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ABSTRACT. Conditions are given under which a product of two semlflnlte measures

is absolutely continuous or weakly singular with respect to another product of

two semiflnlte measures. A Lebesgue type decomposition theorem is proved for

certain product measures so that the resulting measures are themselves product

measures.
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1. INTRODUCTION

The main results of this paper are Theorems 4.2 and 4.3 in which we observe

conditions under which the Lebesgue decomposition of one product measure with

respect to another yields measures which are themselves product measures. It

will be seen that the expected results (similar to those of [I]) hold for the

smallest product of two semifinite measures but that some surprising things

can happen for the largest product of two semifinite measures.

Throughout this paper and ’ will be (nonnegative, countably additive)

measures on a sigma-rlng g and 9 and 9’ will be measures on a sigma ring g

We say that is absolutely continuous with respect to ’, denoted << ’,

if (E) 0 whenever E g and ’(E) 0. We say that is weakly singular with

respect to ’, denoted S ’, if for each E ( g there exists F g such that

(E) (E N F) and ’(F) 0. A measure is semifinite if every set of infinite

measure contains sets of arbitrarily large positive measure. Undefined termi-

nology and notation can be found in [2].
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A product of and 9 is a measure ( 9) #
on g g such that ( 9)

#

(G)9(H) whenever G 6 S H 6 g and (G)9(H) < oo. (Such a product is called a

pseudo-product measure in [3].) We avoid requiring that ( 9)#(G x H)

(G)9(H) for all G in g and H in g on the grounds that (i) the important sets

for a measure are usually the sets of finite measure, (ii) if ( x 9) and

( ) are products of and , then their minimum is also a product of

and 9 under this definition, and (iii) such theorems as Theorem 4.2 and 4.3

hold if we use this less restrictive definition of product measure. Of course,

if and are both semlfinite, then we automatically get the stronger property

#
that ( ) (G x H) (G)9(H) for all G in S and H in g

S
The smallest product of and is the unique measure ( x ) on g g

such that

(i) ( )S(G x H) (G)(H) whenever (G) < and 9(H) <

and (ii) ( 9)S(M) sup {( x )S(M (G H)): (G) < and 9(H) < oo}

L[4, Theorem 39.1]. The largest product of and 9 is the measure ( 9)

on x g defined by the formula

( x )L(M) inf {Z (Gi)9(Hi): M c U G
i

x Hi}.
(See, for example, [5, p. 265].) It is easy to see that ( x )S < ( x )# <

( x )L for each product ( x )# [3, Theorem 4]. Conversely, if ( x )S < <

( x )L, then it is clear that is itself a product of and .
Then

THEOREM i.I. Suppose i and 2 are measures on g and 9 is a measure on g.

(i) ((I + 2 x 9)S < (I x 9)S + (2 x )S < (i x )L + (2 x 9)L

((i + 2 x 9)L.
(2) If i S 2 and 2 S i’ then ((I + 2 x )S (i
(3) If I -< 2’ then (i x )L < (2 x )L.

L(4) (I x 9)’ A (2 x ) ((I A 2 x 9)L.

x 9)S + (2 x )S.

PROOF. To prove (i) notice that the four measures agree on measurable

rectangles F x G such that (I(F) + 2(F))9(G) is finite. Hence, they agree on

measurable subsets of such rectangles and on countable disjoint unions of

measurable subsets of such rectangles. Hence, ((I + 2 x )L(H
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(I )L(H) + (2 )L(H) if the right side is finite. The remaining

inequalities are evident.

To prove (2), it suffices to prove (I )S + (2 )S _< ((I + 2 )S.
Let H g x . If k < (I x )S(H) and k

2
< (2 x )S(H), it suffices to

show that kI + k
2

< ((i + 2 x )S(H). Choose measurable rectangles F
i

G
i

such that (i x )S(F
i

x Gi) < and k
i

< (i x )S(H R (F
i

x Gi)) for

i I, 2. Since u S 2 and 2 S I’ we may assume that F and F
2

are disjoint

and that I(F2) 2(Fl) 0. Then l and (I + 2 agree on FI, so that

kl < ((I + 2 x )S(H (F
1

x GI)). Similarly, k
2

< ((I + 2 x )S
(H R (F

2
x G2)). If follows that k + k

2
< ((i + 2 x )S(H).

