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Abstract. We show that a recent cluster set theorem of Rung is sharp in a

certain sense. This is accomplished through the construction of an

interpolating sequence whose limit set Is c]osed, totally disconnected and

porous. The results also generalize some of Dolzenko’s cluster set theorems.
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1. INTERPOLATING SEQUENCES. We begin by considering a closed totally

disconnected set P on the boundary 3a of the unit disc a in the complex

plane. Thus =3a-P is the union of countably many disjoint arcs. Our first

objective is to construct interpolating sequences on certain curves in the

unit dlsc a whose llmlt points are all the points of P. In a speclal case

Dolzenko [1] used this construction apparently not realizing that he was

dealing wlth Interpolating sequences. We wish to define an approach to a

point z a inside a reasonably nice subdomain of a. Let h(t) be a

real-valued function defined for -1 < t < 1. We require that

(1) h be continuous.

(ii) h(t)=h(-t).
(iii) h(O)=O, h(1)=1, h(t 1) _< h(t2), 0 _< t _< t 2 _< 1.

(iv) h(t) _< t.

(v) h"(t) > O, t O.

(l.l)

Such an h is said to be a convex approach function. This function h

determines a convex boundary domain (e,h) at z=eie as follows (See
Fig. I).

}(e,h) (re it :0 _< r _< 1-h(t-e): It-el _< I} (1.2)

For example h(t)=t defines the usual nontangential approach; h(t)=t
defines the horocyc]Ic approach and so on. The boundary of the domain
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E

consists of two h-curves Z+ and Z_ which meet at r=eiO and are defined

by

Z+(t,O,h} [1-h(t-)]e

Z_(t,O,hl

it 0 < t- <

it O<O-t <

(1.3)

The first curve in (1.3) Is called the right h-curve at and the second

curve in (1.3} is called the left h-curve at {See Fig. 1). Clearly these

curves are rotations of the corresponding curves at 1.

We construct an Interpolating sequence which has P as its limit set.

Recall that a sequence {Zn} is an interpolating sequence if, for each

bounded sequence of complex numbers {Wn }, there exists a function f in

such that f{Zn}=n for every n. We shall use the characterization of
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Garnett [2] for interpolating sequences. For a,b E A, set

a-bx(a,b)

the pseudohyp,rbolic distance o. A Tle equenc {zn} is interpolating if

and only if

(i) _li__m ((Zn,Zm) > O"
nm

There exists a constant A such that for any domain

{re iO’l--d _< r 1, Io-o01 _< d},

(1.4)

Z (1-1Znl) _< Ad.
zED

Such a domain D is shown in Fig. 1.

Recall that =6-P is the countable unlon of disjoint open arcs whlch
we denote by (rn,r*In oriented In the usual counterclockwise sense. e

denote the length of this arc by l(rn,r*}[n Flx such an arc (rn,r*)n e

no construct a sequence {Zk} on the right h-curve Z+ ending at n (e

could equally well define these sequences on the left h-burve or both. For
simplicity we put the only on the right h-curves}. Because any Z+
Intersects each circle tz;=r, 0 < r < 1, in at most one point it is enough
to define {Zk} by specifying lZk[. Thus let

Zol htllrn,r)l/16) 1-g

(1.5)

I-I Zkl 11-I z01 )/2k K/2k k 2 I.

tOk iOn
Consequently, if zk {Zk] e and rn=e then from (1.3} we see that

zk lies "over" the interval {rn,V} and is of the form

10kzk [l-h(ek-en)]e 0 < ek-e n < r/8, Zk > 1/2.

We note that

X (Zk,Zk+ _> X (I Zk[ ,I Zk+ll

and thus X(Zn,Zm) > 1/3, nm. To show (1.4)(ii), for a given domain D

let n be the least index such that zn e D. Note that

Z: (1-{ Zkl _< 2 (1-I Zkl :Z 1-I Znl )/ak 2(I-I Znl < 2d,

ZkD k=n k=n

hence the sequence (zk} is interpolating.

e want to construct a larger interpolating sequence by taking the union

*) in constructof all sequences at the points Vn" For each arc (Vn,Vn
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a sequent;e on Z_ it] exactly the same manner as above We claim tlat th-

(countal,le) nnJol, S, oI" these sequences is still an interpolating sequence

(Note that any rearrangement of an interpolating sequence is still

interpolating). e first sho that {1.4} is satisfied, beginning ith

(l.4)(i}.

