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Forests provide numerous ecosystem goods and services. )eir roles are considered as important for both climate mitigation and
adaptation program. In Nepal, there are significant forest resources which are distributed in different regions; however, the studies
on the spatial tree species distribution and the above-ground biomass and their relationship at the landscape level have not been
well studied. )is study aims to analyze the relationship, distribution of tree species diversity, and above-ground biomass at a
landscape level. )e data used for this study were obtained from the Forest Research and Training Center of Nepal, International
Centre for Integrated Mountain Development (ICIMOD), and Worldwide Wildlife Fund (WWF-Nepal). )e landscape has a
mean of 191.89 tons ha−1 of the above-ground biomass. )e highest amount of the above-ground biomass measured was 650
tons ha−1 with 96 individual trees, and the least was 3.428 tons ha−1. )e measured mean height of the tree was 11.77m, and
diameter at breast height (DBH) was 18.59 cm. In the case of the spatial distribution of the above-ground biomass, plots
distributed at the middle altitude range greater than 900 meters above sea level (m. a. s. l) to 3000 meters above sea level taking
more amount of the above-ground biomass (AGB). Similarly, the highest plot-level Shannon diversity index (H’) was 2.75 with an
average of 0.96 at the middle altitude region followed by the lower region with an average of 0.89 and least 0.87 at a higher
elevation. Above-ground biomass (R2 � 0.48) and tree height (R2 � 0.506) significantly increased with increasing elevation up to a
certain level increased of elevation. Diameter at breast height (DBH) showed significance (R2 � 0.364) but small increase with
increasing elevation, while the relationship among tree species diversity index, above-ground biomass, and elevation showed a
weak and very weak positive relationship with R2 � 0.018 and R2 � 0.002, respectively. Based on the overall results, it is concluded
that elevation has some level of influence on the forest tree diversity and above-ground biomass.)e finding of this study could be
useful for landscape-level resource management and planning under various changes.

1. Introduction

Forests have a significant function in the world climate
system by changing the concentration of carbon dioxide in
the atmosphere [1]. As regards important services, forests
and trees play a vital role in the preservation of ecosystems
by sustaining the quality of goods and services they produce
during their functioning. Forests are the most important
natural stores of biomass and sink and store carbon than any

other terrestrial ecosystem and store more carbon than the
world’s oil reserves; they also continually remove carbon
from the atmosphere through photosynthesis that alters
atmospheric carbon to organic matter due to which the
relationship between biodiversity and carbon cycle has
become an important consideration in an international
effort for conserving the natural ecosystem [2]. )e sig-
nificant involvement of forest ecosystem in carbon con-
servation and sequestration has been playing a vital role in
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the present global climate change context, and therefore,
forest is kept in the center of climate change mitigation
strategies [3, 5]. Pan et al. [4] stated that 40% of global
terrestrial carbon is contained in the living forest biomass.
)e quantity of above-ground biomass in a forest governs
the prospective volume of carbon that can be added to the
atmosphere or sequestered on the land when forests are
accomplished for achieving emission goals [6]. )e amount
of above-ground biomass produced differs from places to
places, and the relationship between above-ground biomass
and species diversity has been discoursed for many years
[7–9]. In this regard, regular inventory and monitoring are
considered as an important means to understand the
structure, diversity, above-ground biomass of different
habitats, and vegetation type support for achieving inter-
national agreements [10]. In tropical forests, variation may
occur due to regional differences in climate, species diver-
sity, stem density, canopy height, stem size distribution,
edaphic circumstances, geography, and disturbance history
[1, 10–16]. Likewise, changes in several environmental
variables along with a change in altitude could also influence
the amount of above-ground biomass of that particular
species that is found in a particular area. )erefore, climate
variables are considered as the greatest importance where
altitudinal gradient and species richness are concerned [17].
Furthermore, there is a significant relationship between
species richness and ecosystem productivity [18–20]. Gen-
erally, the higher productivity is associated with the greater
number of individual and/or more total biomass of tree
species in a forest ecosystem [21]. Climatic variables, mainly
temperature and precipitation, having influencing ability on
primary productivity resemble species richness [22, 23].
Hence, altitudinal gradients and species richness are among
the most weighted prevailing natural trials for testing en-
vironmental and evolutionary retorts of biota to environ-
mental changes. Spatial variability information on forest
above-ground biomass, species diversity distribution, and its
allotment along the altitudinal gradients could provide
better spatial forest management plan considering the
multiple benefits of the forest ecosystem for climate miti-
gation and forest resource management.

