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ABSTRACT. Let (Xnk} be an array of rowwise independent random elements in a separable
Banach space of type p + § with EXnk = 0 for all k, n. The complete convergence
(and hence almost sure convergence) of n_1/p23;=1 Xnk to 0, 1 < p < 2, is obtained
when {Xnk} are uniformly bounded by a random variable X with E|X|2p < o, When the
array {Xnk} consists of i.i.d. random elements, then it is shown that n—l/p22§=l Xnk

converges completely to O if and only if E"X11“2p < o,
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1. INTRODUCTION AND PRELIMINARIES.

Let (E, |] ||) be a real separable Banach space. Let (Q,A , P) denote a probability
space. A random element X in E is a function from Q into E which is A-measurable
with respect to the Borel subsets 3(E). The Pth absolute moment of a random element
X is E||X||P where E is the expected value of the random variable |X||P. The expected
value of X is defined to be the Bochner integral (when E||X|| < =) and is denoted by EX.
The concepts of independence and identical distributions have direct extensions to E.
A separable Banach space is said to be of (Rademacher) type p, 1 < p < 2, if there

exists a constant C such that
I=xP<c = efx|P
E = X <C T E
o el 20 F B

for all independent random elements Xl’ ceey Xn with zero means and finite pth moments.
Every separable Hilbert space and finite-dimensional Banach space is of type 2. Every
separable Banach space is at least type 1 while the 2P and LP spaces are of type
min{2,p} for p > 1.

Throughout this paper {Xnk:

random elements in E such that

1<k<n, n>1} will denote rowwise independent

EX, =0- for all n and k (1.1)
nk

and such that {Xnk} are uniformly bounded by a random variable X with

E|X|2p < e for some 1<p<2. (1.2)
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Recall that an array {Ank} of random elements is said to be uniformly bounded by a

random variable X if for all n and k and for every real number t >0

P[||Xnk|| >t] <PLIX| >t]. (1.3)
Note that i.i.d. random elements are uniformly bounded by [|X;;||. The major results
of this paper show that
1 n
nl/p =1 ¥,k > 0 completely (1.4)

where complete convergence is defined (as in Hsu and Robbins [1]) by

© 1 n
Zh=1 PL nl/p Z k=1 Xnk" el (1.5)

for each € > 0.

Erdos [2] showed that for an array of i.i.d. random variables {xnk}' (1.4) holds
if and only if E|X11|2p <o, Jain [3] obtained a uniform strong law of large numbers
for sequences of i.i.d. random elements in separable Banach spaces of type 2 which
would yield (1.4) with p = 1 for an array of i.i.d. random elements {Xnk} in a type 2
space. Woyczynski [4] showed that

1 =0

nl/p k=1 Xk + 0 completely (1.6)

for any sequence {Xn) of independent random elements in a type p+ 8, 1<p<2 and § > 0,
with EXn = 0 for all n which is uniformly bounded by a random variable X satisfying
EIle < w, Moricz, Hu and Taylor [5] showed that Erdos' result could be obtained by
replacing the i.i.d. condition by the uniformly bounded condition (1.3). In addition,
they showed that Jain's result for i.i.d. random elements with p =1 did not require

the space to be type 2 but held in all separable Banach spaces. In this paper, (1.4)
is established in type p+ & spaces, 1<p<2 and § >0, for uniformly bounded rowwise
independent random elements. For i.i.d. random elements in type p +§ spaces, it is
shown that (1.4) holds if and only if E"XH" L P Thus, no sharper moment conditions

are possible.

2. MAJOR RESULTS.

Many authors (starting with Beck [6]) have related the strong law of large numbers
for non-identically distributed, independent random glements in separable Banach spaces

to the necessity of the space being of type p+§ for 1 <p <2 and some § >0. Conse-
quently, attention is restricted to type p + 8 spaces in this paper. Three lemmas
will be used in obtaining the major results. They are stated here without proof.
Lemma 1 with r = 1 is in most textbooks while Lemma 2 is accomplished using integration
by parts. Lemma 3 is in Woyczynski [4].

