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ABSTRACT. Conditions are given under which a product of two semifinite measures
is absolutely continuous or weakly singular with respect to another product of
two semifinite measures. A Lebesgue type decomposition theorem is proved for
certain product measures so that the resulting measures are themselves product
measures.
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1. INTRODUCTION

The main results of this paper are Theorems 4.2 and 4.3 in which we observe
conditions under which the Lebesgue decomposition of one product measure with
respect to another yields measures which are themselves product measures. It

will be seen that the expected results (similar to those of {1]) hold for the

smallest product of two semifinite measures but that some surprising things
can happen for the largest product of two semifinite measures.

Throughout this paper U and u' will be (nonnegative, countably additive)
measures on a sigma-ring 8, and V and V' will be measures on a sigma ring J.
We say that p is absolutely continuous with respect to u', denoted u << u',
if u(E) = 0 whenever E € § and u'(E) = 0. We say that u is weakly singular with
respect to u', denoted u S u', if for each E ¢ S , there exists F € 8§ such that
u(E) = u(E N F) and u'(F) = 0. A measure is semifinite if every set of infinite
measure contains sets of arbitrarily large positive measure. Undefined termi-

nology and notation can be found in [2].
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A product of y and v is a measure (u X v)# on 8§ X J such that (u x v)# =
H(G)V(H) whenever G € § , H € J and u(G)v(H) < . (Such a product is called a
pseudo-product measure in [3].) We avoid requiring that (u X v)#(G x H) =
u(G)V(H) for all G in § and H in J on the grounds that (i) the important sets
for a measure are usually the sets of finite measure, (ii) if (u x v)# and

##

(u x V) are products of yu and v, then their minimum is also a product of
u and v under this definition, and (iii) such theorems as Theorem 4.2 and 4.3
hold if we use this less restrictive definition of product measure. Of course,
if yu and v are both semifinite, then we automatically get the stronger property
that (u x v)#(G x H) = u(G)v(H) for all G in S and H in J .

The smallest product of y and vV is the unique measure (u X v)s on § XJ
such that

(1) @ x W3 x H) = W(G)V(H) whenever u(G) < = and V(H) <
and (1) (u x W) = sup {u x WIMN (G x W) (@) < = and v(H) < =}
[4, Theorem 39.1]. The largest product of u and vV is the measure (u X V)L
on 8 x3 defined by the formula

L G o
(p x V) (M) = inf {21 u(Gi)v(Hi): Mc U1 Gi x Hi}'

(See, for example, [5, p. 265].) It is easy to see that (u X v)s < (u % v)# <
(p x V)L for each product (p X V)# [3, Theorem 4]. Conversely, if (u x v)s <A<
(u x v)L, then it is clear that A is itself a product of p and v.

THEOREM 1.1. Suppose ul and u2 are measures on S and v is a measure on J.
Then:

M Gy +uy 0% < x4 Gy x 0 < x vt s ey x wb-

(g + uy) % wk.

(2) If u; S u, and wy S uy, then ((u) +uy) x v = (uy v+ (uy X v®

(3) Ifu; <u,, then (u x W' < (u, x W

@ Gy xE Ay b = iy a) x vk

PROOF. To prove (1) notice that the four measures agree on measurable
rectangles F X G such that (ul(F) + uz(F))v(G) is finite. Hence, they agree on

measurable subsets of such rectangles and on countable disjoint unions of

measurable subsets of such rectangles. Hence, ((u1 + uz) x v)L(H) =
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(ul x v)L(H) + (uz x v)L(H) if the right side is finite. The remaining
inequalities are evident.

To prove (2), it suffices to prove (u1 X v)s + (u2 x v)s f'((“l + uz) X v)s.
Let H € g x 3. If k| < (u v3@) and ky < (uy x VW), it suffices to
show that k1 + k2 < ((u1 + uz) x v)S(H). Choose measurable rectangles Fi x Gi
such that (u; x v)S(Fi X 6) < ®and k, < (u x wi@n (F, x 6,)) for
£ =1, 2. Since 1y S U, and Uy S ul, we may assume that F1 and FZ are disjoint
and that ul(Fz) = uz(Fl) = 0. Then M, and (u1 + uz) agree on Fl’ so that
k) < (Quy + ) x WIE N (F) x 6)). Stmilarly, k, < ((u + 1) x »)°
H N (F, x G2)). If follows that k; +k, < ((u1 + 1) X v)S(H).

