
ranking of FTSs to forest managers risk attitudes and the
importance of fuel treatment objectives as done in this
study.

3. Materials and Methods

3.1. Conceptual Framework. The conceptual framework
developed here (1) selects an outcome that the forest
manager desires more of, designated as ¢; (2) defines a utility
function in terms of ¢, namely, U(c); (3) calculates certainty
equivalents (CEs) for decision alternatives based on that
utility function; and (4) uses CE values to rank decision
alternatives. Existing theoretical (e.g., [52]) and empirical
(e.g., [53, 54]) studies of risky alternatives usually define ¢
as wealth or income. However, wealth or income may not
be an appropriate variable for forest managers that need
to balance multiple values for a landscape. Accordingly,
the framework presented here defines ¢ in terms of three
attributes of management objectives: (1) wildfire risk to
private properties; (2) forest health; and (3) net returns from
timber harvesting. In general, CE is the guaranteed amount
of money that would yield the same exact expected utility
as a given risky asset with absolute certainty [55, 56]. In this
study, CV is defined as the amount of compensation a forest
manager is willing to receive in order to accept the variability
in utility associated with an FTS (adapted from [56]). The
conceptual framework defines ¢; as a weighted sum of the
estimated values of FTS objectives, namely, ¢, = >, w; Vy,
where i = 1,...,n where n is the number of’ fuel treatment
objectives, j = 1,...,m where m is the number of risky
FTSs being ranked, w; is the weight for the ith objective, V;;
is the estimated value of the ith objective for the jth FTS,
and Y., w; = 1. FTSs are risky alternatives when w; and/or
Vj;» and hence c;, are stochastic. The conceptual framework
described in this section does not make reference to time
periods. However, in empirical applications (see Section 3.2),
the values of w; and/or V;; can be varied over time periods,
which causes the values of ¢; to vary over time periods.

FTSs are ranked based on CEs, and CEs are derived
from utility values obtained by substituting the values of c;
into a utility function, namely, U(cj). Based on Hardaker
et al. [52], the probability density functions describing the
g stochastic outcomes of FTS; are fl(cj), fz(cj), o fg(cj),
and the corresponding cumulative distribution functions
are Fl(cj), Fz(cj), - Fg(cj). The subjective expected utility
hypothesis states that U(cj) = EU(cj) = U(cj)f(cj)d(cj)
= U(cj)dF(cj), where EU(cj) is the expected value of
U(cj) [54]. In other words, the utility of ¢ is its expected
value.

A limitation of the above utility framework in empirical
applications is that it requires knowledge of the exact shape of
the forest manager’s utility function and hence the manager’s
risk attitudes. Some studies have elicited decision makers’
risk attitudes (e.g., [57]) and others have used hypothetical
attitudes [58]. The Stochastic Efficiency with Respect to
a Function (SERF) method [52] used in the framework
presented here addresses this limitation by ranking FTSs for
an absolute, relative, or partial risk aversion coefficient r(c)
€ [r(c), ry(c)], where r(c) is the lower bound and ry(c)
is the upper bound of the coefficient. That method assumes
the values of r(c) are the same for all FTSs and uses a
discrete approximation of the utility function and a specific
form of the utility function. The utility function used in this



study is U[cj, r(c)] = 221 Ulc;, r(c)]p(cij), where p(cij) is the
probability of the ith outcome for the jth FTS. This discrete
utility function is used to calculate utility values for discrete
values of r(c) selected from [r} (c), ry(c)]. The partial ordering
of FTSs based on U[cj, r(c)] and CE values is the same. In
particular, CE[cj, r(c)] = U} [cj, r(c)], where U™ [cj, r(c)] is
the inverse utility function.

3.2. Case Study. This section presents an empirical case
study that demonstrates the application of the conceptual
framework. Case study results are used to test the hypothesis
that the ranking of FTSs is sensitive to manager’s risk attitudes
and the importance ratings for management objectives.
The case study ranks three FTSs for three forested areas
in Flathead County, Montana, using site-specific, empirical
data for FTSs, climate change, economic growth, residential
development patterns, and risk evaluation. Holding these
elements constant in the case study allows us to determine
the influence of variation in managers risk attitudes and
the importance of management objectives on the ranking of
FTSs. The remainder of this section describes the forested
areas, three FTSs, and three fuel treatment objectives used
to rank FTSs for the case study. It also explains the methods
used to evaluate the sensitivity of the ranking of FTSs to
managers risk attitudes and the weights assigned to treatment
objectives.