LEMMA 1. For any r > 1, EIXlr < e if and only if

2 or-1
= n PLIX|>n)<w.
n=1

o0
More precisely, r2 ' = aflp CIX] >n]
=1

0
<EX[F<1+r2" = ol PC|X|>n].
n=1
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LEMMA 2. If r > 1, then for any p > 0 1/p

E(lxlrl 1/ )ir fn 70X > t]ae
[ Ix|<n'/P] 0

and

1/p 1/p ©
E[|X|I =n "FPL|X| >n'F ] + PL|X| > t]adt.
[ [|X|>n1/p]) I f

nl/p

LEMMA 3. Let 1<p< 2 and q>1. The following properties are equivalent:

(i) E 1is of type p-

>

(ii) There exists a C such that for all independent random elements Xl’
in E with Exk =0,k=1, ..., n,

n n
E|l = 1cc E(Z p]q/p.
||k=lxk|| = k=l"Xk"

THEOREM 4. 1If {Xnk} is an array of rowwise independent random elements in a type
p+3d space, 1<p<2 and § >0, which are uniformly bounded by a random variable X such
that (1.1) and (1.2) holds, then

1 n
nl/p zk=lxnk + 0 completely.
PROOF. Define
Y, =X 1I l1<k<n, n>1l. (2.1)
nk nk 1/p - ==
L "Xnk" <n ]
Then, by Lemma 1 (with r = 2),

T ¥ PIX, $Y. 1= = %P[||Xk||>n1/p]
n=1 k=1 nk T "nk T o =) n

> npl|x| > nt/P]
n=1

A

= nP[ [X|P > n] < 2E[X|"F < =,
n=1

Next, for any € > 0,

n
2 rrldy 2 % | > ¢

=l 1/p k=1 Dk B 1/p k nl.c|

A

n§1 P [kt_J (X, tY,1]

o

% B PLX, 4Y, 1 <=

(A

n=1 k=1
Therefore,
1 n
- 2 Y +> 0 completely
Il n1/p ki:l Xnk 1/p nk l P ’
and it sufficies to prove that
1 n (2.2)
Il = Y_ | » 0 completely. .
nl/p k=1 0k
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To this end, let

Z, =Y  -EY (k=1,2,...,n; n=1,2,...).

nk nk nk

Then for 1 < q < 2p it follows by Holder's inequality that
1/ 1/
(B, D9 < a8y, |19

so that
Bllz,, 19 < 2%e(x| 2P)¥/ (2P
nk
< 2%P(1 + E[x|%P) =
< [X[7F) = ¢, say. (2.3)
Furthermore,
1/
Iz < 1yl + By [l < 20 /P, (2.4)

Following the techniques of Taylor [7] in expanding a high power of a sum, let
= p+§ and v be chosen so that

n
[}
Rl<

is an integer and v > (% - %)-1. (2.5)

n
It is readily seen that E( = lIan")V < ®, so that, by Lemma 3,
k=1
n \ n s
| = z \<CE(Z z ‘).
(12 20) < 0 (2 12,0

S r
=c = E(jr:lllznkjll ) (2.6)

1,...,

where the sum is extened for all s-tuples (kl,...,ks) with kj =1, 2, ..., n for each

j. The general term to be considered then will have

]
o
.o

q of the k's = 51, sy Q of the k's

e = '
r, of the k's Mys oes Ty of the k's

where r < rq < 2p, rry > 2p, and 2.7

X q + = r, =s. (2.8)

Clearly, q; = 1. Then, using (2.3) and (2.4), we can conclude that

m rq; 2 rr
E| 1I ||z 1 j
(i=1 I nﬁi" jl;[l “Znn__i I ) (2.9)

9 2 2p rrj-Zp\
E|Z
Rz 1 ;Jlf("znnj ¥y, 1)

[3 rr.-2p
< CTH' II (anlp) 3
j=1
L
Z (rr, - 2p) = (rr /p)-2%
- m+ 2 j=1 i 3—1
1
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X

= (rr,/p)-22
v, j=t 1
i Cl <« n

L
= (rrJ./p)-Z!L

=| J=1
C2 n , say.

Combining all possible terms of form (2.9), we can write

n S
E( = ||znk||‘) (2.10)
k=1
% ok m rq, & rr,
<c, om = o 1 liz,, 7% 11 fiz,, 177
Q) sevesQ3Tysee sty 51,...,£m;n1,...,n1 i=1 i j=1 i
- c, =" s say,

QseesQsTyseeesTy Ayseees@iTyseeeslys

where Z* is extended over all m-tuples (ql....,qm) and &-tuples (rl,...,rz) such that
Conditions (2.7) and (2.8) are satisfied (the cases m = 0 or & = 0 may also occur),
while Z** is extended over all (m + &) - tuples (gl,...,gm; nl,...,nl) of different
integers between 1 and n and C is a constant independent of n. Let m+% =t Obviously,

1<t< s. We distinguish two cases according to t>2 or t=1.

