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ABSTRACT. LetX be an abstract set and £ a lattice of subsets of X. To each lattice-regular measure
W, we associate two induced measures j and {1 on suitable lattices of the Wallman space Iz(£) and another
measure i’ on the space Ig(£). We will investigate the reflection of smoothness properties of p onto TN
and p' and try to set some new criterion for repleteness and measure repleteness.
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1. INTRODUCTION.

Let X be an abstract set and £ a lattice subsets of X. To each lattice regular measure p, we associate
following Bachman and Szeto [1] two induced measures i and j1 on suitable lattices of subsets of the
Wallman space Ir(£) of (X,L); we also associate to p a measure p’ on the space Ig(£) (see below for
definitions).

We extend the results of [1], by further investigation of the reflection of smoothness properties of
p onto pi, 1 and W' and investigate more closely the regularity properties of i and 1 (see in particular
theorems 4.7, 4.8, 4.9, 5.4, and 5.6). We are then in a position to get new criterion for repleteness and
measure repleteness etc. These general results are then applied to specific lattices in a topological space
to obtain some new and some old results pertaining to measure compactness, real compactness, a.-real
compactness, ets...in an entirely different manner.

We give in section 2, a brief review of the lattice notation and terminology relevant to the paper.
We will be consistent with the standard terminology as used, for example, in Alexandroff [2], Frolik [3],
Grassi [4], Nobeling [5], and Wallman [6].

We also give a brief review of the principal Theorems of [1] that we need in order to make the
paper reasonably self-contained.

2. DEFINITIONS AND NOTATIONS.
Let X be an abstract set, then £ is a lattice of subsets of X; if A,B C X thenA UB €LandANB €L.

Throughout this work we will always assume that & and X are in £. If A CX then we will denote the
complementof A byA'i.e.A’ =X —A. If L is a Lattice of subsets of X then L' is defined£’ = {L’ |L €L}.
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Lattice Terminology
DEFINITIONS 2.1. Let £ be a Lattice of subsets of X. We say that:

1- L isad-Lattice if it is closed under countable intersections.

2- Lisseparatingor T, if x,y EX;x =y then3IL €L such thatx EL and y & L.

3- LisHausdorffor T, ifx,y EX;x = y then 3A,B € L such thatx EA’,y EB'and A’ NB' = .

4- L is disjunctive if for x EX and L €L where x € L;34,B € £ such that x EA,L CB and
ANB =,

5- Lisregularif forx EX,L €L andx ¢€L;3A,B €L suchthatx EA',L CB'andA'NB’' = Q.

6-  Lisnormalif for A,B €L where A NB =@3A,B €L suchthatA CA’,B CB’' andA'NB’' = Q.

7- L is compact if X = U L', where L, € L then there exists a finite number of L, that cover X i.e.
X= CJ L', where €L.
i=1
8- L is countably compact if for X = U L’ then X = CJ L.
i1 i=l

9- LisLindelosfif X = UL, ,eEAthenX = UL’ where L, EL.
a iml

10- £ is countably paracompact if for every sequence {L,} in £ such thatL, | & there exists a sequence
{L,}inL suchthatL, CL', and L', | @.

11- £ is complemented if L €L thenL' € L.

12- L is complement generated if L EL

thenL = N L', where L, E L.
i=1
13- Lis T, if it isnormal and T;.

14-  LisT, if it is completely regular and 7.
2

A(L) = the algebra generated by L.

o(L) = the O-algebra generated by the L.

&(L) = the Lattice of countable intersections of sets of L.

(L) = the Lattice of arbitrary intersection of sets of L.

p(L) = the smallest class containing £ and closed under countable unions and intersections.