3.2.1. Forested Areas, FTSs, Time Periods, and Fuel Treatment
Objectives. This study utilizes data on forested areas, FTSs,
time periods, and fuel treatment objectives collected or
simulated for Flathead County as part of a broader study (see
[46, 59, 60]). The three forested areas and sizes of those areas
are (1) the Flathead National Forest, which is managed by the
U.S. Forest Service (FS) and covers 290,135 ha; (2) Montana
Department of Natural Resources and Conservation (DR)
forests that encompass 44,540 ha; and (3) former Plum Creek
Timber Company (PC) forests that contain 75,178 ha. All
three forests are located in Flathead County, Montana, USA.
Figure 1 illustrates the location of the three forests.

Three FTSs were ranked for each forested area: (1) Com-
munity Wildfire Protection Plan (CWPP) Priority; (2) CWPP
& WUI Priority; and (3) No Priority (NP). FTSs rankings
for each forested area were obtained using data for five time
periods: 2010-2019; 2020-2029; 2030-2039; 2040-2049; and
2050-2059. These data were used to calculate values of ¢;
for each of the five time periods. Using data for multiple
time periods causes the value of V, and hence ¢;, to vary
over time periods. The values of ¢; tJor the five time periods
were then used to rank FTSs. The five time periods are the
same ones used in the broader study. A CWPP is a planning
tool and process that originated with the Healthy Forests
Restoration Act and is a popular means for conducting
wildfire planning and incentivizing fuel reduction actions [19,
33]. Each FTS specifies the forest stands prioritized for fuel
treatment as simulated in previous studies (see [46, 59-61]
for details). The CWPP Priority FTS targets forest stands
for fuel treatment based on priorities established by local
stakeholders in Flathead County [62, 63]. Priority forest
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FIGURE 1: Location of three forests in Flathead County, Montana,
2010.

stands are stands in which wildfire would pose a hazard to
communities in the WUTI, or the area where private properties
and structures are adjacent to or intermixed with flammable
wildland vegetation. The geographical extent of the WUI used
in this study was simulated in a previous study and accounts
for wildfire hazard reduction targets for the United States (see
[61] for parameters).

The CWPP & WUI Priority FTS targets forest stands for
treatment based on whether they have a CWPP Priority and
are in the WUI. Stands without a CWPP Priority or outside
the WUI are not treated until all eligible CWPP & WUI
priority stands are treated.

The NP FTSis the control FTS. It randomly selects eligible
forest stands for treatment until the maximum area treated in
each time period is attained or no more stands are eligible for
treatment. FTSs incorporate three fuel treatment practices:
(1) heavy partial thinning; (2) light partial thinning; and
(3) prescribed burning. The parameters of each practice,
including species harvested or retained, size of treatments,
amount of biomass removed, and amount of biomass retained
for each individual treatment, vary and are described in Prato
etal. [59].

The three fuel treatment objectives used in this study are:
(1) minimizing expected residential monetary losses from
wildfire (ERLW); (2) minimizing expected deviation of forest
ecological conditions from their historic range and variability
(EDRV); and (3) maximizing expected net returns from
timber harvesting associated with fuel treatment (ENRH).
ERLW, EDRYV, and ENRH are referred to as the attributes of
FTSs.

ERLW was simulated based on: (1) the number of
residential properties on parcels; (2) the probability that
parcels burn; (3) the probability of wildfire-related losses
for residential structures on properties given the parcels on
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which those properties are located burn; (4) the average
percentage of wildfire-related losses in aesthetic values of
residential properties; and (5) the total value (structures
plus land) of residential properties [60]. The probability
components of ERLW were simulated using the FireBGC
model [64] and the Intergovernmental Panel on Climate
Change’s (IPCC’s) A2 emission scenario [65]. The numbers
of residential properties in each parcel and time period were
stimulated using the RECID2 model and the land use policy
that existed in Flathead County in 2010 (see [59, 61, 66] for
parameters and simulation outcomes).

EDRYV measures the extent to which the simulated values
of basal area, leaf area index, and fuel load for each forested
area, FTS, and time period deviated from the historic range
and variability (HRV) for those variables as outlined in Keane
etal. [3] and Prato and Paveglio [46]. HRV simulations of the
three variables were conducted using FireBGC.