Case t >2. By (2.9)

S
QpsecesQ 3T seesTy

3
= (rr,/p) - 2%
ok j=1 3
< C > n
T2 £ s
1)“" m’n1:-°~’r\l

2

> (rrj/p) -2+t
< ¢, n it ) (2.11)

-2

Now, the power to which n is raised here can be estimated by means of (2.8) and q; = 1

as follows

1 2
= Zrr, - 28+t
pj:l
1 m
=—(rs- }Srq.)-Z(t-m)+t
P i=1 1
=2_ I ot -m)+t
P
=2_t_m(s_2\ (2.12)
P p )

We distinguish two further subcases according tom =t orm< t- 1.
Subcase m = t. By assumption 1 < p < 2. Also, q; = 1 for each i.

Thus, m = s and, by (2.5).
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t+m(§- 2)= s(i—- l)
- “G; - %) s 1. (2.13)

Subcase m < t - 1. Thent - m > 1 and even t - m > 2 in the particular case where
m = 0. Thus, again

t+m(§-2)=(t-m)+m(§-l)>l. (2.14)

Now we turn to

Case t = 1. In this case necessarily m = 0 and ¢ = 1, consequently r, =s and

_ n rs
S . =S,..= T E|z |
ql,...,qm,rl,...,rg 0;s k=1 nk

Using Lemma 2, we obtain that

= == = Efz  |I¥
B n\)/p k=1 nk
<2V x L ElY  |I°
- n=1 n\)/p nk
1/p
v 2 1 n n v-1
<2 = <55 = v_L t T PLIX > t]at
n=1 n"/P k=1 n
1/p
v 2 1 n v-1
<2° = v n t " PLIX| > t]adt.
- n=1 nv/p
Letting t = nl/p sllv and applying Lemma 1 (with r = 2), it follows that

oo 1
2152\) = nLP[‘XI >1'11/p s]‘/\)]ds
n=1

1 w
2"£ = o[ |s /Y x|P > nlds (2.15)
n=1

A

1
2\:+1-L $"2p/v E|X|2p ds

vtl v 2p
2 V_szlxl < w,

Using Markov's inequality, (2.7) and (2.10) - (2.15) we have, for any ¢ > 0,

J _1 3
22(5) - ni:l PL "nl/P k§1 an" > el

In

s —1 g1 =z,)
= ——— E( bIVA )
n=1 (Enllp)\) k=1 Pk

oo C ( n r\S
x ——— E = ||Z
= a1 (snllp)\) kk=1 I nk" )
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A
|

™

™M

r
™ C s = -t-m(= - 2)
+ = v} = n P
n=1 P t=2 QpseeesGQp3Tyseeesty
r
cc s (t) o -t-m(= - 2)
="[=, +C, = =n P 1,
€ t=2 ql,...,qm,rl,...,r n=1
where Z(t) means that the sum is extended over all m-tuples (ql,...,qm) and g-tuples
(rl,...,r ) with Conditions (2.7) and (2.8) such that m+ ¢ = t. Since the number of

terms in each of )_.“( 2 is finite and the exponent of n is less than -1, for every € >0,

we have Zz(e) < o, Thus, we have proved that

1 n
[=—— = z .|| >0 completely (n > ).
l n1/p k=1 Nk

In order to prove (2.2), we need to establish

-
Mo

HEY [| < . (2.16)

To achieve this goal, we will proceed as follows. By (2.1),

Y =X_1

X, -X I .
k  “nk 1/
" L%yl >0 P

Since EX , = 0, hence
nk

1 Yoyl < B(lxy 0 T ).
nk nk [ "Xnk" > nl/P ]

Thus, using Lemma 2,

;:‘ E("X | T )
= N ™= R o P NUSE

- = 1o = aMPerx | > al/P] +f1/ PLIX Il >t 1de)
P
n

00

e ).
Zl (n PCIX| >n™"F ] +—=—— 1/p fl/pP[lxl > t]dt

|/\

; 1/
Letting t = n P s and applying Lemma 1, we can conclude that
Ty =aPLxP>nl + = an[IX[ > nl/P 5 74s
n=1 n=1 1

2 ® = -
52E|X|p+f Zlels 1X|p>n]ds
1 n=
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(K

2E|X|29+f s2P g[x| %P ds
1

4p-1 2
zp1 EIXIT <o

proving (2.2) through (2.16), and thereby completing the proof of Theorem 4. /)

+
Zpta < o, for some a > 0, then there exists a r.v. X such

Note that if sup E”Xnk Il

that {Xnk} are uniformly bounded by X and EIXIZp < o, Therefore, Corollary 5 follows.

COROLLARY 5. Let E be a type p+ 8 separable Banach space for 1< p<2 and § >0.

