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Forests provide immeasurable merits for the economies of most developing countries. Forests in developing countries experience
harmful human-induced impacts such as unregulated removal of biodiversity and unsustainable land conversion. 'e Sefwi
Wiawso District (SWD) located in Ghana, which includes portions of six protected forest reserves (FRs) such as Muro, Tano
Suhien, Tano Suraw, Suhuma, Sui River, and Krokosua, is the subject of this study. 'e impacts of selected spatial variables on
forest losses were examined using retrospective and predictive approaches. Past deforestation patterns were analyzed using
classified Landsat 5 and 7 imagery from 1984 to 2017. Pixel areas in hectares (ha) from land use land cover (LULC) classifications
were used to detect land cover classes that were vulnerable to potential loss. 'e study also carried out a simple forest prediction
using the simple moving averages (SMA) forecasting model based on the past and present deforestation patterns from LULC
classification. 'e results showed that 3587.49 hectares (ha) of protected forest cover was converted into agricultural lands and
barelands. In addition, 2532.96 hectares (ha) was converted from close forest to nonforest land cover from 2000 to 2017, which is
equivalent to a 16% reduction in close forest cover within the FRs in the SWD.'is loss was also 11% higher than close forest areas
between 2000 and 2010. SMA forecasting showed that from 2017 to 2024, 877.38 hectares (ha) of close forest resources will convert
to open forest resources and other nonforest land cover. Subtle accessibility routes such as navigable rivers and unofficial roads are
the key instigators of protected forest clearance in the Sefwi Wiawso Forest District (SWFD). 'e SWFD is surrounded by many
communities and is susceptible to uncontrollable biodiversity removal due to lack of proper monitoring of agricultural practices,
mining operations, fuelwood collection, and illegal hunting, which represents a means of livelihood for the forest fringe
community dwellers. 'e research serves as a benchmark for similar studies in efforts to investigate, measure, and project land
cover change in protected forest areas.

1. Introduction

'e mechanics involved in understanding the depletion of
forests have always been problematic. In measuring the rate
of forest loss, past research studies have relied on indicators
such as location, forest type, climate conditions, rainfall
patterns, proximate forest dependencies, infrastructural

development, population growth, and livelihoods [1, 2].
Industrial wood, fiber, food, medicines, and firewood are few
benefits fringe communities derived from the protected
forest. However, unsustainable forest removal for short term
communal gains has resulted in adverse effects such as
biodiversity loss, unpredictable climate conditions, and
destruction of terrestrial biodiversity ecosystems [3, 4].
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Instigators of forest loss are events, structures, or practices
which directly or indirectly cause the conversion of forest
land cover types to nonforest land cover types [5]. 'e
identification of direct and underlying instigators of forest
loss is essential for developing plans and schemes required
for sustainable forest resource management [6, 7]. Analyzing
the causes and dynamics of deforestation leads to better
results at the local and rural levels, since the data collected
are small in scale and thus indicate the root causes [8].
International conservation organizations have committed at
least $3.4 billion to help mitigate deforestation in Africa
since 2000, but the effects of these attempts are not readily
evident due to short term objectives and goals [9].

Ghana is one of the several developing countries en-
couraged to reduce forest losses for reducing emissions from
deforestation and forest degradation, conservation, and
enhancement of carbon stocks (REDD+) benefits [10]. 'e
development of national strategies and action plans for
REDD+ in 46 developing countries has shown that com-
mercial and subsistence agriculture is the main instigator of
forest loss, whilst unsustainable logging is identified as
another major degradation enhancer [11]. Human-induced
factors such as fuelwood processing, charcoal production,
wildfires, and livestock grazing have been identified as
secondary instigators of forest removal in developing
countries [11]. Despite forest management interventions by
the Forestry Commission (FC) of Ghana, there is a persistent
decline in protected forest infrastructure within the SWFD.
Continuous removal of forest biodiversity without sufficient
replacement has led to effects such as desertification, floods,
deforestation, disease prevalence, and pest infestations [12].
High forests covered 79,511 km2 of land area in Ghana in
2000 but stood at 7,951.12 km2 in 2016 [13].

'e development of the geographic information system
(GIS) and remote sensing (RS) techniques has proved to be
important in addressing challenges encountered when
quantifying and identifying forest loss instigators [14–18].
Sustainable conservation methods use GIS/RS techniques to
try and remain ahead of the issue [14, 15, 19]. Remote
sensing analysis of time-series satellite imagery has helped to
classify current and past forest cover patterns and further
identified trends of forest conversion from which future
forecasts can be made [20–22]. It is also easier to control
forest biodiversity when ground forest data are regularly
collected in the GIS environment [17, 23]. 'e advent of
unmanned aerial vehicles (UAVs) enabled the timely re-
trieval and study of forest spatial data without too much
exertion [17, 23]. 'e International Union for Conservation
of Nature ranks protected areas within SWD as category 1a
where limitations on accessibility are placed on proximate
dwellers, and forests are reserved for sustainable manage-
ment, scientific, and biological research. However, the FRs
within the SWD do not reflect these strict protective
guidelines. It is based on this that the study investigates,
quantifies, and forecasts forest land cover change for pro-
tected forest biodiversity in SWD using accessible roads,
agriculture, and community density as spatial indicators.
'e study first specifically analyses the risk levels of pro-
tected forest areas based on proximity of access roads within

the SWFD. 'e study goes on to assess the impacts of ag-
ricultural expansion and community location density on
protected forest land cover conversions in SWFD.'e study
then predicts forest loss dynamics in the near future based
on the aforementioned drivers.