Statement (3) follows from the fact that (ul X v)L(F X G) j»(uz x v)L(F X G)
for all measurable rectangles F X G. To prove (4), notice that ((u A A) X V)L <
(p x v)L A (X X v)L since ((u A X)) X v)L is less than or equal to both (u X V)L
and (A X% v)L. To prove the reverse inequality, it suffices to show that
(@xwEA o xwh@E =6 < (uxr) xv)IF x6) if Fx G is a measurable
rectangle. If ((u x A) x V)L(F X G) = » or if V(G) = 0, we are done. Hence,
we may assume that (p X A)(F) < . Then there exists a measurable set F1

contained in F such that u A A and u agree on measurable sets of F1 and such

that u A A and A agree on measurable subsets of F \ F If follows that

-
AN xwiE 6 = wxwiE xo > @xwhaaxwheE <o,
similarly, ((0x 2 x WEFNFD x 6 2 (ux WX A O x WHUENFD x 6.
Hence, (( AN x WUE x @) > ((ux WX A (A x WYY (F x 6) and we are done.

2. ABSOLUTE CONTINUITY AND PRODUCT MEASURES.

THEOREM 2.1. Suppose u << u' and v << v'. Suppose, moreover, that
pu[resp., v] is semifinite (and hence, o-finite) on any set for which u'[resp.,
V'] is finite. Then (u X v)# << (u' x v')L for any product (u X v)#.

PROOF. Suppose (u' X v')L(M) = 0 and that M c G x H, where u'(G)v'(H) < =,
It suffices to show that (u X v)L(M) = 0 in this case. We may assume that
u'(G) and v'(H) are both positive and finite since (u X v)L(G x H) = 0 if
u'(G) = 0 or vV'(H) = 0. By hypothesis, y and vV are then semifinite and hence

o-finite on G and H, respectively. It follows from Fubini's theorem that
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v'(Mx) = 0 a.e. with respect to pu'[2, Theorem 36A]. Hence,v(Mx) =0 a.e.
with respect to u. Then, since y and v are o-finite on G and H, respectively,
we may apply Fubini's theorem again to say that (u X v)L(M) = fv(Mx)d = 0.

Theorem 2.1 requires the hypothesis that u[resp., V] be semifinite
whenever |'[resp., V'] is finite. For, if X is Lebesgue measure on the unit
interval and p is «)\, we have y << A, but it is false that (u X \))L << (A X A)L.
For, (A x A)L is 0 on the diagonal, whereas (A X X)L is © on the diagonal.

THEOREM 2.2. Suppose U << u', and suppose V(H) = 0 whenever V' (H) is
finite. If (p X v)# is any product of u and v, then (u X V)#(M) = 0 whenever
(u' x v’)L(M) is finite. Inparticular (p x v)# << (' x v')L.

PROOF. Suppose u'(G)v'(H) is finite. Either u'(G) = 0 so that
u(G) = 0, or u'(G) > 0 so that v'(H) is finite and V(H) = 0. Hence,
u(G)v(H) = 0, and it follows that (u X v)#(M) = 0 whenever (u' x v')L(M)
is finite.

Let Mg denote the smallest (semifinite) measure agreeing with u on the
sets for which y is finite (cf. [5, Exercise 11.6b]). It is easy to see
that (p x v)s = (uS X vs)s. The next theorem can be thought of as a dual
to Theorem 2.1.

THEOREM 2.3 1If g << u's and Vg <<u's, then (p x \))S << (p' x v')# for
any product (u' X v’)#. Hence, if (u' x v')# is a product of semifinite
measures |' and V' and if p << y' and v << v', then (u X V)S << (p' x v')#.