Statement (3) follows from the fact that (I x )L(F x G) _< (2 x )L(F x G)

Lfor all measurable rectangles F x G. To prove (4), notice that (( A %) x ) <

( x )L ^ (% x )L since (( ^ %) x )L is less than or equal to both ( x )L
L

and (% x ) To prove the reverse inequality, it suffices to show that

(( x )L A (% x )L)(F x G) < (( x %) x )L(F x G) if F x G is a measurable

rectangle. If (( x %) x )L(F x G) or if (G) 0, we are done. Hence,

we may assume that ( %)(F) < 0o. Then there exists a measurable set F

contained in F such that A % and agree on measurable sets of F and such

that A % and agree on measurable subsets of F FI. If follows that

x G)(( A %) x )L(F x G) ( x )L(F
I

x G) > (( x )L A (% x w)L)(F
Similarly, (( x ) x )L((F \ FI) x G) > (( x )L A (% x )L)((F \ FI) x G).

Hence, (( ^ ) x )L(F x G) > (( x )L A (% x )L)(F x G) and we are done.

2. ABSOLUTE CONTINUITY AND PRODUCT MEASURES.

THEOREM 2.1. Suppose << ’ and << ’. Suppose, moreover, that

[resp., 9] is semifinite (and hence, o-finite) o.n any set for which ’ [resp.,

’] is finite. Then ( x )# << (’ x 9,)L for any product ( x 9)#.
PROOF. Suppose (’ x 9’)L(M) 0 and that M c G x H, where ’ (G)’ (H)

It suffices to show that ( x 9)L(M) 0 in this case. We may assume that

’ (G) and 9’ (H) are both positive and finite since ( x 9)L(G x H) 0 if

’ (G) 0 or ’ (H) O. By hypothesis, and 9 are then semifinite and hence

o-finite on G and H, respectively. It follows from Fubini’s theorem that
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V’(Mx) 0 a.e. with respect to’[2, Theorem 36A]. Hence, V(Mx) 0 a.e.

with respect to . Then, since and are o-flnite on G and H respectively,

we may apply Fubini’s theorem again to say that ( x )L(M) 9(Mx)d O.

Theorem 2.1 requires the hypothesis that [resp., 9] be semifinlte

whenever ’ [resp., v’] is finite. For, if % is Lebesgue measure on the unit

L L
interval and is %, we have << %, but it is false that ( x 9) << (% x %)

L L
For, (% x %) is 0 on the diagonal, whereas (% x %) is on the diagonal.

THEOREM 2.2. Suppose << ’ and suppose 9(H) 0 whenever 9’ (H) is

finite. If ( x 9) #
is any product of and v, then ( x )#(M) 0 whenever

(’ 9’)L(M) is finite In particular ( x v) # << (’ v’) L.
PROOF Suppose ’ (G)’ (H) is finite Either ’ (G) 0 so that

(G) O, or ’(G) > 0 so that ’(H) is finite and V(H) O. Hence,

(G)9(H) O, and it follows that ( x 9)#(M) 0 whenever (’ 9’)L(M)
is finite.

Let s denote the smallest (semifinite) measure agreeing with on the

sets for which is finite (of. [5, Exercise ll.6b]). It is easy to see

that ( x )S (s x vs)S" The next theorem can be thought of as a dual

to Theorem 2.1.