ENRH depends on: (1) the number of tree stands har-
vested in each forested area for a particular FTS and time
period simulated using FireBGC; (2) the merchantable cubic
meters harvested in each stand, forest, and time period
with a particular FTS simulated using FireBGC; and (3)
the average cost per cubic meter of harvesting and hauling
timber to the sawmill for each stand, forest, and time period.
Average cost per cubic meter for each FTS was estimated
using the Harvest Cost Model [67], and average annual mill-
delivered log price weighted by volume of sawlog species for
the period 1989-2009 in northwest Montana sawmills [68].
Those models utilized site-specific GIS data on transportation
capacity and access for each forest landowner included in the
study. Attributes of FTSs were simulated assuming that only
one FTS is used per time period and the same FTS is used
across time periods. The models used in the broader study
simulate only one value for the variables needed to estimate
ERLW, EDRYV, and ENRH for each FTS and time period.
Therefore, it was not possible to make the Vys stochastic.

3.2.2. Sensitivity to Risk Attitudes. The ¢; values are a weighted
sum of the simulated values of the treatment objectives,
namely, ¢; = aggpw (1 - ERLWj*) + agpry (1 - EDRV;x)
+ opnruy ENRH,. ERLW;# is expected normalized monetary
residential losses due to wildfire for the jth FTS, EDRVj*
is expected normalized deviation of ecological conditions
from their historic range and variability for the jth FTS,
ENRH; is expected net revenue from timber harvesting
for the jth FTS. agriw»> ppry> and apyry are the weights
assigned to fuel treatment objectives involving ERLW, EDRY,
and ENRH, respectively, and agriw + Xgpry + Xpnpu =
1. Because attributes are measured in different units (i.e.,
ERLW and ENRH in dollars and EHRV in numbers in the
interval [0, 1]), ERLW and ENRH were normalized to the
interval [0, 1] to obtain ERLW* and ENRH=. In addition,
ERLW=# and EDRV=# were adjusted by subtracting their
normalized value from one. As a result of the normalizations
and/or adjustments, 1 - ERLW;#, 1 - ERDV;*, and ENRH;
are positive objectives, meaning each objective is positively
related to G- That is, increases (or decreases) in 1 - ERLW;x,
1 - ERDV;x, and ENRH;* cause increases (or decreases) in

¢;. The resulting ¢; values are the raw data used in the SERF
method to rank FTSs.

Calculation of the values of the utility function U(cj)
requires the user to specify an equation for that function.
The case study calculates utility values for each FTS and
time period based on an exponential utility function, namely,
U(g) = (1~ e '), r is the absolute risk aversion coeflicient

(ARAC) for a forest manager defined as r = —U”(cj)/U'(cj),

where U"(cj) is the second derivative and U'(cj) is the first
derivative of U(c;) with respect to c;. r is independent of ¢
for an exponential utility function, which implies constant
absolute risk aversion. Using an exponential utility function
requires the user to specify an interval for ARAC, namely, [r;,
ryl-

Data from previous simulation and wildfire management
studies by Prato and Paveglio [46, 60] provide an opportunity
to explore the sensitivity of FTS rankings to variable risk
attitudes. We evaluated two divergent ARAC intervals (or
risk attitudes) in this study: (1) almost risk neutral for r € [-
.005, .005] and (2) highly risk averse for r € [.02, .04]. Both
intervals are consistent within the intervals for almost risk
neutral and highly risk averse attitudes used in other studies
of risky alternatives [69].

Utility values for FT'Ss and ARAC intervals were used in
the Simetar version of the SERF method [70] to obtain 25 CE
values, one for each of the 25 values of r(c) that Simetar selects
from the ARAC interval. The resulting 25 CE values for each
FTS are then used to rank FT'Ss.

3.2.3. Sensitivity to Attribute Weights. The sensitivity of the
ranking of FTSs to attribute weights was evaluated by spec-
ifying 35 attribute weight scenarios for aggrw, Ogpry> and
agnru» then ranking the FTSs for every weight scenario and
ARAC interval using the SERF method and attribute data
for the five time periods. Weight scenarios were determined
by increasing or decreasing individual weights for attributes
relative to their baseline values collected in a previous study
(see [58]). Decision makers for the three forests in that study
were asked to assign weights to the three attributes used in
the study. The resulting weights, given in Table 1, represent
the importance of the three attributes.