If sup E|X “2p+a < » for some a > 0, then
nk nk

1 n
=5 =X -+ 0 completely.
n1/p k=1 nk“

For type 1 + & spaces, Taylor [7] obtained

o0

a1 3ok Xk O completely (2.17)
where {Xnk} is uniformly bounded by X with E|X|l+1/r < » and {ank} are Toeplitz weights
with max lankl =0(n""). 1In the special case of uniform weights a, = %, 1 <k < n, then

r = 1 and Theorem 4 can be thought of as an extension of this result. Extension of
Theorem 4 to infinite arrays and general weights {ank} are possible but the detailed
verification of their proofs are not included here. However, it will be shown next
that the moment condition EIXIZP < = cannot be reduced in Theorem 4. In particular,
for an array {Xnk} of i.i.d. random elements in a type p + 8 space with EX11 =0, it will

be shown that the SLLN holds if and only if E||X11|| P ¢ o,

THEOREM 6. Let {Xnk} be an array of i.i.d. random elements in a type p + § space,
1<p<2and §>0, with EX| = 0. Then E[|X ,[|?® < = if and only if
1 n

. .1
nl/p Zieg X 7 0 completely (2.18)

PROOF: From Theorem 4, we know that E ||X11|| Lo P implies (2.18) since the array
{Xnk} is uniformly bounded by ||X11|| .

Now, assume that (2.18) holds. Since {Xnk} are i.i.d., for every n and €>0
Oty = xll>e1 =prldz Ex 0> el
P —_—— = X > € =P —-—— =X >e].
o1/P k=1 kK o1/p g=1 nk
By (2.18), for every € > 0,

o 1 n
SPL|l=— = X I/l > <o, (2.19)
z "nl/p o Tk

1 n
=X, >0 a.s..

which says —4/—
nl/p k=1 kk

As a consequence,
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1/p n-1
1 1 a (n-l 1 )
——— X = — = -l — = = X -+ 0 a.s..
n1/p nn nl/p k=l Xk n n-1 k=1 kk
Let € = 1. It follows from Lemma ! (with r = 1) and the Borel-Cantelli lemma that

E|lX, 1P <1+ 2 =l I, IP > n1

00
1
=1+2 SPL4—X || >1] <.
nf:-:l [an/P nn“ ]
Hence,
nPL|x,I®>n] ~o. (2.20)
By (2.18),
n
POl = X | <ntP] 1. (2.21)
k=1 nk

Therefore, from (2.20) and (2.21) there exists N such that if n > N then

1

P - 1
nP[||X11|| >nl] <7 and P["kfl X,

k||p <nl >3 (2.22)

Next, define the events

1/p 1/p

n 1/p
A =1L max ||X <2n P, X >2n"'F, and || = X .|| <n ]
™ T o e 2% ) XN

i$k

(k=1,2, «c.,n:n=1, 2, ...).

1/
Clearly, (A, k | >n P

n
1, 2,7 ..., n} are disjoint subsets of the event [ II ZXnk|
k=1

for eachn =1, 2, ... . A familiar reasoning yields that

11 -
oL "n_ll_p ) Kell 711 2 kel P

k-1 / n 1/
n 1/p 2n1/P =X .|l <n'P1
- Z ROl > 2 P1 R Dl s 2P0z X
ifk
2 2 /P (pr ) % % <nl/P1 2L O, Il > 201?11)
zkflp[nxnk" > 4n 4o1 ni i=1 ni

ifk
)

n-1 1/ 1/p
él” lx,, 11> 2n1/p](P[ I'Z %l < oDYPY e Ly I > 2017 ).

v

Hence, by (2.22), for n > N,

1 a 1 P, 9P 7.
PO B Kl 2 210 2 G mP LI IP > 2%

2p<m‘

Therefore, = nPL[ |lX11“p > 2Pn] < ». Thus, Lemma 1 yields E“Xn“ /11
n=1



814 R.L. TAYLOR and T.C. HU

CONCLUDING REMARKS.

1. It should be noted that the case p = 1 in Theorem 6 is obtainable in a type 1
space (cf: Theorem 4 of Hu, Moricz and Taylor [5]). In which case type 1 + § is not
needed.

2. For sequences of independent random elements which are uniformly bounded by a
random variable X with E|X|p < , (1.6) holding necessitates the space being of type
p + 8 (cf: Woycyznski [4] and Maurey and Pisier [8]). Thus, the necessity of type
p + § follows for Theorem 4.

3. Theorem 6 shows that Theorem 4 is the best possible moment condition when no
conditions on possible relations between the rows of the array are assumed.

4. In [4) it is mentioned that n-l/p§::=l Xk > 0 a.s. for i.i.d. random elements
{X } with EX, = 0 and E"Xlup < = apparently is equivalent to the space being of type
p. Thus, it is interesting to conjecture whether Theorem 6 remains valid for only
type p spaces 1 <p<2. Certainly, the "if part" is true for type p spaces, and Remark

1 indicates that it is true p = 1.
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