S #
and <<’ then ( x v) << (’ x ’) for’IEOREM 2.3 If s << ’s s s’

any product (’ x ’)#. Hence, if (’ v’)# is a product of semifinite

measures ’ and ’ and if << ’ and << ’, then ( x v)S << (, x ’)#.
PROOF. Since (’ x ,)S < (, x ’)#, it suffices to show that

( x v)S << (, x ,)S Assuming ( )S(M) > O, we show that (’ x )S(M) > 0

Choose measurable sets G and H such that (G) and 9(H) are finite and

(x)S(M N (G x H)) > O. Let N M (G x H), and let A {x G: 9(N > 0}.
x

Since (Nx)d ( x )S(N) > 0, we have 0 < (A) < (G). Since s(A) (A)

we have ’(A) > O. Hence, there exists a measurable setand since s << ’s’ s
B contained in A such that 0 < ’(B) < . Then (’ v)S(M) > (’ x 9)S
(N N (B H)) BV(Nx)d’ > O, so that (x)

S << (’ x v)S.
(’ x )S << (, x v’)

s
so that ( x V)

S << (’ x V’) #

Similarly,

andIn Theorem 2.3, we cannot replace the hypotheses that s << s
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<< ’ by << ’ and << ’ since (’ x v,)S is 0 if ’ or v’ is

degenerate.

In view of [6, Theorem 3. I], we have the following corollary to Theorem

2.3. Although Corollary 2.4 is completely expected, its proof is surprisingly

complicated without the use of Theorem 2.3.

COROLLARY 2.4. Suppose I and 2 are semifinite measures on and v

x v)
s S

is a measure on . Then ((I + 2 x )S ( + (2 x v)

3. WEAK SINGULARITY AND PRODUCT MEASURES

THEOREM 3.1. If S p’ or S ’, then (p x )Ss(p’ x ’)# for any

product (#’ x ’)#. Hence, if S #’ (or S ’) and (# x v)L is o-flnite,

then (# x v)Ls(#’ x ’)# for any product (p’ x ’)#.
PROOF. Suppose M is a measurable set in the product space, and suppose

’. Then ( x )S(M) ( x )S(M N (G x H) for some G and H such that

(G) and 9(H) are o-finite. Since S ’ and since (G) is o-finite, there

exists G such that B(GkGI) 0 and ’(GI) 0 [8, Theorem 3.2]. It follows

that ( x 9)S(M) ( x 9)S(M (GI
x H)) and (’ x v’)#(G x H) 0. Hence,

(v x v)Ss(v x v,) #.
There is no analogue of Theorem 3.1 for largest products; the next

example shows that S ’ does not imply ( 9)Ls(’ x v)L.
EXAMPLE 3.2. Let A be a (nonmeasurable) subset of X [0,1] such that A and

X\A have Lebesgue outer measure [2, Theorem 16.E]. If E is a Borel set

of X, let (E) be the number of points in E A and ’(E) be the number of

points in E\A. It is easy to see that S ’. Now, if D is the diagonal of

X x X, it can be shown that (’ x ’)L(D F) whenever ( ’)L(D N F) > 0.

L LIt follows that ( ’) is not weakly singular with respect to (’ x ’)

Indeed, ( x ,)L is not even weakly singular with respect to (’ ,)S.
Nor does ( x ’)Ls(’ x )L, even though S ’ and ’ S .
4. PRODUCT MEASURES AND THE LEBESGUE DECOMPOSITION

In view of the Lebesgue Decomposition Theorem (see below), we shall see

that a product measure ( x 9) can be written as the sum of two measures so

that the frst is absolutely continuous with respect to a product measure
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(H’ V) ## and the second is weakly singular with respect to (H’ v)##.
If ’ and ’ are semifinite, we show that the first measure in this

decomposition is itself a product measure. For suitable products, we show

that the second measure is also a product measure.

Lebesgue Decomposition Theorem ([8, Theorem 2.1]). Suppose % and %’ are

measures on the same sigma-ring. Then % can be written as % + % where
ac ws

% << %’ and % S %’. The measure % is unique.ac ws ws

The measure % given by the Lebesgue Decomposition Theorem will be called

an absolutely continuous part of % with respect to %’-, the measure % will be
ws

called the weakly singular part of % with respect to %’. If %’ is understood,

we shall simply call % an absolutely continuous part of % and % the weaklyac ws

singular part of %.