Assigned weights for the three attributes and three
forested areas were converted to baseline weights by nor-
malizing weights to the [0, 1] interval (see Table 1). The 15
weight scenarios for FS and 10 weight scenarios for DR and
PC were derived by increasing or decreasing the baseline
attribute weights by the amounts indicated in Table 2. For
example, the weights for FS1 are derived by increasing the
weight for ERLW by .08 and decreasing the weights for EDRV
and ENRH by .04 relative to the baseline weights. Weight
scenarios are balanced in the sense that the weights for a
higher numbered scenario are determined by increasing the
weight for one attribute by x and decreasing the weights for
each of the other two attributes by x/2 relative to their values
in the next lower numbered scenario. This process ensured
variation in the weights used to explore the sensitivity of FTS
rankings.



TaBLE 1: Derivation of baseline weights for attributes of FTSs
for Forest Service (FS), Department of Natural Resources and
Conservation (DR), and Plum Creek Timber Company (PC).

Attribute® Rating scores for attributes” Weights®

ES DR PC ES DR PC
ERLW 5 3 2! 42 32
EDRV 4 3 4 .33 3 4
ENRH® 3 4 4 .25 4 4

a. ERLW is expected residential monetary losses from wildfire, EDRV is
expected deviation of forest ecological conditions from their historic range
and variability, and ENRH is expected net returns from timber harvesting
associated with fuel treatment.

b. Very low =1, low = 2, moderate = 3, high = 4, and very high =5.

c. Weights for each agency obtained by dividing each attribute score by the
sum of the scores.

d. Because PC managers did not indicate the importance of ERLW, a weight
of .2 (low importance) was assigned to ERLW for PC land.

e. Based on rating assigned to importance of commercial timber losses from
survey of three forest landowners.

Stochastic Efficiency with Respect to
a Function (SERF) Under a Negative
Exponential Utility Function

‘g 31.50
= 31.00
E 30.50
530.00
£-29.50
£ 29.00
£ 2850
& 28.00+ . . ; ; ,
0 0.01 0.02 0.03 0.04 0.05
ARAC
—— CWPP
CWPP& WUI
—— No Priority

FI1GURE 2: Plot of CE values for Plum Creek for weight scenario PC1
and ARAC interval [.02, .04].

4. Results

SEREF ranks risky alternatives based on their CE values. Our
results indicated very similar CE values for two FTSs. For
example, Figure 2 plots Plum Creek CE values for the three
FTSs, weight scenario PCl, and highly risk averse attitudes
(i.e., ARAC values in the interval [.02, .04]). In this case, the
CE values for CWPP Priority and NP (the two lowest curves
in Figure 2) have very similar CE values, making it difficult
to determine whether CWPP Priority outranks NP or vice
versa. To avoid such ambiguities, a statistical test was used to
determine whether CE values for the three pairs of FT'Ss (i.e.,
CEcwpp versus CEyp, CEcwppsawur Versus CEyp, and CEypp
versus CEcwpp & wur) Were significantly different from one
another.

CE values for FTSs were not normally distributed with
respect to the values of ARAC. For that reason, it was inap-
propriate to perform a t-test for significant differences in the
mean CE values for pairs of FTSs. Therefore, a nonparametric
test was used. Two nonparametric tests were considered for
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this purpose: Mood’s Median Test and Mann-Whitney U
Test. The null and alternative hypotheses for both tests are
Hy: n; = ny versus H: n; < or > ny, where n; and ny are the
median CE values for the jth and j'th FTSs, respectively. A
Mann-Whitney U Test assumes the variances of CEs for all
FTSs are the same. Mood’s Median Test does not make this
assumption. Mood’s Median Test could not be used because
there were not enough CE values greater than the median.
Therefore, equality of median CE values for pairs of FTSs
was tested using the Mann-Whitney U test. An « value, or
type I error, of .05 was used for all Mann-Whitney U tests.
Table 3 contains the results of the Mann-Whitney U tests for
the 35 attribute weight scenarios, two risk attitudes, and three
forested areas.