IfA €A(L) then A = .l‘Jl(L; —L'";) where the union is disjoint and L,,L; E£. If X is a topological space

we denote:
O = Lattice of open sets
F = Lattice of closed sets
Z = Lattice of zero sets of continuous functions
X = Lattice of compacts sets, with X adjoined
C = Lattice of clopen sets
Measure Terminology
Let £ be a lattice of subsets of X. M (L) will denote the set of finite valued bounded finitely additive
measures on A(£). Clearly since any measure in M (L) can be written as a difference of two non-negative
measures there is no loss of generality in assuming that the measures are non-negative, and we will assume
so throughout this paper.
DEFINITIONS 2.2.
1- A measure p € M(L) is said to be g-smooth on £ if for L, €L and L, | & then w(L,) — 0.

2- A measure p € M(L) is said to be o-smooth on A(2) if for A, €4(L),A, | & then w4,) — 0.
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3- A measure u EM(L) is said to be t-smooth on £ if for L,ELa E A,L, | D then p(L,) — 0.
4- A measure p €E M(L) is said to be L-regular if for any A € a(L),
WA) = sup w(L).
LcA
Lec
If £ is a lattice of subsets of X, then we will denote by:
Mp(£L) = the set of L-regular measures of M (L)
M (L) = the set of g-smooth measures on L of M(L)
M?°(L) = the set of G-smooth measures on A(£) of M(L)
MZR(L) = the set of regular measures of M°(£)
Mg(L) = the set of T-smooth measures on £ of Mk(L)
M (L) = the set of T-smooth measures on £ of M(L).
Clearly
MR(£) CMR(L) C My(L).
DEFINITION 2.3. If A €4(L) then , is the measure concentrated at x €X.
lifx€A
mid)= {0 ifx ¢A
I(£) is the subset of M(£) which consists of non-trivial zero-one measures which are finitely additive on
ac).
Ir(L) = the set of L-regular measures of I(L)
I(£) = the set of 0-smooth measures on £ of I(£)
I°(£) = the set of G-smooth measures on A(L) of I(L)
I(L) = the set of T-smooth measures on £ of I(£)
IR(L) = the set of £-regular measures of I°(£)
I3(L) = the set of L-regular measures of I,(£)
DEFINITION 2.4. If p € M(£) then we define the support of p to be:
S =N{L € LML) = WX)}.
Consequently if p €1(2),
Sw)=N{L €L£/u(L)=1}.
DEFINITION 2.5. If £ is a Lattice of subsets of X we say that £ is replete if for any p € Ig(£)
then S(u) = .
DEFINITION 2.6. Let £ be a lattice of subsets of X. We say that £ is measure replete if S(u) = &
for all p € MZ(L),u = 0.
Separation Terminology
Let £, and £, be two Lattices of subsets of X.
DEFINITION 2.7. We say that £, separates £, if for A; €L, and A, € £, and A;NA, = & then
there exists B, € L, such that A, CB; and B,NA, = 3.
DEFINITION 2.8. £, separates L, if for A,, B, € L, and A,NB, = & thenthere exists A;,B, €L,
such that A, CA,,B,CB,andA,NB,=.
DEFINITION 2.9. Let £, CL,. L, is £;-countably paracompact if given A, € £, with A, | O,
there exists B, € £, such thatA, CB’, and B’, | &.
DEFINITION 2.10. Let £, C £,. We say that £, is £,-countably bounded (£, is L, - cb) if for any



786 EL-BACHIR YALLAOUI

sequence {B, } of sets of £, with B, | J then there exists a sequence {A,} of sets of £, such that B, CA,
andA, | @. If £, C L, and p € M(L,) then the restriction of p on A(£,) will be denoted by v = p |4. .

REMARK 2.1. We now list a few known facts found in [1] which will enable us to characterize
some previously defined properties in a measure theoretic fashion.

1. £ is disjunctive if and only if p, E Ix(£),Vx EX.

2 L is regular if and only if for any p,, u, € I(£) such that p; < u, on £ we have S(u,) = S(12).
3. LisT,if and only if S(u) = & or a singleton for any p € I(£).