We will show tlt if a,b E S, then

i(a,b) > 4--

The proof of the above inequality can be done in two steps. First, if a

and b lie on the sane h-curve then we have shown that i(a,b) > 1/3.

Second, if a,b lie on two different h-curves then we use the following

inequality (See [3], p.474) which is valid for any a,b e a

a,b la-b| x(a,b}

The right inequality iplies that if

then

10)x(a,b) > 4--

Thus we show that (1.9) is valid. Let zmn be an element of the sequence on

the h-curve ending at n and let zk be an eleaent of the sequence on the

h-curve ending at rj as shown in Fig. 1. Set arg zmn=em and arg Vn=ene ay assue arg n > arg rj. Then it is clear that

(1.7)

(1.8)

(1.9)

and
zn zk > ]zn] sln(O-en} (1.11)

Thus

sln(em-en) > (21r)(em-en)

-rjJzmn-zk Jzmn sin(Om-On)

1-1 zmnl

(1.12)

where we used (1.1), (1.6), (1.11) and (1.12). This proves that the sequence
S satisfies (1.4)(1).

For (1.4)(ii), let D be the domain specified there. e clat that

r. 1-1 al _< 5d. (1.13)
aesnD

The points of S that lie in D belong to curves that end at the

boundary of D except for at ost to curves which ight end outside D
(See Fig. 1). Partition the points of S D into to sets and B as

follows- zn A if and only if {r,r)

_
D , otherwise put Zn

m B.

Thus fro (1.1} and (1.5} e have
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If (znm _C B then m has at most two values, say Zl and 2 (See Fig.

1). Let z dent, re the first term of each sequence lying in D then
n

2 i 2 i
5[ E (l-izn ;1 < Z (1-1znil 0i=l zlEB

t=1

2 (-IZn.l) 4d.
i=1

where we used (1.5). Thus

Sl (]-Ial) < 5d,
a( D

which implies that S is an interpolating sequence.

2. POROSITY AND RIGHT h-ANGLES. In this section we add another restriction

on the set P C BA. We assume that P is porous. The notion of porosity was

introduced in 1967 by Dolzenko [1] and later used by Run [4] and Yoshida [5]
to generalize some of the cluster theory results. We note that in 1976

Zajicek [6] generalized the definition of porosity and proved a variety of

interesting properties of porous sets.

Let P C BA. For each eioe a, let (e,e,P) be the length of the

largest subarc of the arc (e i{o-e), e i(o+e)) which does not meet P. If

no such arc exists define W(O,z,P)=O. According to Dolzenko [1], P is

porous at e iO if

n(e,P) > o. (2.1)
90

A set P C 0A is porous if it is porous at each p P" P is o-porous if it

is the finite or countable union of porous sets. A porous set is nowhere

dense and thus a o-porous set is of the first Balre category.

We now define a right h-angle in A at =ei e A. For any positive

constant c, set hC(x)=h[],-c x c; Then hc is also a convex

approach function. For any constants 0 < a < b, define

RA(e,a,b,h) (rei#:l-ha(-O) < r < 1-hb(#-e), 0 < -e < a). (2.2)

The boundary curve of RA(0,a,b,h) defined by the left inequality will

be called the lower boundary curve of the right h-angle domain and the other

boundary curve is called the upper boundary curve (See Fig. 1). The left

h-angle domain at r, LA(O,a,b,h) is defined by replacing #-O by O-# in

(2.2) with upper and lower boundary curves defined by the same inequality. If

h(t)=t then this represents a typical Stolz angle domain.

If E a and if E # then the cluster set of a function f

along E will be denoted by C(f,E). Our final objective is to investigate

the sharpness of the following theorem of Rung [4].
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.T_h. e_ 9_ !" _m R, r,_ f b_e_ deflated .i._n tak_i(!g._.v_ol.q! in the exteded

_e ,_c_ep_ __f_o_E .4.2-p.ofous__s__t_ tot_’_a!.y_9_hoice of 0 < a b and c > O,

C{f,RA(O,a,b,h)) C(f,LA(O,a,b,h)) C{f,ll(o.hc))

We start hy introducing two well-known results d,e to Garnett (See Koosis

p.28]-282) and Kerr -l, aWSOlt [8].

Lemma (Garnett) If there is.a_n ,/ > 0 such that (an,am > .9, for-

n, and if Z (1--tan i2 _< Ad, where D j_tLy_ejL.b_Y_i_l=4_)_ and A is a
anqD

constant then

inf y[ X(an,am) >_ 6,
n=l

where de.e!Ld_d__on_!!y__q_n and A.