Globally, around 9% of the total number of tree species
accounting around 8000 individual species are under the
threats of extension due to declining the forest and threats of
climate change. Tropic which is rich in biodiversity has been
facing double impacts from climate change and anthropo-
genic pressure [24]. )e interrelation between climate
change, biodiversity, and decreasing forest area has been
observed in a different spatial scale ranging from local,
regional, and at a global level. Nepal, a small South Asian
nation, covers only 0.1% of the global land surface but homes
to 136 ecosystem types with about 2% of flowering plants,
6% of the bryophytes of world flora, and 3% of the pteri-
dophytes. Eight types of species are assumed to be extinct,
one species is threatened, seven types of species are vul-
nerable, and 31 species tumble under the IUCN rare species
groups [25, 26]. )e Chitwan-Annapurna Landscape
(CHAL), a part of the Sacred Himalayan Landscape, is lo-
cated in central Nepal with a rich biodiversity landscape and

occupies an area of 32,057 square kilometers [27]. )e
physiographic regions of the landscape range from sub-
tropical in lowland to alpine in highland. )e huge variation
in elevation, climate, and topography has supported dif-
ferent types of forest in the landscape which range from
tropical mixed deciduous forest dominated by Shorea ro-
busta in Siwaliks to Schima-Castanopsis forests in the
midhills and subalpine-alpine scrub vegetation comprising
Juniperus species and Rhododendron species in the high
mountains and high Himal areas [27]. )e spatial field-
measured forest-tree diameter at breast height and tree
height data from the forest plot area could be utilized to
calculate the forest above-ground biomass, and later, this
could supplement for the evaluation of the amount of carbon
that a particular forest ecosystem stored [28, 29]. Similarly,
at the same time, information collected during the plot-level
survey also supplements the particular species which exist in
that plot, and this can be utilized for the tree’s species di-
versity and forest structure assessment. )is study uses data
collected from various plots of equal size that is a spatially
distributed thought study area. )e relation between above-
ground biomass, species diversity, elevation, and stand
parameters such as DBH and height was assessed using
standard statistical tools and methods.

1.1. Study Area. Chitwan-Annapurna Landscape is the part
of high biodiversity-rich landscapes of the greater Hima-
layan landscape, located at 27°35″ and 29°33″ N latitude and
82°88″ and 85°80″ E longitude in Nepal, which envisaged
during the development of biodiversity vision in Nepal [27].
)e landscape covered 32,057 square kilometers of the 19
districts of central Nepal. Eight major river systems namely:
Kali Gandaki, Seti, and Madi, Marsyangdi, Daraundi, Budi
Gandaki, Trishuli, Rapti and their tributaries. )e landscape
also covers the full or partial part of six protected areas and
their buffer zones. )is landscape links the ecologically
unique ecoregion between north and south of Nepal through
terrestrial connectivity via exiting different forest regimes:
government-managed, community, protection, leasehold,
and buffer zone community forest. Geographically, 11.4
percentage is located in the Siwalik region, 37.8 percentage
in the midhills, and 50.8 percentage in the mountain region
with 200m to 8,091m altitudinal variation with forest area
distributed on less than 4000m (Figure 1).

)e landscape has varied climate which ranges from
subtropical humid in the lowlands at Siwaliks to cold alpine
semidesert in the trans-Himalayan zone [27].

2. Materials and Methods

)emain materials used for this study were field-collected
data, geospatial data layer, and sets of software that are
required for the statistical and spatial analysis. 30m
SRTM digital elevation model developed by NASA,
geodatabase consisting of study area shapefile, and 20210
forest cover from the ICIMOD were used for the elevation
determination and identification of the forest cover area
in the landscape. )e lowest plot elevation from the forest
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area was 237m, and higher elevation was 3484m from
mean sea level (MSL). Forest inventory data at the plot
level were collected from FRTC-Nepal, ICIMOD, and
WWF-Nepal representing this entire stratum. )ese in-
stitutes have collected those data by using a stratified
random sampling method with a circular plot of 500m2

and a radius of 12.62m following IPCC standard guide-
lines [30]. Generally, out of various sampling techniques,
stratified random sampling has been extensively used for
forest biomass inventory as it gives more accurate esti-
mation [31]. During the fieldwork, they have collected
different information such as tree height, diameter at
breast height (DBH) measured at 1.3 meters above 10 cm,
tree species (local name and scientific name), and plot
spatial information. A total of 384 plot data collected from
2010 to 2015 in different physiographic regions were
processed and analyzed for measuring the spatial distri-
bution of tree diversity and above-ground biomass; fur-
ther data from 90 plots representing different elevations
were used for statistical analysis along the Chitwan-
Annapurna Landscape.