FTSs are ranked based on the test results in Table 3. Test
results in Table 3 are interpreted as follows. For example, the
test results for Forest Service (FS) managers with almost risk
neutral attitudes are: (1) reject Hy: neowpp = Nywp Vversus H:

Newep > Nps (2) reject Ho: Newpp g wur = Np Versus Hy:

Newep & wur > Nps and (3) reject Ho: newpp = Newpp & wut
versus H,: Nnewpp > Newpp & wup Where n is the median CE

value for an FTS. The null hypothesis for test results (1) is
that the median CE value for the CWPP and NP FTSs are
equal and the alternative hypothesis is that the median CE
value for the CWPP FTS exceeds the median CE value for
the NP FTS. The null hypothesis for test results (2) is that
the median CE values for the CWPP & WUI and NP FTSs
are equal and the alternative hypothesis is that the median
CE value for the CWPP & WUI FTS exceeds the median CE
value for the NP FTS. The null hypothesis for test results 3
is that the median CE values for the CWPP and CWPP &
WUI FTSs are equal and the alternative hypothesis is that
the median CE value for the CWPP FTS exceeds the median
CE value for the CWPP & WUI FTS. Therefore, for Forest
Service (FS) managers with almost risk neutral attitudes, the
ranking of FTSs is CWPP P CWPP & WUI P NP, where P
stands for “preferred to”. This same ranking is implied by the
test results for FS managers with almost risk neutral attitudes
for all weight scenarios except FS14, for which the ranking is
CWPP P NP and CWPP & WUI P NP.

For FS managers with highly risk averse attitudes, the
ranking is CWPP P NP P CWPP & WUI for weight scenarios
FS1 through FS5, and CWPP P CWPP & WUI P NP for
weight scenarios BFS and FS6 through FS10. Rankings vary
for weight scenarios FS11 through FS15. These results indicate
that the FTS ranking is not sensitive to the weight scenarios
for FS managers with almost risk neutral attitudes, but is
sensitive to weight scenarios for FS managers with highly risk
averse attitudes.

For Department of Natural Resources (DR) managers
with almost risk neutral attitudes, the ranking of FTSs is: (1)
CWPP & WUI P NP P CWPP for weight scenarios BDR,
DR2, and DR4 through DRI10; (2) NP P CWPP & WUI P
CWPP for weight scenario DR1; and (3) NP P CWPP P
CWPP & WUI for DR3. These results imply that ranking
of FTSs is rather insensitive to the weight scenarios for
DR managers having almost neutral risk attitudes. For DR
managers with highly risk averse attitudes, the ranking of
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TABLE 2: Attribute weight scenarios for ERLW, EDRV, and ENRH.
U.S. Forest Service (FS)
Increase ERLW weight by .08 and decrease EDRV and ENRH weights by 0.04
Attribute FS1 FS2 FS3 FS4 F5
ERLW 5 .58 .66 74 .82
EDRV .29 .25 21 17 13
ENRH 21 17 13 .09 .05
Increase EDRV weight by .08 and decrease ERLW and ENRH weights by 0.04
FS6 ES7 FS8 FS9 ES10
ERLW .38 34 3 .26 22
EDRV 41 49 .57 .65 73
ENRH 21 17 13 .09 .05
Increase ENRH weight by .08 and decrease ERLW and EDRV weights by 0.04
ESI1 ESI2 ESI13 ES14 ESI5
ERLW .38 34 3 .26 22
EDRV .29 25 21 17 13
ENRH 33 41 .49 .57 .65
Department of Natural Resources and Conservation (DR)
Increase ERLW weight by .08 and decrease EDRV and ENRH weights by 0.04
DRI DR2 DR3 DR4 DR5
ERLW .38 .46 .54 .62 7
EDRV .26 22 18 14 .
ENRH .36 32 .28 24 2
Increase ENRH weight by .08 and decrease ERLW and ENRH weights by 0.04
DR6 DR7 DR8 DR9 DRI0
ERLW .26 22 18 14 1
EDRV .26 22 18 14 1
ENRH 48 .56 .64 72 .8
Plum Creek Timber Company (PC)
Increase ENRH weight by .08 and decrease ERLW and EDRV weight by .04
PCl PC2 PC3 PC4 PC5
ERLW 16 12 .08 .04 0
EDRV .36 32 .28 .24
ENRH 48 .56 .64 72
Increase ERLW weight by .08, and reduce ENRH and EDRV weights by .04
PCo6 pPC7 PC8 PC9 PC10
ERLW 28 .36 44 .52 .6
EDRV .36 32 .28 .24 2
ENRH .36 32 .28 24 2

FTSsis (1) NP P CWPP & WUI'P CWPP for weight scenarios
DR1, DR5, DR9, and DR10; (2) CWPP & WUI'P NP P CWPP
for weight scenarios BDR, DR2, and DR4; (3) NP P CWPP
P CWPP & WUI for weight scenario DR3; and (4) NP P
CWPP and CWPP & WUI P CWPP for weight scenarios DR6
through DR8. These results imply that FTS rankings for DR
managers with highly risk averse attitudes are highly sensitive
to the weight scenarios.