Lemma 2 (Kerr-Lawson). Let B(z) be the Blaschke function whose zeros

aFe given by t.he. sequenc {an}. qp_pose that

inf [ X(an,am) > O.
n=l
n

Then given a number 60 > 0 there exists a number > 0 which depends only

o_j 6 an___d 60 such that the set {z.lB(z)] < } is contained in the unioa

of disjoint pseudohype[bolic discs N{an,50) wit_____h 1-center an and

I-radius 0"
Theorem 1. Le___t P be a closed totally disconnected porous subset of aa

and let h be a convex approach function. Then there exists a Blaschke

function B{z) with the following properties"

(i) B(z) is defined and analytic in

(ii) There exists an > 0 such that for each e

li IB(z)l Z a_s i,e, with z Rh(,,,h)"
(iii) For each e ifl e P, there exists either a RA(fl,a,b,R) or a

LA(fl,a,b,h) which contain infinitely...many zeros of B(z). (Th____e

choice of a and b vary with e ifl.)

Proof. Let B(z) be the infinite Blaschke product

n:l an l-anZj’
Z qA,

where {an} is any arrangement of the interpolating sequence S defined in
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section relative to the set P, Since B(z) is a BJas’hke product then

If) follows.

We now prove (li). If r=ei E a-P then (li) is obvious. If E P

then we first show that (ii) holds for the case when r=ei is an isolate(|

point of P. In this circumstance r is the initla] endpoint of an arc

(r,r*) contained in a-P. Using the results of Rung [4, p.204] and

Satyanaraya and Weiss [9, p.65] we find that the pseudohyperbo]]c dstance

near between the boundarles of the rlght h-angle domain (2.2) is at least

]b-a/2b+a[. Choosing a=I/2, b=3/2, the above dJsta,ce equals to I/4.

Thus for large n, each N(zn

Lemmas and 2 imply that there exists a positive number such that

r I/8). Thus we have lim IB(z)I > , for z e
IB(z)l >_ for z $ nlN(Zn z+--7

RA(,1/2,1/2,h). Recall that the points of (an lle on right h-curves ending at

isolated points of P an__d lying over the corresponding interval of )-P.

Consequently if r is a limit point of P then it Is easy to see that

U N(an,I/8) still does not meet this RA(/, ,h) so li___m {B(z){ _> , when

[I=I

Finally we prove (iii). If v=ei is an isolated point then clearly

1 3RA(,,,h) contains infinitely many zeros of B(z). Suppose =eI Is a

limit point of Isolated points Vn e P. We shall show that there exists an

integer m 2 such that the right h-angle domain RA(,l,m,h) contains

infinitely many points of S. Let be the union of the arcs

U (’n,’rn*)
n=l

and without loss of generality we take 8=0. By (2.1) there is a sequence

i8k eiOk ik eikof arcs (e and subarcs (e

_
Ba-P with

im k-ak
k-ok > O. (2.3)

l=k elkWe consider two cases according as to whether the subsequence (e
approach 1 from above or below. If both, then select a subsequence

tak elkapproaching from one side of 1. The case of (e approaching from
below is slightly more complicated and so we prove this case. Ne suppose to
the contrary that none of the left h angle domains LA(0,1,m,h), m=2,3,4
contain infinitely many points of S. For each m, there must be an infinite

ik iflksubsequence of the arcs {e ,e such that the corresponding Blaschke

sequence {zk)} on Z+(t,k,h) has its first term, zk), between the upper

boundary curve Z_(t,O,h) of LA(O,l,m,h) (defined in (2.2)} and a (See

Fig. 1}. To see this we first may assume that ak 1. Then note that

Z+(t,ak,h) and Z_(t,flk,h) meet at a point on the radius to the midpoint of

the arc (e e Because arg z k) < then z lles..... 18 2
between Z_(t,k,h and a and certainly between Z_(t,0,h), the lower
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boundary curve of LA(O,l,m,h), and BZ. But then Z(ok) must lie between the

upper boundary curve of LA(O,l,m,h), Z_(t,O,hm), and 5A else there woul(| be

infinitely many points of S inside LA(O,l,m,h). For each m choose

io ikm(e km e satisfying 0, m . According to (1.5) the first
km

(k m) inks
Blaschke sequence term z 0 associated with e has

(km) iqkm,eiflkm]z0 h(I (e

i@mThus the point win= Wml e

(k m)
radius as z 0 satisfies

on Z_(t,0,hm) which lies on the same

h(#m/m) lWm > I- lz0 h L--]--J

Now I.ml < Ok and so the properties of h-1

two Inequalities imply that

together with the above

#km-km (flkm-km 16

m

and this last expression tends to 0 as m . This contradicts (2.3).