2. Materials and Methods

'e study used several time-series satellite imagery, road, and
community shapefiles within the SWD to reveal conversions
from forest cover to other land cover based on selected drivers
within the FRs [16]. Forest cover images were classified into
close forest, open forest, farmland, grassland, and bare land
cover categories using the Gaussian maximum likelihood
algorithm. Accuracy assessment was carried out to examine
the accuracy of the classifier’s prediction. Road and com-
munity shapefile data were processed using the ArcGIS
toolbox to define road buffer distances and community lo-
cation intensity. Resulting road and community datasets were
integrated with results from LULC classification to reveal
forest changes and land cover conversions in hectares (ha)
within the SWD based on the drivers identified.

2.1. Study Area. 'e SWD (Figure 1) which has an area of
101,060 hectares (ha) is located in the Western North region
of Ghana and contains the portions (Table 1) of the forest
reserves (FRs) used for the study. It is bounded by Asunafo
South, Atwima Mponua, Sefwi Bibiani-Anhwiaso, Wassa
Amenfi West, Sefwi Ankontombra, Bodi, and Juabeso po-
litical districts. It falls within the moist semideciduous eco-
logical zone. 'e FRs inside the study area are colonized by
dominant timber tree species such as Heretiera utilis, Cyn-
ometra ananta, and Celtis milbraedii, which have several
medicinal and research purposes [24]. 'e FRs also provide
natural habitats tomammals including the giant rat, themona
monkey, the red river hog, and Maxwell’s duiker to name a
few [24].'e inhabitants of the SWD have benefited from the
timber utilization contracts (TUC) policy which include the
development of schools, health facilities, and improved road
networks.'is has consequently improved income generation
and increased the level of employment in the district [25].

A recent study in the southern part of Ahafo and the
northern part of the Western North regions which contain
the study area depicted an increasing rate of deforestation
[13]. Primary and secondary forest loss had an annual rate of
1.9% over 25 years (1986–2011), but currently has an annual
rate of 2.3% [13].

2.2. Landsat Imagery Preprocessing and Classification. 'e
Landsat images used were from 1984, 1990, 1996, 2000, 2003,
2010, and 2017. Raw landsat imagery was acquired from the
United States Geological Survey’s (USGS) Earth Explorer
using the SWD’s area of interest (AOI). Instances of haze
were removed through earth observation data repository.
Histogram equalization was carried out in ArcGIS. Ground
reference points representative of five land cover categories
(Table 2), namely, close and open forest, farmland, grass-
land, and barelands used were collected. Band combinations
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(Table 3) for false color composites in Landsat 5 and
Landsat 7 images were used to identify various land cover
within the study area for better classification results [27].
'e digital numbers (DNs) of the acquired imagery were
subsequently sampled and trained using the Gaussian
maximum likelihood classification algorithm (Figures 2
and 3). 'is algorithm was preferred because of the
Bayes theorem decision-making, which accounts for some
forest classes occurring in higher or lower pixel quantities
than the average [28].

2.3. Accuracy Assessment. 'e study assessed the classifier’s
ability to accurately and quantitatively identify how efficient
pixels were sampled into their correct land cover categories.
A total of 350 geographically verified pixels (ground truths)
were created on the images. 'ese training samples were
randomly assigned to each class and were proportional to
the land cover sizes. Error matrix report tables for all LULC
classifications (Tables 4 and 5) showed the relationships
between ground truth data and the corresponding classified
data [27]. Statistical accuracy metrics (Tables 6 and 7) which
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Figure 1: 'e SWD and the six forest reserves (FRs).

Table 1: Areas (ha) and location of FRs within the SWD.

Center point
Forest reserve Size inside the study area (ha) Latitude (N) Longitude (W) Forest type Year reserved
Krokosua 100.35 6° 30′N 2° 49′W MSNW 1935
Muro 6489.2 6° 29′N 2° 38′W MSNW 1951
Suhuma 5975.08 6° 04′N 2° 28′W MSNW 1935
Sui River 1209.63 6° 10′N 2° 44′W ME 1930
Tano Suhien 9082.62 6° 20′N 2° 28′W MSNW 1934
Tano Suraw 1945.65 6° 18′N 2° 18′W MSSSE 1934
MSNW, moist semideciduous northwest subtype; MSSE, moist semideciduous southeast subtype; ME, moist evergreen [26].
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Table 3: Satellite imagery information with color composites used.