Compared to the test results for FS and DNR, the test
results for Plum Creek (PC) indicate that the rankings of FT'Ss

are more sensitive to risk attitudes and attribute weights. In
particular, test results for PC land managers with almost risk
neutral attitudes indicate: (1) no ranking of FTSs (i.e., the
three FTSs are equally preferred) for PC2, PC3, PC5, PC7,
PC9, and PC10; (2) CWPP & WUI P NP for BPC; (3) CWPP
& WUI P CWPP for BP and PCl; (4) CWPP & WUI P NP for
BPC; (5) CWPP P NP and CWPP P CWPP & WUI for PC4
and PC6; and (6) NP P CWPP and CWPP P CWPP & WUI
for PC8. The rankings for Plum Creek (PC) land managers
with strongly risk averse attitudes are: (1) CWPP & WUI P
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TABLE 3: Results of Mann-Whitney U tests of equality of median certainty equivalents for three pairs of fuel treatment strategies for two risk
attitudes and three managers.

Weight Almost Risk Neutral (ARAC € [-.005,.005]) Highly risk averse (ARAC € [.02,.04])
scenario CWPP vs. NP CWPP I8\<H§NUI vs. CWP‘SIZ VWS.L%WPP CWPP vs. NP CWPP ﬁ}:NUI vs. CWP‘SIZ VWS.L%WPP
U.S. Forest Service (FS)
BFS Reject” Reject” Reject* Reject” Reject” Reject*
ES1 Reject” Reject” Reject" Reject” Reject? Reject"
FS2 Reject® Reject” Reject Reject® Reject Reject”
FS3 Reject Reject” Reject Reject Reject? Reject*
Fs4 Reject Reject” Reject Reject Reject? Reject*
ES5 Reject” Reject” Reject" Reject” Reject? Reject"
ES6 Reject” Reject” Reject" Reject” Reject” Reject"
FS7 Reject® Reject” Reject Reject Reject” Reject*
FS8 Reject® Reject” Reject Reject Reject” Reject*
FS9 Reject” Reject” Reject" Reject” Reject” Reject"
ES10 Reject” Reject” Reject" Reject” Reject” Reject"
Fsl1 Reject” Reject” Reject” Reject” Do not reject” Do not reject”
FS12 Reject Reject” Reject Do not reject” Do not reject” Do not reject
FS13 Reject” Reject” Reject* Reject” Do not reject” Reject”
FS14 Reject” Reject” Do not reject’ Reject” Reject” Reject”
FS15 Reject” Reject” Reject Reject” Reject” Reject’
Department of Natural Resources and Conservation (DR)
BDR Reject® Reject” Reject” Do not reject” Reject” Reject”
DR1 Reject® Reject? Reject’ Reject® Reject? Reject’
DR2 Reject® Reject” Reject’ Reject® Reject” Reject’
DR3 Reject® Reject? Reject* Reject® Reject? Reject*
DR4 Reject® Reject” Reject” Reject® Reject” Reject”
DR5 Reject® Reject” Reject” Reject® Reject” Reject”
DR6 Reject® Reject” Reject’ Reject® Do not reject? Reject’
DR7 Reject® Reject” Reject’ Reject® Do not reject? Reject’
DR8 Reject® Reject” Reject” Reject® Do not reject? Reject”
DR9 Reject® Reject” Reject” Reject® Reject? Reject”
DR10 Reject® Reject” Reject’ Reject® Reject? Reject’
Plum Creek Timber Company (PC)
BPC Do not reject” Rejectb Rejectf Do not reject* Rejectb Rejectf
PC1 Do not reject* Do not rejectb Rejectf Do not reject* Rejectb Rejectf
PC2 Do not reject* Do not rejectb Do not rejectf Do not reject Rejectb Rejectf
PC3 Do not reject Do not rejectb Do not rejectf Do not reject” Rejectb Do not rejectf
PC4 Reject” Do not reject? Reject" Reject” Do not reject? Reject"
PC5 Do not reject* Do not rejectcl Do not reject® Do not reject” Rejectb Do not rejectf
PCé6 Reject Do not reject” Reject Reject Reject” Reject*
PC7 Do not reject* Do not reject” Do not reject® Do not reject Reject” Reject”
PC8 Do not reject” Reject? Reject" Do not reject” Reject? Reject"
PC9 Do not reject” Do not rejectb Do not rejectf Do not reject® Do not rejectb Reject"