If % S(E) sup {%(E F): % (F) 0} for each measurable set E, thenac WE
S S% is the sma22est absolutely continuous part of % and % is weaklyac ac

L Lsingular with respect to % If % A( then is the largestws ws ac

absolutely continuous part of since a measure is absolutely continuous with

respect to %’ if and only if it is less than or equal to %’. In the reverse

S L
direction, if < < %ac then is an absolutely continuous part of

ac 1
L LIf (G) is finite, notice that (G) %I(G) for each %’-absolutelyac ac

#continuous part i of . Therefore, just as all product measures ( x )

Lagree on sets for which the largest product ( x 9) is finite, so all

L%’-absolutely continuous parts of a measure % agree on sets for which %

S L
is finite. Both % and % behave well with respect to smallest products,ac ac

as we now show.

LEMMA 4.1. Suppose and ’ are measures on the same sigma-ring ,
S L

and are the smallest and largest ’-absolutely continuousthat ac ac
parts of , that i is any ’-absolutely continuous part of , and that 9 is

a measure on a sigma-ring g Then:

(i) (Hac
S S Sx v) i (Pl x V)

and

(ii) (acL S Sx V) _< (la I
x V)

Hence (ac
S S L Sx V) (Hac x V)
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PROOF. Suppose M 6 g g and that k < (ac
S S

9) (M). Then there exist

S
F in g and G in g such that ac (F) < and v(G) < and such that

k < (ac
S S S

there exists F in g such thatx ) (M (F G)). Since ac S ws’
S S S Sac (F) ac (FI) and ws(Fl) 0. Then ac (F\FI) 0 since ac (F) <

and k < (ac
s S

x 9) (M N (FI G))

< (1 )S(M 0 (FI
x G))

--< (I x 9)S(M).
Therefore, (ac

S
x v)S(M) _< (I x )S(M), and we have (ac

S
x )S < (I x )S.

In order to prove (ii), suppose M g x g and that k < (ac
L x 9)S(M).

L
Then there exist F in g and G in g such that ac (F) < and 9(G) < and

L S
such that k < (ac x 9) (M (F x G)). Since

L L Lac (F) < , we have ac (F) I(F). Indeed Uac (FI) I(FI for all

measurable subsets F of F.

Hence,

k < (ac
L x v)S(M (F x G))

x v)S(M 0 (F x G))(I

x v)S(M).(l
Therefore, (ac

L )S(M) --< (UI x )S(M), and we have (ac
L x v)

S _< (I x v)S.
#

THEOREM 4.2. Suppose ( x V) is a product of measures and ,
##

that (’ x ’) is a product of semifinite measures ’ and v’, and that

L<< ’. Let ac be the largest ’-absolutely continuous part of , and let

# ##
I be any absolutely continuous part of ( x v) with respect to (’ x ’)

Then l (ac
L x v)# for some product of acL and .

L
PROOF. Assuming ac (G)(H) is finite, we wish to show that

L LI(G x H) ac (G)(H). If (H) O, then I(G x H) _< (G x H) 0 ac (G)(H)

L
HenCe, we may assume that (H) > 0 and that ac (G) is finite. In that case,

L
there exists measurable G

1
c G such that ac (G) (Gl) and ’(G\GI) O.

Then I(G x H) I(GI x H) since I((G\GI) x H) O. Since << ’ on G and

s ##
since << ’ G

1
we have ( x ) << (’ x ’) on x H by Theorem 2.3. Then

S
since ws --< and since agrees with ( x ) on G

1
x H, we have

## ##ws << (p’ x ’) on G
1

x H. Since wsS(P’ x ’) we have ws(G1
x H) O.
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Hence.

L
.n-l(G x H) ’nl(G1 x H) ’n’(G

1
x H) (G1)’(H) ac

and we are done.

In Theorem 4.2 we saw conditions under which an absolutely continuous

part of a product measure is itself a product measure. We now look at con-

dltlons under which the weakly singular part of (p x ) with respect to

(p’ x ’) is a product measure. The relevant results are given in the next

theorem.