Date/Time Imagery
year Satellite False color composite

used Information

14/12/1984
(day) 1984 Landsat 5 MSS (4, 3, 2) Vegetation boundary between land, water, and landforms

31/12/1990
(day) 1990 Landsat 5 TM (4, 3, 2), (5, 4, 3)

Biomass content, peak and deciduous vegetation, and
differentiate vegetation slopes

19/05/1995
(day) 1995 Landsat 5 TM (4, 3, 2), (5, 4, 3)

29/11/1996
(day) 1996 Landsat 5 TM (4, 3, 2), (5, 4, 3)

2/2/2000
(day) 2000 Landsat 7

ETM+ (4, 3, 2), (5, 4, 3)

14/3/2003
(day) 2003 Landsat 7

ETM+ (4, 3, 2), (5, 4, 3),(7, 5, 3)

14/12/2010
(day) 2010 Landsat 7

ETM+ (4, 3, 2), (5, 4, 3),(7, 5, 3)

8/1/2017
(day) 2017 Landsat 7

ETM+ (4, 3, 2), (5, 4, 3),(7, 5, 3)
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Figure 2: Classified SWD LULC image for (a) 1990; (b) 1996; and (c) 2000.

Table 2: Definitions of land cover categories [29, 30].

Land cover category Characteristics
Close forest Light penetration forest floor <25% (>75% canopy cover)
Open forest Light penetration forest floor >25% (<75% canopy cover)
Farmland Commercial and subsistence agricultural land cover
Grassland Open forest area replaced by dry or wet grass cover
Bareland Settlement/cleared area with no forest regeneration ability
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included commission and omission errors were also com-
puted for all LULC classifications carried out [27, 31].

'e columns (Table 4) show the classes in the validation
(ground truth) pixel set, and the rows show the classified
pixel sets. 'e overall accuracy which is the percentage of
correctly classified points from the total number of points is
79% with a kappa of 0.738.

2.4. Analysis Using Forest Loss Instigators

2.4.1. Road Proximity. Road shapefiles within the SWD were
acquired and processed into three buffer distances. On-field
verification coordinates and Google Earth Imagery were used
to verify the current existence of road segments, junctions,
and turns used in this study. 'e road segments used had a
total distance of 271.20 kilometers. As a forest loss indicator,
variable accessible road segments within FR areas raised red

flags as they were suspected to expose the FRs to different
forms of human interventions and deforestation risks [33].
'e three road buffers set were based on proximity to FRs.
High-, medium-, and low-risks identities were given to the
road buffers based on the distance to FRs [33, 34]. Referring to
[34], this study devised a minimum distance interval (Table 8)
for road buffers that would trigger early detection of forest
loss in FRs. A workflow of road shapefile processing and
subsequent LULC integration is shown in Figure 4.

2.4.2. Agricultural Expansion. Forest cover conversions
between 2000 and 2017 were computed using change de-
tection operators in the ArcGIS software. Change imageries
between 2000 and 2010 and between 2010 and 2017 were
generated. Highlight imagery was then used to visualize
general land cover changes and nonchanges in FRs within
the SWD (Figure 5).
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Figure 3: Classified SWD LULC image for (a) 2003; (b) 2010; and (c) 2017.

Table 4: 'eoretical error matrix for 2017 LULC classification [32].

Truth
S. No. Classified Close forest Open forest Farmland Grassland Bareland Total Correct sampled

Predicted

1 Close forest 63 3 2 0 5 73 63
2 Open forest 10 87 8 0 4 109 87
3 Farmland 5 3 64 2 7 81 64
4 Grassland 4 5 0 47 0 56 47
5 Bareland 3 5 4 1 18 31 18

Total 85 103 78 50 34 350 279
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Table 5: Error matrix report tables for LULC classification.

Truth
S. No. Classified Close forest Open forest Farmland Grassland Bareland Total Correct sampled
9eoretical error matrix for 1984 LULC classification

Predicted

1 Close forest 51 15 3 3 1 73 51
2 Open forest 22 73 4 6 4 109 73
3 Farmland 8 4 61 3 5 81 61
4 Grassland 9 3 4 37 3 56 37
5 Bareland 5 3 1 4 18 31 18

Total 95 98 73 53 31 350 240
9eoretical error matrix for 1990 LULC classification

Predicted

1 Close forest 53 11 5 1 3 73 53
2 Open forest 15 69 15 4 6 109 69
3 Farmland 20 8 50 1 2 81 50
4 Grassland 10 5 4 32 5 56 32
5 Bareland 5 2 1 2 21 31 21

Total 103 95 75 40 37 350 225
9eoretical error matrix for 1995 LULC classification

Predicted

1 Close forest 49 6 7 3 8 73 49
2 Open forest 10 83 5 4 7 109 83
3 Farmland 12 18 43 3 5 81 43
4 Grassland 12 10 7 19 8 56 19
5 Bareland 5 4 3 1 18 31 18