3. Biomass Stock Mapping and Modeling

3.1. Biomass Stock Calculation. Generally, above-ground
biomass is assessed from volumetric and structural di-
mensions of the trees for which diameter at breast height
(DBH) and height of the tree are taken as major variables. In
lack of species-specific biomass equation of the trees, spe-
cies-specific volume equations established by Sharma and
Pukkala [32] were used to measure the above-ground bio-
mass of standing tress. )e overall stem volume of single
trees was derived from field-measured DBH and tree height
using the relationship in the following form [32]:

ln(V) � a + b∗ ln(DBH) + c∗ ln(Ht),

equation(1) − allometric volume equation,
(1)

where ln is the natural logarithm to the base 2.71828, V is
the total stem volume with bark in m3, to get the volume in
cubic meters, the estimate is to be divided by 1000, DBH is
the diameter at breast height in centimeter (cm), Ht is the
tree height in meter, and a, b, and c are model parameters.

)e estimated parameter value of a, b, and c for different
species and wood density of the foremost tree species are
specified in Table 1.

)e obtained volume was multiplied with dry wood
density (specific gravity) of the species to obtain an air-dry
bulk of trunk biomass [33] by applying equation (2). Species
initiate in the landscape, and correspondingly, other species
and their values were also kept, and volume was derived
accordingly as shown in equation (1).

Stem biomass � stem volume∗wood density,

equation(2) − calculation of stem biomass.
(2)

Due to the nonappearance of conventional biomass
associations of diverse tree components of separate tree
species of sample forest types, this analysis used the

relationship established by Sharma [34] for a solitary species
of analogous forest types of Nepal which was later imple-
mented by Shrestha and Singh [35]. )e biomasses of
branches and leaves (foliage) were estimated to be 42% and
8% of the stem biomass, respectively [34], to calculate the
total biomass of trees.

Total AGB � stembiomass + branch biomass + foliage biomass,

equation (3) − AGB.

(3)

3.2. Measuring Forest Tree Species Diversity. )is study re-
lates the Shannon diversity index (H’) as a compute of di-
versity among the trees in different measured plots in the
CHAL area to measure the diversity of the tree species across
the landscape. )is index grabs jointly species wealth and
species lushness on interpretation:

H′ � − 􏽘
S

i�1
pi lnpi, (4)

where S equals number of species, pi equals the ratio of
individual of species I divided by all individuals N of all
species, and ln is the natural logarithm to the base. )e
Shannon diversity index ranges usually from 1.5 to 3.5 and
infrequently reaches 4.58 [36].

3.3. Mapping the Spatial Distribution of Above-Ground Bio-
mass and Tree Diversity. Spatial variations are common in
many ecological variables and have common charac-
teristics and properties in their occurrence. For this
reason, topographical position of examination should be
stated for reflection on concurrently in totaling a be-
longing value to describe patterns of quantitative dis-
tribution of such ecological parameters [37]. In such
circumstances, the geostatistical technique could con-
tribute to analyze and estimate the variation of the
spatially dependent variable based on the properties.
Based on the principle of nearer observation, sample
values are more likely to be nearer than the samples of at
a distance one.

Many earlier studies on metrology, mining, geology, and
different branches of ecology have used this approach for
identifying spatial variations/distribution [38–42]. For this
study, a geostatistical approach was used to extrapolate the
spatial distribution of the Shannon diversity index and
above-ground measure biomass that is measured at the plot
level [43–46]. )is technique was presented by Matheron in
1963 and commonly applied to determine the consequence
of spatial conglomeration in forestry sectors and environ-
mental variable analysis also. Equation (5) was deployed for
this calculation:

S0( 􏼁 � 􏽘
N

i�1
λiZ Si( 􏼁, (5)

where Z(Si) indicates the calculated value of the i location;
λ i indicates the indefinite value-weight for the measured
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value on the i location; S0 indicates the predication location;
and N indicates the number of calculated values.