4 L is compact if and only if S(u) = & for any p € Ix(L).

3. LATTICE REGULAR MEASURES.

In this section, we shall consider lattice properties which are intimately related to measures on the
generated algebra. First we list a few properties that are easy to prove, but which are important and will
be used throughout the paper.

PROPOSITION 3.1. If u € Mi(£), then p € M (L) implies p € M°(L).
PROPOSITION 3.2. If p € MZ(L), then p (extended to o(£)) is d(£)-regular on o(L).

LEMMA 3.3. If £ is a complement generated lattice of subsets of X, then £ is c. p.

PROOF. Suppose L, €£. Then since £ is complement generated, L, = N L', where L',; €L
iml

(may assume L,; | ). Let
A= N L';whereA', €L’
l1sisn
lsjzn

so that
L CA', =L NL',...NL',NL',N...NL, and clearlyA’, | &.

THEOREM 3.4. If £ is complement generated, then p € M,(£’) implies p € MR(L).
PROOF. If LE€L, then L=NL’'; where L;€L (may assume L;} ). Clearly,
i=1

LNL'= ‘ﬂl(L'ﬂL’;)- @ and (L'NL",) | D. Since pEMg(L’), then w(L’'NL’;)—0 and hence
WL';) = W(L). Therefore, (L) = inf w(L';). Thence p € Mg(L).
LCL' €L

Now, we show that u € M,(£). Since £ is complement generated we know from lemma 3.3 that
L is countably paracompact. LetL, | &. Then, since £ is c. p., there exist L,ELsuchthatL, cr’, and
L', | @. Then, w(L,)sw(L’,)— 0 because p € M,(£"). Now, using Proposition 3.1 and the fact that
W € Mg(L), we have that p € Mg(£).

DEFINITION 3.5. n is stiongly o©-smooth on L if for L,E€L,L,| and
NL, €L, (NL,) = inf w(L,).

THEOREM 3.6. Let £ be a complement generated and normal lattice of subsets of X. If p is
strongly o-smooth on £, then p € Mg(£).

REMARK. If £ is a d-lattice, 0(£) Cs(£) and p EM(L) then w EMZ(L). This result follows
from Choquet’s theorem on capacities [7].

Next, we generalize a result of Gardner [8].

THEOREM 3.7. Let £ be a lattice of subsets of X and suppose that
1) REM/),
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2)  Lisregular and
3) ifL,ELandL, | then, u'( nLa) = inf p(L,,).

Then, p € Mz(L).

PROOF. Let L €£. Then by regularity, L = N L, where L CL,C £ (may assume L, |). Let
xEL = EL,"’L" t . Then, x €L, = a, for some ao.a Clearly, x ¢ L, and L = GD%L(,. Since L is
regular, there exist L., L, € £ such thatx €L’ L, CL’', and L',NL’, = &. Hence, L, CL',CLy=L,.
Now taking intersections with respect to a, we get,

L=0L,- Qi’a- Qﬁu

Therefore w(L) = u'(ﬂLa) - pf(ﬂl', ’a) - u'( ﬂl:a) = inf W(Ly) = inf(L',) = inf(L,). By the argument
used in Theorem 3.4, we find that @ € Mp(£). But, since p € M (L) then u € MR(L). Now, letL, | .
Then u’(ﬁLa) = inf(L,) = 0. Hence, p € M3(L).

We make use of the following extension theorem a proof of which can be found in [9].

THEOREM 3.8. Let £, and £, be two lattices of subsets of X such that £, CL,. Then any
W € Mi(L,) can be extended to v € Mg(£,) and the extension is unique if £, separates L,. If we further
assume that £, is o(£,)-cb and £, is a d-lattice then any p € MZ(£,) can be extended to v € Mg(L,).