#.THEOREM 4.3. Suppose ( x ) is a product of measures and , that

(’ ’) is a product of measures ’ and v’, and that << ’ Let ws
be the weakly singular part of p with respect to ’, and let be the weakly

ws

singular part of ( x ) with respect to (’ x ’) Then:

Sx v) <-Pws ws

(2) If is the smallest product of and and if ’ and v’ are

semlflnlte then (ws x )S
WS

(3) If and are semlfinlte and if (p’ x ’) is the largest product

of ’ and ’, then ws is a product of ws and .
PROOF. Let I be any absolutely continuous part of with respect

to (’ x ’)##. By Theorem 3.1, (Pws x )Ss(p’ x ’)##, so that (Pws x )SS+nl"
Since (Pws x )S<(p x )S < I + w we therefore have (Pws x )S <

[8, p. 628].

In order to prove (2), let Pl be any p’-absolutely continuous part of

S S Sx ) by Theorem I.I(I). We havep and notice that (p x ) < (Pl x ) + (Pws

(Pl x v)S << (p, x ’)## by Theorem 2.3 so that S (p x )S Then since
ws 1

ws --< (Pl x )S + (Pws x )S, we have ws --< (Pws x )S. We already know from

S S
(I) that ( x ) < so that (Pws x ) in this case.

ws ws ws
L

In order to prove (3), it suffices to show that nws --< (pws x ) since

S S
we already know that (ws ) --< nws" Let ac be the smallest ’-absolutely

S
continuous part of . Since p is semlflnite, so is ac Then

(ac
S x 9)L << (, 9,) by Theorem 2.1 so that n S (Pac

S 9)L Since
ws

n < (p x )
# < (p x 9)L (PaX )L + (Pws x v)L

ws
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we hve < )L
ws Pws as was to be shown.

We pause to observe that the measure is Theorem 4.3 need not alwaysws

be a product measure. Nor does it help to assume that all measures under

consideration are semlflnlte measures.

EXAMPLE 4.4. Let p be counting (discrete) measure on the Borel sets

8 of the unit interval, and let be Lebesgue measure on 8. Define a

measure % on 8 8 by

I(M) 9({y E Y: (y,y) 6 M}) if M 6 8 8

In other words, %(M) is found by intersecting M with the diagonal and using

Lebesgue measure of the projection of that trace. Let ( x )S + .
It is easy to see that n is a product of and 9 since %(G H) 0 if

( 9)S(G x H) < . If n is the weakly singular part of with respectws

to ( )S, then it" is easy to see that . Hence, is not a
WS WS

product measure in this case.

For the remainder of the paper, we shall investigate the Lebesgue

Decomposition of ( x ) with respect to (’ x ’) if ( ) is the

smallest product of p and 9 or if the products ( x ) and (’ x ’) are

largest products.

S
THEOREM 4.5. Suppose ( x 9) is the smallest product of measures

and , that (’ x ’) is a product of semifinite measures ’ and ’, and

S
that 9 << 9’. Let ac be any p’-absolutely continuous part of , let nac be

the smallest (’ ’)#-absolutely continuous part of ( x )S, let ws be

the ’-weakly singular part of , and let n be the (’ x ’)#-weakly
ws

singular part of . Then

(1) (Pa:X ))S (Pa:X ))S S
ac

S
X )) =11"2 PWS WS

s x )s
c
L s

PROOF. We know that Pac (]a x v) by Lemma 4.1 and that

(pa:x" )S --< acSby Theorem 4.2. Moreover (ws x )S ws by Theorem 4.3.

S
It suffices to show that (Ha x v) is a (’ x 9’)#-absolutely continuous

S
part of (H x 9)S-. Now (Pa x ) << (p’ x 9’)# by Theorem 2.3, and

x )
s s s s s

(Pac x ) + (Pws + ) by Theorem 1.1(2). Hence (ac
S x )S(



802 R.A. JOHNSON

is indeed a (’ ’)#-absolutely continuous part of ( )S.