Total 88 121 65 30 46 350 212
9eoretical error matrix for 1996 LULC classification

Predicted

1 Close forest 50 15 2 1 5 73 50
2 Open forest 19 81 6 2 1 109 81
3 Farmland 15 8 49 2 7 81 49
4 Grassland 7 16 4 25 4 56 25
5 Bareland 5 3 1 1 21 31 21

Total 96 123 62 31 38 350 226
9eoretical error matrix for 1995 LULC classification

Predicted

1 Close forest 50 15 2 1 5 73 50
2 Open forest 19 81 6 2 1 109 81
3 Farmland 15 8 49 2 7 81 49
4 Grassland 7 16 4 25 4 56 25
5 Bareland 5 3 1 1 21 31 21

Total 96 123 62 31 38 350 226
9eoretical error matrix for 2000 LULC classification

Predicted

1 Close forest 64 4 3 1 1 73 64
2 Open forest 6 89 10 1 3 109 89
3 Farmland 11 18 41 4 7 81 41
4 Grassland 7 16 4 25 4 56 25
5 Bareland 1 2 1 3 24 31 24

Total 89 129 59 34 39 350 243
9eoretical error matrix for 2003 LULC classification

Predicted

1 Close forest 55 5 2 5 6 73 55
2 Open forest 13 85 5 4 2 109 85
3 Farmland 11 3 63 3 1 81 63
4 Grassland 6 10 3 35 2 56 35
5 Bareland 5 2 2 3 19 31 19

Total 90 105 75 50 30 350 257
9eoretical error matrix for 2010 LULC classification

Predicted

1 Close forest 54 2 8 6 3 73 54
2 Open forest 14 78 3 6 8 109 78
3 Farmland 10 21 40 6 4 81 40
4 Grassland 9 12 4 21 10 56 21
5 Bareland 4 2 1 3 21 31 21

Total 91 115 56 42 46 350 214
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Table 6: Accuracy assessment statistical parameters for 2017 land use land cover (LULC) [32].

Classified data Commission error Omission error User’s accuracy Producer’s accuracy
Close forest 0.1370 0.2588 0.8630 0.7412
Open forest 0.2018 0.1553 0.7982 0.8447
Farmland 0.2099 0.1795 0.7901 0.8205
Grassland 0.1607 0.0600 0.8393 0.9400
Bareland 0.4194 0.4706 0.5806 0.5294

Table 7: Accuracy assessment statistical parameters for LULC classification.

Classified data Commission error Omission error User’s accuracy Producer’s accuracy
Accuracy assessment statistical parameters for 1984 LULC. Overall accuracy is 69% with a kappa of 0.595
Close forest 0.3014 0.4632 0.6986 0.5368
Open forest 0.3303 0.2551 0.6697 0.7449
Farmland 0.2469 0.1644 0.7531 0.8356
Grassland 0.3393 0.3019 0.6607 0.6981
Bareland 0.4194 0.4194 0.5806 0.5806

Accuracy assessment statistical parameters for 1990 LULC. Overall accuracy is 64% with a kappa of 0.540
Close forest 0.2740 0.4854 0.7260 0.5146
Open forest 0.3670 0.2737 0.6330 0.7263
Farmland 0.3827 0.3333 0.6173 0.6667
Grassland 0.4286 0.2000 0.5714 0.8000
Bareland 0.3226 0.4324 0.6774 0.5676

Accuracy assessment statistical parameters for 1995 LULC. Overall accuracy is 61% with a kappa of 0.489
Close forest 0.3288 0.4432 0.6712 0.5568
Open forest 0.2385 0.3140 0.7615 0.6860
Farmland 0.4691 0.3385 0.5309 0.6615
Grassland 0.6607 0.3667 0.3393 0.6333
Bareland 0.4194 0.6087 0.5806 0.3913

Accuracy assessment statistical parameters for 1996 LULC. Overall accuracy is 65% with a kappa of 0.539
Close forest 0.3151 0.4792 0.6849 0.5208
Open forest 0.2569 0.3415 0.7431 0.6585
Farmland 0.3951 0.2097 0.6049 0.7903
Grassland 0.5536 0.1935 0.4464 0.8065
Bareland 0.3226 0.4474 0.6774 0.5526

Accuracy assessment statistical parameters for 2000 LULC. Overall accuracy is 69% with a kappa of 0.602
Close forest 0.1233 0.2809 0.8767 0.7191
Open forest 0.1835 0.3101 0.8165 0.6899
Farmland 0.4938 0.3051 0.5062 0.6949
Grassland 0.5536 0.2647 0.4464 0.7353
Bareland 0.2258 0.3846 0.7742 0.6154