PROOF. Since (u' x v')s < (u' x v')#, it suffices to show that
(u x WS << @' x v)5. Assuming (u x v)SM) > 0, we show that (u' x v)S@) > 0.
Choose measurable sets G and H such that pu(G) and v(H) are finite and
(uxv)*@ N (G x ) >0. Let N=MN (CxH), and let A= {x € G: V(N) > 0},
Since fv(Nx)du = (u % v)S(N) > 0, we have 0 < p(A) < p(G). Since us(A) = u(A)
and since us << u's, we have u;(A) > 0. Hence, there exists a measurable set
B contained in A such that 0 < p'(B) < ®». Then (u' X v)S(M) > (u' x V)S
(NN (B x H)) = va(Nx)du' > 0, so that (u xv)s << (u' x v)s. Similarly,

(' xS << @ x v)S, so that (ux WS << @ x v,

In Theorem 2.3, we cannot replace the hypotheses that us << u; and
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Vg << v; by u << u' and v << V' gince (u' x v')s is 0 if u' or V' is
degenerate.

In view of [6, Theorem 3.1], we have the following corollary to Theorem
2.3. Although Corollary 2.4 is completely expected, its proof is surprisingly
complicated without the use of Theorem 2.3.

COROLLARY 2.4. Suppose My and U, are semifinite measures on f and Vv
is a measure on J. Then ((u1 + uz) x V)S = ( ul x v)s + (u2 x v)s.

3. WEAK SINGULARITY AND PRODUCT MEASURES

THEOREM 3.1. If uS u' or v.Sv', then (u x v)ss(u' x v')# for any
product (p' x v')#. Hence, if py S p' (or v S V') and (p x \))L is o-finite,
then (py x V)LS(u' x v‘)# for any product (u' X v')#.

PROOF. Suppose M is a measurable set in the product space, and suppose
u S u'. Then (u x v)s(M) = (u x v)s(M N (G x H) for some G and H such that
u(G) and v(H) are o-finite. Since pu S p' and since p(G) is o-finite, there
exists Gl such that u(G‘\Gl) = 0 and u'(Gl) = 0 [8, Theorem 3.2]. It follows
that (p x v)S(M) = (u x v)S(M n (G1 x H)) and (p' x \)')#(G1 x H) = 0. Hence,
(u x v)ss(u' x v')#.

There is no analogue of Theorem 3.1 for largest products; the next
example shows that py S py' does not imply (u x v)LS(u' x V)L.

EXAMPLE 3.2. Let A be a (nonmeasurable) subset of X=[0,1] such that A and
X\ A have Lebesgue outer measure 1 [2, Theorem 16.E]. If E is a Borel set
of X, let u(E) be the number of points in EN A and p'(E) be the number of
points in EN\A. It is easy to see that u S u'. Now, if D is the diagonal of
X x X, it can be shown that (u' x u')L(D N F) = « whenever (u X u')L(D n F) > 0.
It follows that (u x u')L is not weakly singular with respect to (u' x u')L.
Indeed, (u x u')L is not even weakly singular with respect to (u' x u')s.

Nor does (u X u')LS(u' x u)L, even though y S p' and p' S y.
4. PRODUCT MEASURES AND THE LEBESGUE DECOMPOSITION

In view of the Lebesgue Decomposition Theorem (see below), we shall see

that a product measure (U X v)# can be written as the sum of two measures so

that the first is absolutely continuous with respect to a product measure



798 R.A. JOHNSON

i#

(u' x v) # and the second is weakly singular with respect to (u' X v)##.
If pu' and V'are semifinite, we show that the first measure in this
decomposition is itself a product measure. For suitable products, we show
that the second measure is also a product measure.

Lebesgue Decomposition Theorem ([8, Theorem 2.1]). Suppose A and A' are
measures on the same sigma-ring. Then )\ can be written as Xac + st, where
A << A' and A S A'. The measure X __ is unique.
ac wSs wS

The measure Xac given by the Lebesgue Decomposition Theorem will be called
an absolutely continuous part of A with respect to A'; the measure Aws will be
called the weakly singular part of )\ with respect to A'. If X' is understood,
we shall simply call Aac an absolutely continuous part of A\ and Aws the weakly
singular part of A.