4. Results

4.1. Above-Ground Biomass and Forest Tree Species Diversity.
Above-ground biomass stock of separate trees was calculated
species-wise in kilograms; formerly, total biomass of trees
calculated in the sampling plots was transformed into ton,
and biomass stock ton per hectare was then estimated by
extrapolating the biomass stock from the sample plot of
500m2 to hectare (ha). )e average above-ground biomass
measured was 191.89 tons ha−1 for the Chitwan-Annapurna
Landscape. )e largest amount of tree above-ground bio-
mass measured was 650 tons per hectare with 96 individual
trees in a plot of broadleaved forest dominated by Shorea
robusta, while the least amount of biomass measured was
3.428 tons per hectare in a forest dominated by Pinus species
and Schima wallichii with 13 individuals. Mean diameter at
breast height (DBH) and height of stems in the study were
18.59 cm (SD� 6.21) and 11.77m (SD� 4.45). )e highest
amount of biomass was found within a tall tree greater than
15m height accounting for approximately 90% of the bio-
mass across all of the plots. Similarly, for diameter at breast
height (DBH), the greatest biomass was observed on a tree
having DBH greater than 45 cm in all plots. Similarly, in this

study, it was observed that above-ground biomass at the
middle altitudinal zone ranging from 902m amsl to 3000m
MASL takes the largest amount.

Altogether, 160 different tree species were recorded from
the plot-level survey data from different altitudinal ranges in
the CHAL area. )e highest number of different individual
tree species recorded is 29 in a plot, and the least is 1 species
which is only one species that exists in that plot. Regarding
Shannon diversity index (H'), the highest calculated index
value for the study area is 2.75, and the least is 0, where there
is no diversity. In the case of altitudinal variation and tree
species diversity, an average Shannon diversity index for
different altitudinal zones was calculated based on the plot
elevation location. )e calculation shows the middle region
expanding from 1000 to 2500m has the largest average index
value of 0.96 followed by a lower region below 1000m, which
has 0.89, and least in the upper region 2500–3500m with
0.87 Shannon diversity index value. Figure 2 shows the
spatial distribution of tree species calculated through the
Shannon diversity index (H'). Shorea robusta seems to be the
most dominant tree species in the lowland forest area.
Likewise, Pinus species, Schima wallichii, Castanopsis indica,
Alnus nepalensis, Quercus species, Lyonia ovalifolia, Eurya
acuminata, Engelhardia spicata, Daphniphyllum himalense,
and Rhododendron species dominancy have been observed
with the change in certain elevations in the CHAL region.
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Figure 1: Map showing the study area with the field sample plot location.
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4.2. Spatial Distribution of Above-Ground Biomass and Tree
Species Diversity in CHAL. For mapping the above-ground
biomass and diversity index value, geospatial technique-
calculated values were classified into different classes for
AGB (four classes) representing the amount of biomass in
ton·ha−1. i.e., forest area having less than 10 ton ha−1, 10–200
ton ha−1, 200–500 ton ha−1, and greater than 500 ton ha−1,
respectively. Similarly, for tree species diversity, the diversity
index was classified into color pith values, namely, area
having a high index value, medium index value area, and low
index value area; resulting outputs are shown in Figures 2
and 3.

4.3. Relationship between AGB, Elevation, Species Diversity,
and Stand Parameters. Figure 4(a) shows the relationship of
above-ground biomass with elevations. )e maximum volume
of the above-ground biomass remained detected in elevation
between 900m and 2500m amsl. )e analysis from the linear
regression model y� 2.630x+762.1 was established to be the
line of preeminent fit. A positive correlation (R2� 0.48) was
found between elevation and above-ground biomass, showing
increases of above-ground biomass up to certain level of in-
crease in elevation in the CHAL area. Ampere numeral of
regression comparisons remained tried to infer the relationship
among elevation and tree height; the best regression model

Table 1: Model parameters and wood density of major trees.

Species a b c Wood density (kg/m3)
Shorea robusta −2.4554 1.9026 0.8352 880
Syzygium cumini −2.5693 1.8816 0.8498 770
Schima wallichii −2.7385 1.8155 1.0072 690
Adina cordifolia −2.5626 1.8598 0.8783 670
Albizia sps. −2.4284 1.7609 0.9662 425
Alnus nepalensis −2.7761 1.9006 0.9428 440
Castanopsis indica −2.3204 1.8507 0.8223 740
Quercus −2.3601 1.968 0.7469 594
Rhododendron −2.3204 1.8507 0.8223 640
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Figure 2: Tree species richness (Shannon diversity index (H')) distribution in CHAL.
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which found to be fitting was y� 148.9x− 411.0 with a con-
vincingly good correlation (R2� 0.506) indicating the existence
of a relationship between tree height and elevation as shown in
Figure 4(b). Likewise, the linear regression model observed
between average tree diameter and elevation also shows similar
results with y� 0.005x+11.56 and R2� 0.364 (Figure 4(c)). In
the case of species diversity index and above-ground biomass, a
very weak relationship has been observed as shown in
Figure 4(d). A linear regression model y� 0.020x+7.874 was
found to be the best line of fit among various regression types,
with (R2� 0.506) indicating the increase in tree height which
means increasing above-ground biomass (Figure 4(e)). Like-
wise, the linear regression model between elevation and di-
versity index y� 193.7x+991.5 with R2� 0.018 was fit with
indication of the confident feeble association amongst plot-tree
species diversity and elevation. We relate a single-factor
ANOVA for analyzing the effect of elevation on different
variables, where elevation had some significant effects on
various parameters, as shown in Table 2.