Accuracy assessment statistical parameters for 2003 LULC. Overall accuracy is 73% with a kappa of 0.656
Close forest 0.2466 0.3889 0.7534 0.6111
Open forest 0.2202 0.1905 0.7798 0.8095
Farmland 0.2222 0.1600 0.7778 0.8400
Grassland 0.3750 0.3000 0.6250 0.7000
Bareland 0.3871 0.3667 0.6129 0.6333

Accuracy assessment statistical parameters for 2010 LULC. Overall accuracy is 61% with a kappa of 0.499
Close forest 0.2603 0.4066 0.7397 0.5934
Open forest 0.2844 0.3217 0.7156 0.6783
Farmland 0.5062 0.2857 0.4938 0.7143
Grassland 0.6250 0.5000 0.3750 0.5000
Bareland 0.3226 0.5435 0.6774 0.4565

Table 8: Illegal disturbance risk level categories.

Risk level Risk defined Color code
High Reserves boundary within 1 km of a trunk/feeder road Red
Medium Reserves boundary between 1 km and 2 km distance from a trunk/feeder road Blue
Low Reserves boundary between 2 km and 3 km and above distance from a trunk/feeder road Black
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2.4.3. Community Density. 'e location density of com-
munities within the SWD was in focus in this section. 'e
study selected the FRs that were more susceptible to un-
lawful intrusions based on proximity to high-intensity

community clusters. 'e FRs were ranked according to the
level of danger posed by intense community locations
through the forest area in hectares (ha) disturbances
revealed by LULC classification results. Community
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Figure 4: A workflow of road shapefile processing and subsequent LULC integration.
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shapefiles for the SWD were acquired and used for the
analysis. Eight hundred and ninety-six forest fringe com-
munities were spatially verified and found to be within the
SWD. A density raster created from the community point
shapefiles was used for spatial autocorrelation [35]. Com-
munities whose boundaries coincided with each other were
integrated through a specified XY tolerance [35]. 'e point
density radius of the communities within the SWD was
computed through repeated spatial autocorrelation. Ran-
dom distance values were compared to the corresponding z-
scores, and a line graph was created to measure the peak z-
score [35]. 'e z-score recorded the intensity of community
clustering. A community density raster (Figure 6) was
calculated and integrated into the LULC dataset (Figure 7).

2.5. Simple Moving Averages the LULC Forecasting Model.
Predicting the pixel area conversions for 2020 and 2024
LULC was achieved with the simple moving averages

(SMA) forecasting model [36]. 'e model calculates a
current image average by adding recent changes and di-
viding by the number of periods in the calculation average
[36]. 'e mean absolute deviation (MAD) was calculated
for each average between two selected years. 'e cell in-
formation (Figure 8) of the image was extracted and
counted for each class. 'e pixel area (PA) per class was
determined by multiplying the width of image resolution
by the cells count per class. Pixel areas for each category
were extracted after average prediction and used for the
arithmetic. 'e pixel area (PA) of the classified imagery for
the years 1990, 1995, 1996, 2000, 2003, 2010, and 2017 were
used to predict 2020 and 2024 LULC imagery. 'e pre-
dicted land cover year was calculated by averaging the
previous two years separated by the same interval if major
LULC changes were expected within that timestamp [1]. An
example is shown in equation (1) for predicting the pixel
area for 2010 LULC.'e error between a predicted year and
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the original land cover is seen in equation (2) and catered
for by the MAD calculated in equation (3). LULC for 2020
and 2024 is calculated in equations (4) and (5).

2010PPA �
1990PA + 2000PA

2
, (1)

Err2010PPA � |(2010PA − 2010PPA)|, (2)

MAD �
|(2010PA − 2010PPA)| +|(2017PA − 2017PPA)|

2
,

(3)

2020PA � Err2010PA + MAD, (4)

2024PA � Err2017PA + MAD, (5)

where PA is the pixel area of the classified image, PPA is the
predicted pixel area of the classified image, Err is the error
between the original and predicted forest land cover pixel
areas, and MAD is the mean absolute deviation. 'e fore-
casting method was based on the assumption that past
trends in forest loss will continue in the future.

(i) Cell counts per class used in calculating the pixel
area per class and performing pixel arithmetic be-
tween categorical LULC classes

(ii) Two time stamps used in calculating the predicted
pixel area for equal interval time points
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(iii) (Shown yellow) Predicted pixel area and original
pixel area for a time interval used to calculate the
mean absolute deviation and predicted pixel area
error

(iv) Predicted pixel area for 2024 using the predicted
pixel area error and mean absolute deviation

3. Results

3.1. Road Proximity Impact. After the integration of LULC
with road buffer datasets, the risk status of the FRs was
visualized (Figure 9 and Table 9). Muro, Tano Suhien, Tano
Suraw, Krokosua, and Sui River FRs were more susceptible
to intrusions through accessibility compared to Suhuma FR.