If xacs(E) = sup {A(EN F): AWS(F) = 0} for each measurable set E, then
Aacs is the smallest absolutely continuous part of A and xacs is weakly
singular with respect to A . If A L. AA(=A'), then A L is the largest

wS ws ac
absolutely continuous part of A since a measure is absolutely continuous with
respect to A' if and only if it is less than or equal to «A'. 1In the reverse
S

direction, if A <Ay <A
ac — "1 — "ac
L

If Xac (G) is finite, notice that XacL(G) = Xl(G) for each \'-absolutely

L, then Al is an absolutely continuous part of A.

continuous part AI of A. Therefore, just as all product measures (u X v)#
agree on sets for which the largest product (up x V)L is finite, so all
A'-absolutely continuous parts of a measure A agree on sets for which AacL
is finite. Both Xacs and AacL behave well with respect to smallest products,
as we now show.

LEMMA 4.1. Suppose y and u' are measures on the same sigma-ring S,
that uacs and uacL are the smallest and largest u'-absolutely continuous
parts of u, that ul is any p'-~absolutely continuous part of y, and that v is
a measure on a sigma-ring 3. Then:

@ " x v <@y xw

and

A b xwS < Gy x w5,

S S
Hence, (uac X \)) = (uacL x \))S
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PROOF. Suppose M € 8 x J and that k < (“acs x v)S(M). Then there exist
F in 8§ and G in J such that uacs(F) < o and V(G) < » and such that

k < (uacs x v)S(M N (F x G)). Since uacs S oo there exists F. in § such that

1
u SFy =u S(F) and yu_ _(F,) = 0. Then yu_ S(F\F,) = 0 since y_ >(F) < =
ac ac 1 ws 1 : ac 1 ac

and k < (u, 5 x Wi 0 (F x 6
<y x Wi o)

< @y ox wion.
)S

Therefore, (uacs x V)S(M) < (u1 x v)S(M), and we have (uacs x v)s < (ul X v

L

In order to prove (ii), suppose M € 8 x J and that k < (uac x v)S(M).

Then there exist F in 8 and G in J such that pacL(F) < » and V(G) < « and
such that k < (uacL X v)s(M N (F x G)). Since

L L L _
Moo (F) < o, we have LI (F) = ul(F). Indeed, Moo (Fl) = ul(Fl) for all

measurable subsets F1 of F.

Hence,

k< Gt xwian e x o)

Gy x 5N (@ x 6)

IA

S
(ug x V7).
Therefore, (uacL x V)S(M) < (u1 x V)S(M), and we have (uacL x v)s < (u1 x v)s.

THEOREM 4.2. Suppose m = (u X v)# is a product of measures y and v,
i

that (u' x v') is a product of semifinite measures u' and v', and that

L
v << V', Let Yoo be the largest u'-absolutely continuous part of u, and let

m. be any absolutely continuous part of m= (u X v)# with respect to (p' x v‘)##.

1
Then 7, = (u Ly v)# for some product of p L and v
1 ac ac -

PROOF. Assuming uacL(G)v(H) is finite, we wish to show that
(G x B) = u (@V(). If v(H) = 0, then T (G x H) < (G x H) = 0 = u @vam

Hente, we may assume that v(H) > 0 and that uacL(G) is finite. In that case,

there exists measurable G1 C G such that uaCL(G)

Then 1rl(G x H) = nl(clx H) since "1((G\G1) x H)

u(Gl) and u'(G\Gl) = 0.

0. Since p << u' on G1 and

since v << V', we have (p X v)S << (u' x v')## on G, X H by Theorem 2.3. Then

1

since "ws < 7 and since T agrees with (u X v)s on G, X H, we have

i
A \] 3 1 Al
Mos << (' x v')"" on G1 x H. Since wwss(u x v')

1

##
, we have ‘nws(G1 x H) = 0.
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Hence.

7, (6 X H) = 7 (G x B) = (G, x B) = u(G v =y, “©@vm,
and we are done.

In Theorem 4.2 we saw conditions under which an absolutely_continuous
part of a product measure is itself a product measure. We now look at con-
ditions under which the weakly singular part of (u X v)# with respect to
(u' x v')## is a product measure. The relevant results are given in the next
theorem.