5. Discussion

)e results of this study show a multifarious and variable
association among elevation, tree species diversity, and
forest above-ground biomass in CHAL forest areas. As
numbers of factors play a significant role for variability of

tree biomass in a forest ecosystem that may be because of
elevation variation species composition, pattern of rainfall,
forest types, age and structure of the forest stand, local site
factors, and trees size [47, 48]. In this present study, some
plots having high tree species diversity had comparatively
low biomass, and some plots with a minimum number of
species had high above-ground biomass indicating near-no
substantial relationship amid tree spices diversity and above-
ground biomass. Some studies which were carried out in
some parts of Nepal also found a very weak relationship
between carbon stock and biodiversity [49–51].

However, in a few survey plots, a little positive corre-
lation between tree species diversity and above-ground
biomass was observed. Such a positive relationship is im-
portant in policy implementation for a program like REED+
which could co-benefit for biodiversity conservation as well
as biodiversity hotspot identification for policymakers of
local, provincial, and central level to implement a policy for
resources management and planning development activities
around their areas. )e above-ground biomass that is es-
timated in this study is within the ranges that are found in a
study carried out in different parts of Nepal [5, 49, 51–54].
)e present biomass estimate demonstrates the high spatial
variability of biomass storage within different forest areas.
)e survey plot with the highest above-ground biomass
calculated contained more than 186 times the biomass of the
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6 International Journal of Forestry Research



lowest calculated plot. Stand parameters such as tree height
and DBH show positive correlation; a tree having larger
DBH and bigger height has contributed more biomass in a
plot. A similar finding was obtained by an earlier study
[55–57].

Besides storing a large amount of biomass, the trees
having bigger in both DBH and height size also provide
greater ecosystem resilience and better sustainable dog-
gedness of forest and places; therefore for carbon con-
servation/sequestration and such stand need better
protection for climate change mitigation [58]. In the case
of elevation-wise biomass distribution, it was observed
that the elevations from the middle altitudinal zone take
the larger portion of the above-ground biomass

(ton·ha−1), respectively. )e higher altitudinal ranges take
the lowest portion of the above-ground biomass. Based on
the above-ground biomass calculation, the total above-
ground biomass rank was ordered as middle altitude zone
(1000–2500m) > lower altitude (less than 1000m)
> higher altitude (2500–3500m). In terms of tree species
distribution, results of this study are important, both for
nature conservation and planning for any land trans-
formation activities/forest resource management plan, as
the tree species is manifested differently in different
forests along various measured plots from different ele-
vations; higher diversity index is observed in the plot area
which shares the physiographic zones or could have the
ecotone or edge effects.
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Figure 4: Relationship between AGB, elevation, species diversity, and stand parameters.
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6. Conclusion

Identifying tree species distribution and the amount of
biomass that a particular forest stores at the landscape
level are crucial to show forest ecosystem potential to
climate change adaptation and mitigation program, as
well as for biodiversity conservation. Our analysis reveals
that some degree of variability subsists between elevation,
above-ground biomass, and tree species diversity in the
CHAL area. However, more research is obligatory to the
causes of this variation with more spatial and temporal
evidence information. Forest trees’ above-ground biomass
can be influenced by numbers of natural as well as an-
thropogenic factors. As some national-level assessment
shows there is no significant change in forest cover in the
CHAL area, especially in conservation areas over last few
decades, however, as per informal reports/news, many
parts of the landscape have been facing anthropogenic
pressure via unscientific expansion of rural road, reset-
tlements, urban expansion, and other land transformation
activities which would directly influence the tree above-
ground biomass and species distribution. Looking at
present global climate change issues and the role of the
forest ecosystem, the above-ground biomass and tree
diversity in the landscape could play significant positive
roles in the long-term stability and resilience of both
humans and the ecology of this landscape.
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