COROLLARY 3.9. Let£,CL, IfL,is L, c.p. or L, c.b., then any p € Mg(£,) can be extended

to v € Mg(L,).
COROLLARY 3.10. If X a topological c.b. space, then every pu € Mg(£,) can be extended to

v EMR(L,).
LEMMA 3.11. If£, C Ly, £, is c.p. and £, separates L, then L, is £, c.p.

COROLLARY 3.12. If X is a coutably paracompact and normal space, then every p € Mg(2)

extends to v € Mg(¥) and the extension is unique.
PROOF. Let £, =2 and L, =¥. Then £, is £,-countably bounded, £, separates £, and £, is a

d-lattice. Now use the previous Theorem 3.8. This result is due to Marik [10].

Next, we have a restriction theorem, which although generally known, we prove for the reader’s
convenience.

THEOREM 3.13. Let £, and £, be two lattices of subsets X such that £; C£,. Suppose L,

semi-separates L, and v € Mg(L,). Then p = |3 € Mp(L,).
PROOF. The proef of this Theorem is well known and will be omitted.
4. SPACES AND MEASURES ASSOCIATED WITH LATTICE REGULAR MEASURES.

‘We will briefly review the fundamental properties of this Wallman space associated with a regular
lattice measure W, and then associate with a regular lattice measure p, two measures  and ﬁ. on certain
algebras in the Wallman space (see [3]). We then investigate how properties of p reflect to those of fand
i, and conversely, and then give a variety of applications of these results.

Let X be an abstract set and £ a disjunctive lattice of subsets of X such that &J and X are in L. For
any A in A(L), defined to be W(A) = {p EL(L):w(A) = 1}. IfA,B €.4(L) then
1) WEAUB)=WA)UW(B).

2) WANB)=WA)NW(B).
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3) W@A)=w@A).

4) W(A)C W(B) if and only if A CB.
5) W(A)=W(B)ifand only if A = B.
6) Wa)]=a[W(L)]

Let W(£)={W(L),L €}. Then W(L) is a compact lattice of Iy(£), and I(£) with TW(L) as the
topology of closed sets is a compact T, space (the Wallman space) associated with the pair X,£. Itis a
T,-space if and only if £ is normal.

For p € M(c) we define j1 on A(W(£)) by: (W(A))=w(A) where A €a(£). Then p € M(W(L)),
and i € Mx(W(L)) if and only if i € Mg(L).

Finally, since tW(£) and W(£) are compact lattices, and W(£) separates tW(£), then phasa unique
extension to L € My(tW(£)) (see Theorem 3.4).

We note that by compactness [1 and |1 are in Mg(W(£)) and ME(tW(L)) respectively, where they are

certainly T-smooth and of course -smooth. fi can be extended to o(W(£)) where it is OW(L)-regular; while
1 can be extended to o(t(W(£))), the Borel sets of Iz(L), and is TW(L)-regular on it.

One is now concerned with how further properties of p reflect over to p and ji respectively. The
following are known to be true (see [1]) and we list them for the reader’s convenience.

THEOREM 4.1. Let £ be a separating and disjunctive lattice. Let u € Mg(£), then the following
statements are equivalent.
1. nEMZ(L).

2. I{L}€LL |and 6W(L;) CI4()-X then ﬁ[ F:ﬁ W(Li)] -0.

3. X{L}€ELL | and NW(L,) CIx(£) - IS(c) then ﬁ[rlw W(L,.)] -0.
4 W) = IR(L)).
5. RTRE)] = plE).
THEOREM 4.2. If L is separating, disjunctive, §, normal and countably paracompact; and u € M (L)
then the following statements are equivalent:
1. peEML).
2. WK)=0forall K CIy(£)-X and K € 2(tW(L)).

Note that Z € 2(tW(L)) = Z € o{W(L)].
THEOREM 4.3. Let £ be a separating and disjunctive lattice. If p € Mg(£) then the following

statements are equivalent:
1. pEML).