LEMMA 4.6. Suppose (N ) is a product of semiflnite measures and. If (’ ,)S is -finite and S ’, then ( x )# S (’ ,)S Hence

if (’ x ,)L is o-finite and S ’, then ( 9)# S (’ ,)L.
S S

PROOF. Let B’ and ’ be the smallest absolutely continuous parts
ac ac

of ’ and ’ with respect to and , respectively. Let ’ and g’ be the weakly
WS WS

singular parts of ’ and 9’ with respect to and 9, respectively. By

Theorem I.I(2), we have

S , S) + (,
S x ,ws + (p, x ,)S(’ x 9,)S (’ac ac ac ws

each of these products is clearly -flnite. In view of Theorem 3. I,

we have (’ x ,)S S ( x )# and (’ x ’ )S S ( )S
ws

so that

(x) #
S (’ x ,)S and (x) #

S (’
S x ’ws)S [8, Theorem 3.2].

WS ac

S) S
Now (’

S x ’ S << ( x )S by Theorem 2.3, and ( )S S (’acac ac
S SSx’by Theorem 3.1. Thus, ( x )# S (’ac ac

Hence, (p x ) #
S (p’ x ’)S.

, S)S
ac

[8, Theorem 2.4 (Ib)].

We say that is quasi-dominant with respect to v’ if for each measurable

set E, there exists a measurable set F such that v(E) V(E F) and such that

’ is absolutely continuous with respect to VF (that is V’(F G) 0 when-
F

ever 9(G F) 0). For example, if ’ is absolutely continuous with respect

to or if ’ is -finite, then is quasl-dominant with respect to 9’ [9,

pp. 118-119].

THEOREM 4.7. Suppose and ’ are semlflnlte measures on , and suppose

and V’ are semlflnlte measures on g such that 9 is both absolutely continuous

S
and quasi-dominant with respect to 9’. Let be the smallest p’-absolutely

ac

continuous part of , let #ws be the #’-weakly singular part of p, and let

#I acS + (#ws ^ ’)" Then (Pl x v)L is an absolutely continuous part of

( x )L with respect to ( x ’)L.
S < S + ( ^ ,) < ^ , L

PROOF. Evidently, ac ac ws ac so that

)L is absolutelyI is a ’-absolutely continuous part of . Then (I
continuous with respect to (’ ’ by Theorem 2.1. Then by Theorem I.I (I)

L L L L
x V) +and Theorem 4 3 we have ( x ) (i x ) + (ws x ) (I ws



ABSOLUTE CONTINUITY, SINGULARITY AND PRODUCT MEASURES 803

In order to prove the reverse inequality, we first show that (ws )L(M) 0

if (’ x )L(M is finite and (M) 0. Assuming (’ x )L(M is finite andws

(M) 0, we may assume without loss of generality that M is a subset ofws

G H, where ’(G) and (H) are finite. Then since is quasi-dominant with

respect to ’, we may assume that ’ << on H. Since ’(G) is finite,

Lemma 4.6 tells us that (ws )LG H
is weakly singular with respect to

L(’ )
G H" In other words, there exists N gg such that

)L(M) N N) and (’(ws (ws jLM jLN 0. We have

, 9,)L << (, )L by Theorem 2 so that (’ ’)L(N) 0
GxH GH

Thus

(ws x )L(M) (ws x )L(M N N)

< (M N N)

(M I"1 N) + (M N N)
me ws

=0+0

v)L L(pHence (ws (P) < (’ ) for all measurable subsets P of M if

(M) 0. By Theorem 1.I (4), we have
ws

)L L)(ws x )e(p) < ((ws A ( x ) (p)

(( ^ ’) x )e(p)
ws

)L< (ws (P)

if (P) 0. Now if (M) is finite, there exists N ggsuch that
ws ws

(’ ’)L(N) 0 and such that (M) (M N). Since (M\N) 0
ws Iws ws

we have

S x v)L(x)L(M) (ac (M\N) + (ws x v)L(M\N) + (M N N)

S )L x v’) )L(M\N) + (MN)(ac (M\N) + ((Uws ws

(I x )L(M\N + (M 0 N)

(I x )L(M) + (M).
ws

L LWe have thus shown that ( ) is the sum of (I ) and so that
ws

L
(I x ) is indeed an absolutely continuous part of .