THEOREM 4.3. Suppose T = (u X v)# is a product of measures u and v, that
(u' x v')## is a product of measures u' and V', and that v << v'. Let Uog
be the weakly singular part of y with respect to u', and let “ws be the weakly

singular part of m = (u X v)# with respect to (' x v')##. Then:

W Ggx Wi

(2) 1If 7 is the smallest product of py and vV and if p' and V' are
_ S
semifinite, then "ws (uws x v)°©,

(3) If p and v are semifinite and if (u' x v')## is the largest product

Al Al
of u' and V', then wws is a product of W and V.

PROOF. Let m, be any absolutely continuous part of 7 with respect

1
i #H

S
to (u' x v'") By Theorem 3.1, (uws X v)SS(u' x v')" ", so that (uws x V) S7

v

Since (uws X v)si(u X v)s <m=mw +m_, we therefore have (uws X v)s <m

1 ws ws

[8, p. 628].
In order to prove (2), let My be any p'-absolutely continuous part of

¥ and notice that (u X v)s i(u1 x \))S~i-(uws X v)s by Theorem 1.1(1). We have

(ul X V)S << (u' x v')## by Theorem 2.3, so that L S (u1 x v)S. Then since
S S S
Mes < (u1 x V)" + (uws x v)~, we have Tes < (uws x v)~. We already know from
s B s
(1) that (g X V) f-ﬂws’ so that Tos (uws x V)~ in this case.

ws

In order to prove (3), it suffices to show that “ws f_(uws X \))L since

we already know that (uws X v)s 5»“ws' Let uacs be the smallest p'-absolutely

continuous part of y. Since uy is semifinite, so is uacs' Then

S L S L
<< L] \J
(uac X V) (u' x v') by Theorem 2.1, so that Tos S (uac x V) . Since
S

nsg(uxv)#ﬁ(uxv)l‘=(uac

L L
. x W+ g x Wb
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we have "ws < (uws X v)L, as was to be shown.

We pause to observe that the measure L is Theorem 4.3 need not always
be a product measure. Nor does it help to assume that all measures under
consideration are semifinite measures.

EXAMPLE 4.4. Let | be counting (discrete) measure on the Borel sets
8 of the unit interval, and let v be Lebesgue measure on 8. Define a
measure A on 8 x 8 by

A =v({y € Y: (y,y) eM})) if M eS8 x § .
In other words, A(M) is found by intersecting M with the diagonal and using
Lebesgue measure of the projection of that trace. Let m = (u X v)s + A.
It is easy to see that 7 is a product of p and v since A(G x H) = 0 if
(n x v)S(G x H) < o, If ﬂws is the weakly singular part of T with respect
to (u x v)s, then it is easy to see that Mos = A. Hence, Mes is not a
product measure in this case.

For the remainder of the paper, we shall investigate the Lebesgue
Decomposition of (u X v)# with respect to (u' x v')## if (u % v)# is the
smallest product of u and v or if the products (u X v)# and (u' x v')## are
largest products.

THEOREM 4.5. Suppose m = (u X v)s is the smallest product of measures
u and v, that (u' x v')# is a product of semifinite measures u' and v', and
that v << v'. Let Moo be any u'-absolutely continuous part of u, let ﬂaé;be
the smallest (u' x v')#-absolutely continuous part of (u X v)s, let Hos be

the u'-weakly singular part of u, and let Mos be the (u' x v')#-weakly

singular part of m. Then

s s _ L Ss__ s
(1) Qo xV)" =@ "xVv) = Toc
S
2 (g xV)" =7 .
PROOF. We know that (ua: X v)S = (uag‘x v)s by Lemma 4.1 and that
L S S S
< .2, = .3.
(uac x V) —-“ac by Theorem 4.2 Moreover (uws X V) “ws by Theorem 4.3
It suffices to show that (ua:><v)s is a (u' x v')#-absolutely continuous
S

part of (u X v)s. Now (ua;;x V)& << (u' x v')# by Theorem 2.3, and
S

wxw®=q S

x v)s + (Uw;;+ v)s by Theorem 1.1(2). Hence (“acs V)
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is indeed a (u' x v')#—absolutely continuous part of (u X v)s.
LEMMA 4.6. Suppose (M X v)# is a product of semifinite measures U and
v. If (u' x \)')S is O-finite and U S U', then (u x v)# S (u' x v')s. Hence,
if (p' x v')L is g-finite and ¥ S u', then (M X v)# S (u' X V')L.
PROOF. Let u'acs and v'acs be the smallest absolutely continuous parts
of u' and V' with respect to W and V, respectively. Let W' _ and V' be the weakly
singular parts of W' and V' with respect to U and V, respectively. By