Muro FR showed a rise in close forest cover by 165.1 hectares
(ha) from 2000 to 2010 but a reduction by 116.36 hectares
(ha) in close forest cover by 2017. Close forest cover in Tano
Suhien FR forest showed a reduction from 2000 to 2017 by
1476.11 hectares (ha) (Figure 10). Farmland cover in Tano
Suhien FR showed an increase to 1850.00 hectares (ha) from
2010 to 2017. In Tano Suraw FR, close forest cover reduced
by 1297.73 hectares (ha) from 2000 to 2017, whereas
farmland cover increased from 9.18 hectares (ha) in 2000 to
292.61 hectares (ha) in 2017. In Sui River FR, close forest
reduced by 396.31 hectares (ha) from 2000 to 2017, whereas
farmland cover increased again by 494.04 hectares (ha)
within the same period. In Suhuma FR, close forest cover
increased by 4.11 hectares (ha) from 2000 to 2017.
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Figure 7: A workflow of community shapefile processing and subsequent LULC integration.
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3.2. Impact of Agricultural Expansion. LULC change and
highlight imagery showed locations and intensity of forest
cover conversions from 2000 to 2017 (Figure 11). Significant
conversions from forest to other land covers occurred be-
tween 2000 and 2010 and then between 2010 and 2017
(Table 10). A total of 240.84 hectares (ha) of close forest
cover was converted to farmland cover from 2000 to 2010 in

all six FRs (Table 11). 'e relatively low area conversion was
due to intensive and enhanced community involvement in
sustainable forest management particularly in Krokosua FR
[37]. Open forest cover area of 141.39 hectares (ha) was
converted to farmland cover from 2000 to 2010. Open forest
cover area of 1313.28 hectares (ha) was converted to close
forest cover, and 2321.46 hectares (ha) of close forest cover
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Figure 8: Illustrated flow of the SMA forecasting model on LULC imagery.
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Figure 10: Continued.

Table 9: Risk Status of the FRs based on road buffer proximity.

Risk level
Forest reserve High Medium Low
Muro × — —
Krokosua × — —
Tano Suhien × — —
Suhuma — — ×

Sui River × — —
Tano Suraw × — —
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was converted to open forest cover from 2010 to 2017
(Table 12). A total of 3205.26 hectares (ha) of forest cover
was converted to farmland cover from 2010 to 2017, which
accounted for 2823.03 hectares (ha) increase compared to
the previous 10 years. Farmland cover areas of 175.59
hectares (ha) within the six FRs were converted to open
forest cover from 2010 to 2017. A total of 4622.94 hectares
(ha) of close forest cover were removed from 2010 to 2017
within the FRs in the SWD.

3.3. Impact of Community Density. Community density was
represented by spatially clustered points based on distance
relationships between communities. Out of 24,802.53
hectares (ha) of FR areas inspected, 16,659 hectares (ha)
were seen to be within the accessible zones of clustered fringe
communities within the SWD. Tano Suhien, Tano Suraw,
and Sui River FRs were inside the range of immediate
community coverage (Figure 6 and Table 13). Based on
closeness to highly dense community locations, eight risk
classes of disturbance were created and tabulated to visualize
threat to forest cover removal posed by fringe communities.
It was revealed that 815 hectares (ha) of forest cover was
found to be between high and critical disturbance risks
(Table 14), since they were in direct contact with fringe
community dwellers. Also, 4622.94 hectares (ha) of close
forest cover within the high disturbance levels were removed
from 2010 to 2017 with an increase of 3036 hectares (ha) in
farmland cover in the same period.

3.4. Prediction Results. 'e simple moving averages fore-
casting method revealed that from 2017 to 2020, 144.31
hectares (ha) of close forest cover will be removed together
with 125.44 hectares (ha) of open forest cover (Table 15).
However, there will be an increase of 540.63 hectares (ha) in
open forest cover from 2020 to 2024. Farmland cover will

increase by 71.10 hectares (ha) from 2017 to 2020 and in-
crease by 140.13 hectares (ha) from 2020 to 2024.

4. Discussion

'e pseudo images from LULC classification were validated
using the error matrices. 'e subsamples for training and
testing were systematic and was influenced by the report of
[38] on the fitness of different ground truth sampling plans
in satellite image accuracy assessment. 'e adapted as-
sessment technique, however, allows room for improvement
as the overall accuracy is biased since the number of sam-
pling points per class is not the same.

'e close forest cover areas in the images were reduced
by 3210.022 hectares (ha) in four of the six FRs within the
road buffers created. Farmland cover was not dominant in
the year 2000 but had increased drastically by the year 2017.
'is indicates that FRs nearest to accessible roads are tar-
geted for illegal entry and economic activity. FRs whose
boundaries are outside the 3 km road buffer zone show the
lowest forest cover conversions. 'e road buffer intervals
adopted here triggers early forest loss detection in protected
forest areas relating to the study conducted by [33] in
Amazon, which identified that unofficial roads within 5.5
kilometers of forest areas have bearings on deforestation
rates. From the findings in this study, accessible roads near
FRs were observed to provide gateways into FRs for illegal
and destructive activities by forest fringe community
dwellers.

