AN HYPERVALUATION OF A RING ONTO A TOTALLY ORDERED NON-CANCELLATIVE SEMIGROUP WITHOUT ZERO DIVISORS

JOHN PAPADOPOULOS

41-43 Ioulianou str., Athens 104 34 GREECE

(Received April 17, 1985)

ABSTRACT. In this paper we answer to a question posed by Marc KRANSER: It it possible to have a totally ordered noncancellative semigroup without zero divisors, and a ring hypervaluated by this semigroup? We were able to give a positive answer and provide an example.

KEY WORDS AND PHRASES. Hypervaluation, Valuation, Totally ordered semigroup, Ring 1980 AMS SUBJECT CLASSIFICATION CODE: 16A34 or 16A45.

1. PRELIMINARIES

In what follows,all semigroups are supposed to have a unit element 1 and a zero (absorbent) element 0, such that a.0=0.a=0 for all elements a in the semigroup. In any semigroup we can adjoint a zero element if it does not already have one, without changing its structure. We remark that in each semigroup 1 and 0 are unique.

DEFINITION 1. We say that a semigroup S is ordered if it is supplied with an order < such that:

1. For a,b,c in S, $a < b \Longrightarrow ca \le cb$ and $ac \le bc$.

2. 0<1 (hence $0=0c \le 1c = c$ for all c in S)

If the order is total S is called totally ordered.

DEFINITION 2. An hypervaluation on a ring R is a function from R onto a totally ordered semigroup S, satisfying the following conditions: For all a,b in R.

|a| = 0 ⇒ a=0
|a| = |-a|
|ab| = |a| |b|
|a+b| ≤ Max {|a|, |b|}

Notice that if the semigroup S does not have any zero divisors then the ring R does not have any either. For if $a, b \in R$ with $a \neq 0, b \neq 0$, and ab=0, then 0=|0|=|ab|=|a||b|, while $|a|\neq 0$ and $|b|\neq 0$. But this is impossible since S is assumed with no zero divisors. Also we easily see that a cancellative semigroup has no zero divisors, however the converse is not true in general as we shall see in what follows.

2. CONSTRUCTION OF A NON-CANCELLATIVE, TOTALLY ORDERED SEMIGROUP WITHOUT ZERO DIVISORS

We begin with an arbitrary given totally ordered semigroup $(S_1, \cdot, \cdot) = \{0_1, a, b, ...\}$ where 0_1 its absorbent (zero) element. Consider now the set $S_2 = S_1 \cup \{0_2\}$ that we get if we adjoint a new element 0_2 to the set S_1 . Define an operation * on S_2 by setting a*b=a.b if a,b are in S_1 , and $0_2*a=a*0_2=0_2$ for all a in S_2 . In particular $0_2*0_1=0_1*0_2=$ $=0_2$. We observe then that:

- $(S_2, *)$ is a semigroup and 0_2 is its zero (absorbent) element (self evident) - $(S_2, *)$ has no zero divisors. Indeed if $a, b \in S_2$ with $a \neq 0_2$ $b \neq 0_2$ then $a, b \in S_1$ and by definition $a*b=ab \in S_1$ and hence $ab \neq 0_2$.

- (S₂, *) is non cancellative. Indeed we can take a,b in S₁ with $a \neq b$. Then $0_1 * a = 0_1 a = 0_1 = 0_1 b = 0_1 * b$. Thus $0_1 * a = 0_1 * b$ but $a \neq b$.

- Finally we define a total order ϵ on S_2 by setting $a \epsilon \mathcal{I}_2$ for all a in S_1 , and for a,b, in $S_1, a \epsilon b \iff a > b$. It is obvious that this is well defined, and that $(S_2, *, \epsilon)$ becomes a totally ordered semigroup.

3. A PROPOSITION

Notation: In what follows, we will denote by S_1 an arbitrary given totally ordered semigroup, and by S_2 the corresponding totally ordered non cancellative semigroup without zero divisors, obtained from S_1 , by adjoining a new absorbent element 0_2 , as it was done in section 2.

PROPOSITION: Let I be a two sided ideal of a (not necessarilly commutative) integral domain R. If R/I can be hypervaluated by S_1 , then R can be hypervaluated by S_2 .

PROOF: Let $|\ldots|$: $R/I \rightarrow S_1 = \{0_1, a, b, \ldots\}$ be a valuation from R/I onto S_1 . We define the function $|| = || : R \rightarrow S_2$ by setting: For a in R, $||a|| = 0_2$ if a=0 and ||a|| = |a+I| if $a \neq 0$. This implies that if a is in I, with $a \neq 0$, then $||a|| = 0_1$.