Theorem 1.1(2), we have

S S S

S S
v ox oy! = ' X V' ' x y! ' 1o,
aroxon® = v Sy v, S e xvn

Cc S

each of these products is clearly O-finite. In view of Theorem 3.1,
we have (u' X v')s S (u X V)# and (u' x v'ws)s S (u X v)s, so that
# ' S it v S ' S
(uxv)" S (u ws *V )" and (uxv)" S (u ac XV ws) [8, Theorem 3.2].
S S, S S S S
Now (u'ac x v'ac ) << (u x v)° by Theorem 2.3, and (U X V)~ § (p'ac x v'ac )

5 4 v CS)S [8, Theorem 2.4 (1b)].

# '
by Theorem 3.1. Thus, (U x V)" S (u ac a

Hence, (u X v)# S (u' x v')s.

We say that v is quasi-dominant with respect to V' if for each measurable
set E, there exists a measurable set F such that V(E) = V(E N F) and such that
v'F is absolutely continuous with respect to Vg (that is, V(F N G) = 0 when-
ever V(G N F) = 0). For example, if V' is absolutely continuous with respect
to v or if V' is g-finite, then V is quasi-dominant with respect to v' [9,
pp. 118-119].

THEOREM 4.7. Suppose U and u' are semifinite measures on §, and suppose
Vv and V' are semifinite measures on J such that v is both absolutely continuous
and quasi-dominant with respect to v'. Let uacs be the smallest p'-absolutely

continuous part of u, let uws be the u'-weakly singular part of u, and let

u = uacs + (uwS A u'). Then (ul x v)L is an absolutely continuous part of
T = (g X v)L with respect to (u"' X v')L.
PROOF. Evidently, u S ¢ u s + (u Au') <pAou' =y L so that
> "ac — Tac ws - ac ’

3 is a py'-absolutely continuous part of u. Then (u1 b3 v)L is absolutely
continuous with respect to (u' X V'} by Theorem 2.1. Then by Theorem 1.1 (1)

L L L L
and Theorem 4.3, we have (u x V) = (u1 x V) + (uws x V) 3.(111 x V)~ + Tos®
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In order to prove the reverse inequality, we first show that (uws x v)L(M) =0
if (p' x v)L(M) is finite and ﬂws(M) = 0. Assuming (u' x v)L(M) is finite and
nws(M) = 0, we may assume without loss of generality that M is a subset of

G x H, where u'(G) and V(H) are finite. Then since Vv is quasi-dominant with
respect to V', we may assume that V' << v on H. Since u'(G) is finite,

Lemma 4.6 tells us that (uws x v)L is weakly singular with respect to

G x H

(' x v)L In other words, there exists N € g X3 such that

G x H'
(u, wimy = (u, x WEM N N and (0" x WE@W) = 0. We have

(u' x v')LG><H << (p' x v)LG><H by Theorem 2.1, so that (u' x v')L(N) = 0.

Thus

g, x WP = x when

IA

m(M N N)

WaC(M nN + nws(M n N)

0+0
Hence, (uws x V)L(P) < (' ox v)L(P) for all measurable subsets P of M if
nws(M) = 0. By Theorem 1.1 (4), we have
L L , L
<
(g X WE® < (G, x W A @ x whHE)
L
= ((u_Au") x V)P
ws
L
< Qg x WEE
if ﬂws(P) = 0. Now if ﬂws(M) is finite, there exists N €8 xJ such that
L .
' (] = = . = U,
(' xv") (V) 0 and such that ﬂws(M) ﬂws(M n N) Since "ws(M\"N) 0

we have

S
ac

(uacs X \))L(M\N) + ((Uws x ') x \))L(M\N) + "WS(Mn N)

wxwhen = @, x whenm + a x whenm + 100 B

[}

(, x whem + T _on

w, x whon + 7 _an.
We have thus shown that (u><\))L is the sum of (ul x v)L and ﬂws’ so that
(u1 x v)L is indeed an absolutely continuous part of w.
COROLLARY 4.8. Suppose U and U' are semifinite measures on $
and that v is a semifinite measure on 3. Let uacS be the smallest

u'-absolutely continuous part of yu, let Moo be the u'-weakly singular
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S
part of u, and let u o= uac + (4 AuY'). Then (ul x V)L is an absolutely
ws

continuous part of T = (u X v)L with respect to (u' x v)L.