Observations from findings also reveal small instances of
farmland cover in the year 2000. Subsequently, farmland
cover in the six FRs increased steadily from 2000 to 2010 but
sharply from 2010 to 2017. Priority was therefore given to
large scale agriculture over forest conservation, since it is the
primary source of livelihood amongst the forest fringe
communities. 'e farmland cover conversions revealed by
this research highlight a missing stance in early research

Table 10: Forest land cover areas in hectares (ha) lost and gained.

Cover change in hectares
Land cover 2000–2010 2010–2017
(1) Closed FR 110.25 −4622.94
(2) Open FR −276.48 1589.58
(3) Farmland 284.94 3036.96
(4) Grassland −104.58 −11.34
(5) Bareland −14.13 7.29

Table 11: 2000–2010 forest to farmland conversion in hectares (ha).

2010
Land cover Close forest Open forest Farmland Grassland Bareland

2000

Closed forest 20810.5 1006.92 240.84 1.89 0
Open forest 1313.28 924.21 141.39 2.25 0
Farmland 22.86 95.58 23.22 2.61 0
Grassland 23.76 77.94 23.67 0.63 0
Bareland 0 0 0.09 14.04 0.09
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studies like [39] which gives a general view that human
activities such as agricultural expansion and illegal and
unsustainable logging are responsible for the degradation of
85% of Ghana forest areas. Farmers tend to replace forest
biodiversity with agricultural lands, which are considered
more financially beneficial within the short term. Cash crops
such as cocoa, cashew, and rubber are as a result more

important to farming communities than biodiversity
conservation.

'e three most disturbed FRs based on community
influence suffered a drastic reduction in the close forest area
and an increase in the farmland area. In situ data collection
and interviews revealed that forest fringe settlers engage in
high-intensity small scale mining, large scale farming, chain
saw operations, and illegal hunting within the nearby re-
serves [40]. FRs close to densely populated community
locations showed rapid conversions from forest to nonforest
cover.

Close forest areas will reduce steadily, while open forest
areas will increase sharply from 2020 to 2024 after a steady
reduction from 2017 to 2020.'e simple forecasting method
looks smooth especially over the selected period. Barring any
forest replacement interventions, farmlands will continue to
increase.

5. Conclusions and Recommendations

Destructive human interference is promoted by accessibility
through close accessible roads. Easy access routes enable
proximate dwellers to easily access FRs undetected to ille-
gally remove biodiversity. 'is research was unable to take
into account the considerable number of unofficial routes
through which proximate dwellers can access protected
forest areas.

Conversion from forest to farmland cover is at a very
high rate. Agricultural expansion rates continue to increase
within FRs.'e IUCN’s categorization of FRs is undermined
by the intrusion of extensive farming areas. 'e severe
damage in FRs as a result of uncontrolled daily agricultural
expansion could be monitored in further studies.

Population and community growth increase the intru-
sive risks in protected areas. Illegal human activities such as
mining, farming, logging, and reckless fuelwood collection
are practiced by fringe communities as a means of
sustenance.

Year 2020 and 2024 predicted imagery showed trends of
forest removal and farmland increase in the future. If
conservation interventions do not improve, the adverse
community impacts on FRs will be irreversible and
unsustainable.

'e stakeholders of the forest should consider real-time
monitoring procedures, which account for subtle modes
such as navigable rivers and skid trails areas which allow easy
access to FRs. 'e emergence of illegal farms within pro-
tected forest areas should be discouraged. Laws concerning
illegal entry into protected areas must be better enforced.

Table 12: 2010–2017 forest to farmland conversion in hectares (ha).

2017
Land cover Close forest Open forest Farmland Grassland Bareland

2010

Closed forest 17301 2321.46 2522.61 8.46 1.89
Open forest 229.5 1181.97 682.65 1.53 0.9
Farmland 8.91 175.59 241.74 0 0
Grassland 1.08 3.51 12.24 0 4.59
Bareland 0 0.09 0 0 0

Table 13: Forest cover trends in hectares (ha) for FRs dangerously
within community access.

Forest reserve Land cover 2000 2010 2017

Tano Suraw

Close FR 1465.02 1089.18 167.58
Open FR 459.9 847.17 1479.6
Farmland 9.18 5.04 292.68
Grassland 11.07 3.78 5.31
Bareland 0.09 0.09 0.54

Sui River

Close FR 1014.66 1042.2 645.57
Open FR 142.11 108.18 22.5
Farmland 3.69 14.58 495.72
Grassland 4.5 0 0
Bareland 0 0 0

Tano Suhien

Close FR 8163.27 8181.36 6479.91
Open FR 748.08 672.93 442.62
Farmland 116.46 256.77 2201.94
Grassland 86.76 17.64 0
Bareland 14.13 0 4.59

Table 14: FR risk indication.