When the intervals approach 1 from above the left angle at is replaced by

the corresponding right angle at and the proof proceeds along the same lines

as before. This completes the proof of the theorem.

Remark 1. Note that the constant appearing in property (ii) of Theorem

depends only on the three constants 50=1/8, v=l/4,, A=5 (which appear in

(1.7), (1.10) and (1.13) respectively) so that any Blaschke product whose
zeros are an interpolating sequence with these three constants satisfies
[B(z)[ > for a single constant .

A slight modification of a result of Dolzenko [1, p.8] gives the
following lemma.

Lemma 3. A set P_C

P: U P
n=l n’

where Pn are closed, .totally.dlsconnected and. porous sets can be written
the form

P=OFkk=l

where Fk ar-e dl.sJint., c!os.e.d,..and_porouff, Moreover if lq then each of
the sets Fp an___d Fq l___ies., en_t_irely on an arc compl.ementary to the other
with respect to
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Theorem 2. ._Gj_.v__e_J_,. c-[)._or___ous s(,t t) t)a which ,:an be w,-itte as

P= lPn where f’n are closed and porous. ’!l(c__e_.ELELE a bounde(]
n

holomorphic functipji f(z) i__qn with the following_Zo_o_perties-

(i) f(z) j continuous from within a at each point of

(ii) For each point P, there exist to h le tomal_.; .s at

such that the cluster- sets of along these a_n_gles are

different.

Proof. Consider the set P= Pn" Lemma 3 implies that there exist mutually
n

disjoint, closed, and porous sets Fk such that P= Fk. Furthermore Fk

lies entirely in an arc complementary to Fj for kj. Corresponding to each

set Fk we construct a function Bk(Z) (Bk(Z)=B(z), P:Fk) as we have done in

Theorem 1. Following Dolzenko we define f(z) as the infinite series

f(z) E a2k Bk(Z), z e a, (2.4)

where is the fixed constant appearing in Theorem 2. (Recall that this

value obtained in property (ii) of Theorem is independent of the

particular Bk(Z}; see Remark after Theorem 1. There is no loss of

generality in assuming 0 < < 1/2.) The series (2.4) is clearly

uniformly and absolutely convergent on compact subsets of a and so f(z) is

analytic and bounded on a. It is also clear that f(z) is continuous from
within a at each point C-P. This proves (i) of the theorem.

e now proceed to prove (it). Consider a fixed Fko and let

r=e ifl Fko. Then for kk0 the functions Bk(Z are continuous at the

point v. oreover we have for z a

2(ko, 2z 2k Bk(Z)l _< /(1- ).
k=ko+

/e now use Theorem 1, specifically property (il) of Bko(Z), property (2.5),

and the continuity of Bk{Z) at v for k < k0 to show the following

ko-1
limit. Set a E 2kBk(). Thus for z e RA(/i’,,,h) we find

k=l

li____ If(z)

2k0 ko-1
1i___ ] Bko(Z) Z 2k 2k
zr k=l

[Bk(Z)-Bk(r)] Z Bk(Z)
ko+l

>
2k0

k0

zrli--- ]Bko(Z)[ zr k=OZ e2k[Bk(Z)-Bk(r)]]

z-r k0

(2.6)
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2. ’{1-

Note that (2.6} implies that there are no points of C(f,RA{fl,-,1/2,h}} within

the disc if(z} a] /. r O. Oil the other hand property (ii]} of Theorem

that there exists a sequence (Zn} of zeros of Bko(Z contained 1 an h

Consequently using (2.5) and theangle domain at such that zn
continuity of the finite su we have

2k [Bk(Zn)-Bk(Z)] (2.7)

Now r ( r 0 because

rO-r > 0. (2.8)

Expressions 12.7) and 12.8) imply states that the cluster sot of f(z) along
the h angle domain containing the zeros of Bko(Z contains points in the

circle Iflzl-a] < rO. This completes the proof of (ii). If the sets Pn are

not assumed to be porous then the zeros of Bko(Z only accumulate at and

so the best that can be said is that the total cluster set of f at is

different from the cluster set of f along Rh(fl,1,1,h }.

Thus we have generalized Dolzenko’s results and have shown the sharpness

of Theorem R when the exceptional a-porous set ls the union of closed porous
sets.
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