COROLLARY 4.8. Suppose and ’ are semifinite measures on g

Sand that is a semifinite measure on g. Let be the smallest
ac

’-absolutely continuous part of , let be the ’-weakly singular
WE
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S ,part of , and let I ac + ( ^ ). Then (I )L is an absolutely
ws

continuous part of ( v)L with respect to (’ )L.
Let be the weakly singular part of ( )L with respect to

ws

(, )L. We pause to observe that the conditions of Corollary 4.8 do

imply that -(ws )L. Recall that in Example 3.2 we havenot ws

and # ( x )L since S, and since ( x )L is not weakly
ws ws

singular with respect to (’ )L.

At the opposite extreme from quasl-domlnance is strong recessiveness.

We say that 9 is strongly recessive with respect to 9’ denoted

if 9 << 9’ and ’ S . Equivalently, <S ’ if and only if the only measure

which is both quasl-dominant with respect to 9’ and less than or equal to

is % 0. If 9 and 9’ are measures on the same slgma-rlng, then 9 can

be written as I + 2’ where 91 is strongly recessive with respect to 9’ and

92 is quasl-dominant with respect to 9’ [9, Theorem 2.5]. Whereas Theorem 4.7

dealt with the case where << 9’ and is quasl-domlnant with respect to 9’,

so Theorem 4.9 tells us what happens if is strongly recessive with respect

to 9’ For if 9 <S 9’ notice that 9(H) vanishes whenever v’ (H) is finite

THEOREM 4.9. Suppose and ’ are semlflnlte measures on g, and suppose

9 and 9’ are semifinite measures on g such that vanishes whenever 9’ is

L
finite. Let be the largest ’-absolutely continuous part of . Then

ac

(ac
L x )L is the largest absolutely continuous part of ( )L with

respect to (’ x ,)L.

PROOF. We know that (ac
L x )L << (, x ,)L by Theorem 2.2. Let

L
be the largest absolutely continuous part of with respect to (’ x ,)L,

ac

and let be the weakly singular part of wlth respect to (’ x ,)L. We
ws

have L < (ac
L x )L by Theorem 4.2 < (Uws x )L by Theorem 4 3 (3)ac ws

and ( x )L (Uac
L x )L + (ws x )L by Theorem i.i (I). Hence,

( v)L (ac
L 9)L + (ws )

L Lxv) +> (Uac ws
L> +ac ws

L
(uxv)
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so that ( L )L is an absolutely continuous part of with respect toac
L )L < L L )L L(, ,)L Then since (ac ac ac

we have (ac
Finally, suppose and ’ are semifinlte measures on g, and suppose

and ’ are semifinite measures on g such that << ’. Does there exist

Lmeasure 0 such that (0 ) is an absolutely continuous part of

( )L with respect to (’ ,)L? The answer is no, as Example 4.10

shows.

EXAMPLE 4.10. (cf.[9, pp. 131-132].) Let X [0,I), and let be

the Borel sets of X. Let be counting measure on , and let ’ be Lebesgue

measure on 3. Let Y [0,2), let g be the Borel sets of Y, and let be

Lebesgue measure on g. If H g, let ’ (H) be Lebesgue measure of H fl [0,I)

plus counting measure of H [1,2). Let D {(x,y) X Y: x y}, and

let E {x,y) X Y: y x + I}. Suppose there were a measure 0
such that (ll0

x v) L is an absolutely continuous part of (1 x v) L with respect

to (’ x ,)L We would then have (0 x )L(D 0 and (0 x )L(E
which is clearly impossible.