Disturbance level Area (ha) Disturbance rank Forest reserve
None 10479.96 1 Sui River
Very low 2681.55 2 Tano Suraw
Low 1260.54 3 Tano Suhien
Moderate 1415.97 4 Muro
High 369.63 5 Suhuma
Very high 306.45 6 Krokosua
Severe 100.8 — —
Critical 38.43 — —

Table 15: 2020 and 2024 predicted forest cover areas in hectares
(ha) in the SWD.

Land cover 2000 2010 2017 2020 2024
Close forest 22060.17 22165.86 17539.32 17397.825 16661.94
Open forest 2381.13 2100.09 3686.07 3561.57 4103.01
Farmland 144.27 424.65 3458.01 3529.655 3669.04
Grassland 70.25 3.52 6.67 141.27 165.23
Bareland 43.9 5.6 9.65 69.4 100.5
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'e focus should increase on community-based participa-
tion in forest protection. Short interval imagery should be
considered in the analysis of this nature to better depict
unwanted conversions at an early stage. 'is will help
identify impacts of dominant nonforest land cover, which is
responsible for the conversion, and also measures the rate at
which conversion has taken place with confidence.
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Norway, 2014.

[9] M. Bare, C. Kauffman, and D. C. Miller, “Assessing the impact
of international conservation aid on deforestation in sub-
Saharan Africa,” Environmental Research Letters, vol. 10,
no. 12, Article ID 125010, 2015.

[10] T. Yoshikura, M. Amano, H. Chikaraishi, B. Supriyanto, and
D. Wardhana, “Evaluation of appropriate identification of
deforestation agents and drivers for designing REDD+
readiness activities through an examination of the area
around Gunung Palung national park, Indonesia,” Open
Journal of Forestry, vol. 06, no. 02, pp. 106–122, 2016.

[11] N. Hosonuma, M. Herold, V. De Sy et al., “An assessment of
deforestation and forest degradation drivers in developing
countries,” Environmental Research Letters, vol. 7, no. 4,
Article ID 044009, 2012.

[12] J. E. Makunga and S. B. Misana, “'e extent and drivers of
deforestation and forest degradation in Masito-Ugalla eco-
system, Kigoma region, Tanzania,” Open Journal of Forestry,
vol. 7, no. 2, pp. 285–305, 2017.

[13] Ministry of Lands and Natural Resources, National Forest
Plantation Development Programme 2016 Annual Report
Forest Services Division-Forestry Commission, Ministry of
Lands and Natural Resources, Accra, Ghana, 2016.

[14] S. Labant, M. Bindzarova Gergelova, Z. Kuzevicova,
S. Kuzevic, G. Fedorko, and V. Molnar, “Utilization of geo-
detic methods results in small open-pit mine conditions: a
case study from Slovakia,” Minerals, vol. 10, no. 6,
pp. 489–521, 2020.

[15] A. Awotwi, G. K. Anornu, J. Quaye-Ballard, T. Annor, and
E. K. Forkuo, “Analysis of climate and anthropogenic impacts
on runoff in the lower Pra river basin of Ghana,” Heliyon,
vol. 3, no. 12, Article ID e00477, 2017.

[16] L. F. Temgoua, B. Allaissem, M. Tchamba, G. Saradoum,
M.M. Osée, andM. C.M. Solefack, “Spatio-temporal dynamic
of land use and land cover in the classified forest of Djoli-Kera,
south-eastern, Chad,” Open Journal of Forestry, vol. 8, no. 3,
pp. 283–296, 2018.

[17] S. Puliti, H. Ørka, T. Gobakken, and E. Næsset, “Inventory of
small forest areas using an unmanned aerial system,” Remote
Sensing, vol. 7, no. 8, pp. 9632–9654, 2015.

[18] T. V. Ramachandra, B. Setturu, and S. Chandran, “Geospatial
analysis of forest fragmentation in Uttara Kannada district,
India,” Forest Ecosystem, vol. 3, no. 1, 2016.

[19] Y. Farhan, D. Zreqat, A. Anbar, H. Almohammad, and
S. Alshawamreh, “Prioritization of W. Mujib catchment
(South Jordan) through morphometric and discriminant
analysis, GIS, and RS techniques,” Journal of Geoscience and
Environment Protection, vol. 6, no. 4, pp. 141–171, 2018.

[20] M. Roque, J. Ferreira Neto, A. Faria, F. Ferreira, T. Teixeira,
and L. Coelho, “Effectiveness of arguments used in the cre-
ation of protected areas of sustainable use in Brazil: a case
study from the Atlantic forest and Cerrado,” Sustainability,
vol. 11, no. 6, p. 1700, 2019.

[21] N. Senturk, “Assessment of relationship between locations
and distances to roadside of forest fires in Istanbul, Turkey,”
Applied Ecology and Environmental Research, vol. 16, no. 5,
pp. 6195–6204, 2018.

[22] S. Estel, T. Kuemmerle, C. Alcántara, C. Levers,
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