We see that $\|\cdot \cdot \cdot\|$ thus defined, satisfies the four properties of hypervaluation: Indeed properties (1) and (2) of definition 2 are obviously satisfied. That (3) holds for all a,b in R is immediate if at least one of them equals to zero. So we may assume $a\neq 0, b\neq 0$, and thus $ab\neq 0$ since R is an integral domain. Then $\||ab\|| = |ab+1| = |(a+1)(b+1)| =$ = |a+1||b+1| = ||a|| + ||b||.

Finally (4) is also satisfied. For if $a,b, \in R$, if at least one of them equals to zero the proof is immediate. Suppose now $a,b\neq 0$. Then we could have a+b=0 or $a+b\neq 0$. If a+b=0 then $||a+b|| = 0 \le ||a||$, $||b|| \le \tan \{||a||, ||b||\}$. If $a+b\neq 0$ then ||a|| = |a+I|, ||b|| = |b+I| and $||a+b|| = |a+b+I| = |(a+I)+(b+I)| \le \max \{|a+I|, |b-I|\} = \max \{||a||, ||b||\}$. This completes the proof.

4. COFFIS THEOREM FOR HYPERVALUABILITY OF A RING

DEFINITION 3. Let R be a ring. For any element a in R we call the set of left annihilators of a to be the set $\{x \in R | x.a=0\}$ and we denote this set by $A_1(a)$. In an analogous way we define the set of right annihilators of a denoted by $A_r(a)$.

THEOREM 1: (Coffi - Nikestia): Let R be a ring with a unit element 1. R can be hypervaluated by a totally ordered semigroup S if and only if it satisfies the following conditional:

- 1. For all a ε R, $A_1(a) = A_r(a)$ and we denote this set by A(a).
- 2. For all a, b ε R, A(a.b)=A(b.a)
- 3. The class C={A(a), A ϵ R} is totally ordered by inclusion.

In particular, R posesses an hypervaluation |...| such that $|a| \rightarrow A(a)$ is a one-to-one correspondence between S and C.

We remark that Coffi in his construction supposes the semigroup to be commutative. The ring R is not supposed to be necessarilly commutative, but with an identity element 1. The details can be found in Coffi [l]. The idea is the following: For each a in R, its "value" |a| is A(a). So $|...|: R \rightarrow C=S$. Moreover S is totally ordered by the total order defined as follows: For a, b in R $|a| \leq |b|$ if A(a) \supseteq A(b).

5. OUR MAIN THEOREM

THEOREM: There exists a totally ordered non cancellative semigroup S without zero divisors, and a ring R that can be hypervaluated by this semigroup.

PROOF: We choose an integral domain R (not necessarily commutative) such that R/I (for some two-sided ideal I of R)be a ring satisfying the conditions of Coffi's theorem. Then by Coffi's theorem R/I can be hypervaluated by a totally ordered semigroup S_1 .

From S_1 we obtain a totally ordered, non cancellative semigroup S_2 without zero divisors, as we did in section 2.

By our Proposition 1, we can hypervaluate R by S_2 that has the desired properties. This concludes the proof of our theorem.

6. A CONCRETE EXAMPLE

We provide in this paragrapha concrete example of a Ring hypervaluated by a totally ordered, non cancellative semigroup S_2 without zero divisors.

Let Z be the ring of integers and (16) the ideal in Z generated by 16. It suffices to show that the ring Z/(16) satisfies the conditions of Coffi's theorem and thus can be hypervaluated by a totally ordered semigroup S_1 . Because then, by our Proposition of section 3,Z can be hypervaluated by a semigroup S_2 , having the desired properties. Indeed since Z/(16) is commutative, conditions 1 and 2 are obviously satisfied. Now if $a,b,x \in Z$ and $\overline{a},\overline{b},\overline{x} \in Z/(16)$ their corresponding equivalence classes, \overline{x} is then an annihilator of \overline{a} in Z/(16) if and only if $x.a \in (16)$ i.e. iff 16 divides xa. Let (a,b) denote the least common multiple of two elements a,b in Z.

Thus: If (a, 16) = 1 then $A(\overline{a}) = \{\overline{16}\} = \{\overline{0}\}$

- If (a, 16)=2 then $A(\bar{a})=\{\bar{8}, \bar{16}\}$
- If (a, 16) = 4 then $A(\overline{a}) = \{\overline{4}, \overline{8}, \overline{12}, \overline{16}\}$
- If (a, 16)=8 then $A(\overline{a})=\{\overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \overline{16}\}$

If in general (a,16)=(b,16) then $A(\overline{a})=A(\overline{b})$, if (a,16)>(b,16) then $A(\overline{a})\supset A(\overline{b})$.

Condition 3 of Coffi's theorem is also therefore satisfied.

REFERENCES

 COFFI-NIKESTIA J.B. "Valuation des anneau avec diviseurs de zero au moyen des demigroupes totalement ordonnes. Proprietes des anneaux valuables". <u>Compte-Rendus</u>, <u>Acad.Sci.Paris 254 III,1962</u>.

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