Let nws be the weakly singular part of T = (U X V)L with respect to
ur x V)L. We pause to observe that the conditions of Corollary 4.8 do
not imply that st = (uws x V)L. Recall that in Example 3.2 we have

H=uU_ and T (X V)L since USU' and since (M X V)L is not weakly

ws S

singular with respect to (M' X v)L.
At the opposite extreme from quasi-dominance is strong recessiveness.
We say that V is strongly recessive with respect to V', denoted Vv <S v',
if V << V' and V' S8 V. Equivalently, V <S V' if and only if the only measure
A which is both quasi-dominant with respect to V' and less than or equal to
v 1is A = 0. If v and V' are measures on the same sigma-ring, then V can
be written as vl + vz, where vl is strongly recessive with respect to V' and
Vv, is quasi-dominant with respect to v' [9, Theorem 2.5]. Whereas Theorem 4.7
dealt with the case where V << V' and V is quasi-dominant with respect to V',
so Theorem 4.9 tells us what happens if V is strongly recessive with respect
to v'. For if v <S V', notice that V(H) vanishes whenever V'(H) is finite.
THEOREM 4.9. Suppose | and u' are semifinite measures on 8, and suppose
Vv and V' are semifinite measures on J such that V vanishes whenever V' is

finite. Let uacL be the largest u'-absolutely continuous part of u. Then

a b

ac X v)L is the largest absolutely continuous part of m = (u X V)L with

respect to (u ' x v')L.

L

PROOF. We know that (uacL x V)T << (u' x \)')L by Theorem 2.2. Let

"acL be the largest absolutely continuous part of T with respect to (u' X v‘)L,

and let "ws be the weakly singular part of T with respect to (u' X v')L. We

have ﬂacL 5_(uacL x \))L by Theorem 4.2, T < (u x v)L by Theorem 4.3 (3),

s — wSs

and (u X v)L = (uacL x v)L + (uws x v)L by Theorem 1.1 (l1). Hence,
L L L L
X V)T = G X V)T (e X V)
L L
2-(uac x V)" + “ws
s L
— ac ws

(u % v)L,
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so that (uacL x \))L is an absolutely continuous part of 7 with respect to

L L L L L__ L
x V) Mo we have (uac X V) s .

L
1 L]
(u' x v')”. Then since (uac ac

Finally, suppose u and u' are semifinite measures on 8§, and suppose
vV and V' are semifinite measures on J such that v << v'. Does there exist
a measure uo such that (uo X v)L is an absolutely continuous part of
m= (u x V)L with respect to (u' x v')L? The answer is no, as Example 4.10
shows.

EXAMPLE 4.10. (cf.[9, pp. 131-132].) Let X = [0,1), and let $ be
the Borel sets of X. Let p be counting measure on 8, and let u' be Lebesgue
measure on S. Let Y = [0,2), let 3 be the Borel sets of Y, and let v be
Lebesgue measure on 3. If H € J, let v'(H) be Lebesgue measure of H N [0,1)
plus counting measure of HN [1,2). Let D = {(x,y) € X x Y: x =y}, and
let E= {x,y) € XxY: y=x+1}. Suppose there were a measure o
such that (uo x \))L is an absolutely continuous part of (u X v)L with respect
to (u' x V). We would then have (uy x WY(D) = 0 and (uy x WF(E) = =,
which is clearly impossible.

5. COMPLEMENTS ON STRONG-RECESSIVENESS AND QUASI-DOMINANCE

THEOREM 5.1. Let u' and V' be semifinite measures. Suppose U <S u' and

V << v ', or suppose y << p' and v <S v'. Then (u Xx v)S < s (u' x v')#
for any product (u' X v')#.