PCI10 Do not reject* Do not rejectd Do not rejectf Do not reject” Do not rejectb Do not rejectf
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NP for BPC, PC1, PC2, PC5, PC6, and PC7; (2) CWPP & WUI
P CWPP for BPC, PCl, PC2, PC5, PC6, and PC7; (3) CWPP
P NP for PC4 and PC6; (4) CWPP P CWPP & WUI for PC4,
PC8, and PC9; (5) NP P CWPP & WUI for PC8; and (6) no
ranking for PC10.

Mann-Whitney test results led to considerably more “do
not reject the null hypothesis” decisions for PC managers
than for FS and DR managers. In particular, 59% of the
Mann-Whitney U tests for PC support nonrejection of the
null hypothesis compared to 6% for DR and 6.7% for FS.
In cases where the null hypothesis is not rejected for one or
two of the three pairwise tests for equality in the median CE
values, it is not possible to establish a complete ranking of the
three FT'Ss. For example, the PC results for almost risk neutral
attitudes are “do not reject” for CWPP and NP; and reject for
CWPP & WUI and NP,and CWPP and CWPP & WUL These
results justify two rankings: CWPP & WUI P NP; and CWPP
& WUI P CWPP. PC results for almost risk neutral attitudes
are “do not reject” for CWPP and NP and CWPP & WUI and
NP, and reject for CWPP and CWPP & WUI. In this case, only
one ranking is possible, namely, CWPP & WUI P CWPP.

5. Discussion

Case study results build upon previous research in the same
region [59] by indicating that the ranking of the three FTSs is
sensitive to the risk attitudes and attribute weights evaluated
here, and the degree of sensitivity varies across forested
areas. This result is significant because it implies that failure
to account for such sensitivity might result in an incorrect
ranking or prioritization of fuel treatments and, hence,
misidentification of a preferred fuel treatment for a forest.
Stated differently, while other studies have prioritized FTSs
using multiple management objectives and modeling results
[e.g., [46]], rarely do they consider the human influence on
well-informed decision-making. Our efforts to incorporate
and evaluate the influence of variable risk attitudes on FTS
prioritization demonstrate that modelers and policymakers
might be well served to consider how simulated informa-
tion is considered by managers and later acted upon. It
also implies that variation in managers risk attitudes may
influence the ranking of management actions.

This implication is illustrated using two examples in
which two analysts rank three FTSs (i.e., FTS,, FTS,, and
FTS;) using the same utility and CE values for fuel treatments
and the same ranking procedure. In the first example, both
analysts use the same weights for management objectives.
The first analyst ranks FTSs without considering the forest
manager’s risk attitudes and obtains a ranking of FTS, P
FTS; P FTS,, where P stands for preferred to. Based on this
ranking, the first analyst concludes FTS, is the preferred
FTS. A second analyst ranks the three FTSs accounting for
the manager’s risk attitudes and obtains a ranking of FTS;
P FTS, P FTS,. Based on this ranking, the second analyst
concludes FTS,; is the preferred FTS. The first example shows
that neglecting a forest manager’s risk attitudes can result in
misidentification of the preferred FTS. In other words, the
first analyst commits a decision error by concluding that FTS,
instead of FTS; is the preferred FTS.

In the second example, both analysts assume the same
risk attitudes but use different attribute weights. The first
analyst ranks FTSs based on a fixed set of assumed weights
and obtains a ranking FTS; P FTS, P FTS,, which implies
FTS, is the preferred FTS. The second analyst ranks the three
FTSs based on a range of attribute weights, as done in this
study, and determines that, for most weights in the range,
the ranking is FTS, P FTS; P FTS,, which implies FTS,
is the preferred FTS. This example illustrates that ignoring
variation in attribute weights in ranking FTSs can result
in misidentification the preferred FTS, which is a decision
error.