5. COMPLEMENTS ON STRONG-RECESSIVENESS AND QUASI-DOMINANCE

THEOREM 5.1. Let ’ and ’ be semifinite measures. Suppose <S ’ and

S #<< ’, or suppose << ’ and <S ’" Then ( ) <
S (’ ’)

for any product (’ ’)#.
PROOF By Theorem 2.3, ( )S << (, ,)S. Then by Theorem 3.1

and by the hypothesis that ’ S or ’ S , we have (’ ,)S S ( )S.
Hence, (p x )S < (p’ x ),)S

S If x ’) #
is any product of ’ and v’

we observe that (’ x ,)S < (, x ’)# #
so that ( x 9 <S (’ x ’)

[9, Theorem 2.4 (lb)].

There is no analogue of Theorem 5.1 for largest products. Example 5.2

shows that the conditions <S ’ and <S ’ do not imply ( )L <S (’ ,)L
EXAMPLE 5.2. As in Example 3.2, let A be a (nonmeasurable) subset of

X [0,I] such thatAandB =X\A have Lebesgue outer measure I. If E is a

Borel set of X, let A(E) be the number of points in E A and let B(E)
be the number of points in E B. Let % be Lebesgue measure on the Borel
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sets of X, and let 0o%. Clearly, <S KA and <S KB" Now, if

D is the diagonal of X X, it can be seen that (A KB)L(D) and

Lthat ( )L(D- N M) whenever (A B (D M) oo. Hence,

L
(A x KB) is not weakly singular with respect to ( )L-, so that

L)L. is not strongly recessive with respect to (A B( Of course

L L
( ) << (A B by Theorem 2.2.

Let us write Q ’ if is quasi-dominant with respect to ’ (see

discussion preceding Theorem 4.7). In Theorem 5.4 we use the fact that

Q ’ if and only if there exist measures ’ and ’ such that S ’ and
2

’ << and ’ ’I + ’2 [9 Theorem 2 (4)]2

LEMMA 5.3. If Q ’ and s is the smallest (semifinite) measure agreeing

with on sets of finite -measure, then Q ’.s

PROOF. Since s sup{A: (A) < }, the result follows from Theorem

2.1 (8) and Theorem 3.1 of [9].

THEOREM 5.4. Suppose Q ’ and Q ’. Then ( )S Q (, ,)S.
PROOF. In view of Lemma 5.3 we have s Q ’ and Q ’. Then since

s

(1 x v)
s

(]s x Vs)s we may assume without loss of generality that and

are both semifinite Since Q ’ there exist measures ’ and ’ such2

that S D’I and ’2 << " Similarly, there exist ’I and ’2 such that

S ’I and ’2 << " Then ( x )S S (’I x ,)S and ( x )S S (’2 x ’
(’2 v’2)s << ( x v)S by Theorem 2.3. Since ( x v)Sby Theorem 3.1, and

is weakly sJnt’lar with respect to (l.l’ x ,0’) s + (la’
2

x )’ )S and since

(’2 x v’2)S << ( x v)S, we see that ( x )S is quasi-dominant with respect

to the measure

O (1’1 x v’)
S + (]J’2 x V’l)S + (]J’2 x v’2 )S.

We know that (’ x v’)S < p by Theorem i.i (I), so that ( x v)
S

Q (’ x v’) S

[9, Theorem 2.1 (i)].

Our last example shows that the analogue of Theorem 5.4 fails for

largest products.

EXAMPLE 5.5 Let KA and KB be the measures on the Bore! sets of

X [0,1] given in Example 5.2. Since A S B’ we see that A Q KB"
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LOf course, <B Q <B" Let us show, however, that (<A x <B) is not quasi-

)ndominant with respect to (<B <B Let D be the diagonal of X X. If

M is a Borel set of X X such that (<A <L(D) (<A <B)L(D N M),

then the projection of M has positive Lebesgue measure. Hence, we may choose

<B)Lz E B such that (z,z) 6 D N M. Then (<B (D N M) ({(z’z)}) I, even

Lthough (A x <B)L ({(z,z)}) 0. It follows that (<A x <B) is not

Lxquasi-dominant with respect to (<B
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