PROOF. By Theorem 2.3, (p X V)S << (u' x v')s. Then by Theorem 3.1
and by the hypothesis that u' S pu or V' S v, we have (u' X v')s S (p x v)s.
Hence, (M X V)S <S (u' x V')S. If (p' x V')# is any product of p' and V'
we observe that (u' x \)')S < (' ox v')# so that (p x vf <S (u' x v')#
[9, Theorem 2.4 (1b)].

There is no analogue of Theorem 5.1 for largest products. Example 5.2
shows that the conditions p <g u' and v <g v' do not imply (u x v)L <g (' x v')L.

EXAMPLE 5.2. As in Example 3.2, let A be a (nonmeasurable) subset of
X = [0,1] such that Aand B=X\A have Lebesgue outer measure 1. If E is a
Borel set of X, let KA(E) be the number of points in E N A and let KB(E)

be the number of points in ENB. Let )\ be Lebesgue measure on the Borel
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sets of X, and let 4 =V = ©)X, C(Clearly, nu <g K and y < Now, if

s ¥p*
D is the diagonal of X x X, it can be seen that (KA X KB)L(D) = o and

that (u x v)L(D N M) = © whenever (KA x KB)L(D 1 M) = . Hence,

is not weakly singular with respect to (u X v)L, so that

(KA x KB)

(u x v)L is not strongly recessive with respect to (KA X K Of course

B)L'
(u x v)L << (KA x KB)L by Theorem 2.2.

Let us write p Q u' if u is quasi-dominant with respect to u' (see
discussion preceding Theorem 4.7). In Theorem 5.4 we use the fact that
M Q u' if and only if there exist measures u'l and u'z such that ¢ S u'l and
u'z << y and p' = u'l + u'2 [9, Theorem 2.1 (4)].

LEMMA 5.3. If py Q u' and g is the smallest (semifinite) measure agreeing
with u on sets of %inite y-measure, then us Qu'.

PROOF. Since Mg = sup{uA: u(A) < «}, the result follows from Theorem
2.1 (8) and Theorem 3.1 of [9].

THEOREM 5.4. Suppose p Q u' and v Q v'. Then (p X V)S Q (u' x v')s.

PROOF. In view of Lemma 5.3, we have My Q u' and vs Q V'. Then since
(p x v)s = (us X vS)S, we may assume without loss of generality that y and v
are both semifinite. Since py Q u', there exist measures u'l and u'z such

that 'S u'l and “'2 << y. Similarly, there exist v'l and v'2 such that

S S
vV S v'l and v'z << v. Then (u x v)° 8§ (u'1 x v')" and (p x v)s S (u'2 X v'l 5
S
by Theorem 3.1, and (u'2 x v'z) << (u x v)S by Theorem 2.3. Since (u X v)s

)

is weakly singular with respect to (u'l X \)')S + (u'2 X v'l)s and since
S S S
(u'2 x v'z) << (u X V)", we see that (U X v)° is quasi-dominant with respect

to the measure

S

S
p= (' x v+ (u', x v'l)s + (', X V)T

2
We know that (u' x V')S < p by Theorem 1.1 (1), so that (p % v)s Q (u' x v')s
[9, Theorem 2.1 (1)].

Our last example shows that the analogue of Theorem 5.4 fails for
largest products.

EXAMPLE 5.5. Let Ka and Kg be the measures on the Borel sets of

X = [0,1] given in Example 5.2. Si K
[0,1] P ince A S KB, we see that KA Q KB.
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Of course, KB Q KB. Let us show, however, that (KA x KB)L is not quasi-

dominant with respect to (KB X KB)L. Let D be the diagonal of X x X. 1If

M is a Borel set of X X X such that (KAx KQL(D) = (KA x KB)L(D n M,

then the projection of M has positive Lebesgue measure. Hence, we may choose

z € B such that (z,z) € DN M. Then (KB x KB)L(D a M)({(z,z)}) = 1, even

though (KA x KB)L ({(z,2)}) = 0. It follows that (KA x KB)L is not
quasi-dominant with respect to (KB x KB)L.
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