The two examples do not imply that accounting for
variations in managers’ risk attitudes and/or variation in
weights for objectives will always result in a different ranking
of FTSs. Rather, it implies that it is possible for variation
in risk attitudes and weights to influence the ranking of
FTSs.

The case study assumes two risk attitudes and specifies
35 weight scenarios by modifying empirical baseline weights
obtained for the three forest landowners. There are hundreds
of possible risk attitudes (i.e., ARAC intervals) and weight
scenarios that could be evaluated. The two risk attitudes
and 35 weight scenarios used here represent a subset of
the full range of possible risk attitudes and weights. Using
other risk attitudes and weights could result in different
rankings of FTSs than the ones obtained in the case study,
and hence different conclusions about the sensitivity of the
ranking of the three FTSs to risk attitudes and weights
and the likelihood of committing decision errors in ranking
FTSs.

Future research could explore a wider range of risk
attitudes and weights to determine the extent to which the
prioritization of fuel treatments is sensitive to variation in risk
attitudes and weights for other forested areas. High sensitivity
would imply a high likelihood and low sensitivity would
imply a low likelihood of misidentifying the preferred FTS. It
would also be worthwhile to evaluate whether risk attitudes
and the importance of fuel treatment objectives, even for
the same forest manager, is changing over time in response
to more frequent and intense wildfires. In addition, the
estimated values of the management objectives for FTSs (i.e.,
V;;is) can be made stochastic to explore the extent to which
the ranking of management actions is sensitive to stochastic
variation in those values. However, in order to isolate the
effects of stochastic variation in Vy;s on the ranking, it would
be necessary to hold the weights assigned to management
objectives (i.e., w;s) constant.

Many forest managers may not have the time or resources
to simulate attribute values using the models employed by
Prato and Paveglio [60]. Likewise, they may not have access
to data or expertise needed to parameterize those models.
This condition can be alleviated by using less complex
models to simulate the attributes of FTSs. For example,
instead of using the RECID3 model [59] to simulate the
number of new residential properties developed in each time
period, which is one of the variables that determines ERLW,
that number can be simulated by multiplying population
projections for each time period by the average number
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of persons per housing unit for the study area. Similarly,
instead of simulating intertemporal changes in forest veg-
etation in response to climate change using FireBGC [64],
vegetation dynamics can be simulated using the Climate-
Forest Vegetation Simulator [71], or the ENVISION model
[72].

Much of the existing science and research on fuel treat-
ment assume that forest prioritization models will provide
forest managers with a dominant or singular “answer” and
that they will always heed science-based answers. However,
our findings indicate that a forest manager’s choice of fuel
treatments for a landscape can be sensitive to the manager’s
risk attitudes and the weights for fuel treatment objectives.
Therefore, there appears to be a need for additional study
to explore how forest managers use science- or model-
based results in prioritizing fuel treatments and the extent
to which their final decisions match modeled outcomes.
Studying these factors can help forest managers and scientists
better understand and improve management practices or
decision-making by acknowledging the trade-offs they face
in dynamic environments and the thought processes they use
when employing the results of science-based studies and/or
decision-making tools.

6. Conclusion

The case study shows that the ranking of FTSs is sensitive to
the risk attitudes and weights for fuel treatment objectives
parameterized for a case study landscape and land man-
agers in Flathead County, Montana. This result implies that
it is important to consider both factors in ranking FTSs
because ignoring them could result in misidentification of the
preferred FTS and, hence, less efficient achievement of fuel
treatment objectives.

Acronyms

ARAC: Absolute risk aversion coefficient

CE: Certainty equivalent

CWPP: Community wildfire protection plan

DR:  Montana Department of Natural
Resources and Conservation

EDRV: Expected deviation of ecological
conditions from their historic range and
variability

ENRH: Expected net revenue from timber
harvesting associated with fuel treatment

ERLW: Expected monetary residential losses due
to wildfire

ES: U.S. Forest Service

FTS:  Fuel treatment strategy

HRV:  Historic range and variability

NP: No priority

P: Preferred to

PC: Plum Creek Timber Company

SERF:

Stochastic efficiency with respect to a
function
WUL  Wildland-urban interface.
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