2. I{L} E€LL, } and NW(LY) CIx(£)-X then i T WLa)) - 0.

3. ) = wIR(L)-
THEOREM 4.4. If £ is a separating and disjunctive lattice of subsets of X then, R E MZ(L) if and

only [1 vanishes on every closed subset of Ig(£), contained in Ex(£)-X.
THEOREM 4.5. Let £ be a separating and disjunctive lattice of subsets of X and pu € Mg(L), then
the two statements are equivalent:

1.  peEMQ).

2 L) =K.
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THEOREM 4.6. Let £ be a separating, disjunctive and normal lattice of subsets of X. Let u € My(£)
then the two statements are equivalent:
1. n € Mz(L).
2. X isp -measureable and ' (X) = p(l(£)).

We now establish some further properties pertaining to the induced measures pand p. First we show

THEOREM 4.7. Let £ be a separating and disjunctive lattice, and p € Mg(£) then pis W(£) regular
on (tW(2))'.

PROOF. We know that W(£) and tW(L) are compact lattices and that W(£) separates TW(L). Since
1 € Mg(L) then o € Mg[W(£)]. Extend j1 to tTW(L) and the extension is

B € MTW(L)] = MSTeW(£)] = MA[W(£)] = MW (£)].
Let 0 € [tW(L)] then since i € Mz[tTW(£)] there exists F € tW(£),F C 0 and
|0) - (F)| <€;E>0.
Since F €tW(L),F = GQAW(LQ), L,€L. Also since FCO then FN0' =D i.e. Q W(L,)N0' =< by
compactness there must exist oy € A such that W(L )N 0’ = & thus 105' CW(Ly,)CO0"=0s0
[1(0) - p(W(Loo))| <€

i.e. g is W(£) regular on (tW(2))'.

THEOREM 4.8. Let u € Mi(£) then p” = L on tW(L).

PROOF. Since pu € Mi(£) and W(£) is compact then R E M[W(L)] = M [W(£)] and since W(£)

separates TW(£) and TW(L) is compact then i € M[tW/(£)] = Mz[tW(£)] furthermore j extends 1 to TW(L)
uniquely. Let F €tW(L) then

W) - infi1 WA, F C .GIA,. and A, EA[W(L)]

and since L € M[W(£)] then
WA,) = inf)[W(L')L, A, CW(L"),L,EL.
Thus F C G W(L’;) but since W(£) is compact then F C l“J1 W(L',)=W(L') where L € L and
i=1 i=

R (F)=infp[W(L"; F CW(L"YandL €£.
Now FCW(L')=FNW(L)=@ then since W(£) szparates tW(L)AL €L such that F C W(L) and
W(EYNW(L)=. Therefore W(L') C W(L) and hence *

W(F) = inf)[(W(L)): where F CW(L), L €

i.e. that ji” is regular on tW(£). On the other nand since TW(£) is & then
F = N W(L,) and ;1[ N W(La)] - inf ((W(ZL) = inf(W(L,)

where F C W(L,), L, € £. Therefore i” = 1 on TW(L).
THEOREM 4.9. Let £, and £, be two lattices of subsets of X such that £, C £, and L, separates
L, fvEMR(L) thenv=p onL',and v = on L', where p=v |, .
PROOF. Letv € Mg(L,) then since £, separates £, € Mg(L,). Since L, C £, then o(£;) C o(L,);
Let E C X then
vi(E) = sennf %)V(B )s peanf M)V(A) -ui(E)
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therefore, v’ s u’. Now on £,,v" =s u’. Suppose 3L, € £, such that v(L,) < u"(L,) then since
v EMZ(L,), v(L,) = infv(L',),L,CL',and [, E L,
then L,NL, = & and by separation 3L,,L, € £, such that L, CL,, CL', CL’, and therefore
v(L,) = igf WL,,) where L,CL,,

- igf V(L") where L, C L',

< l".(Lz)~
Ve>03L, €L, such that L,CL, and pL;)-€<v(L,)<p(l;) but since L,CL, then

w(L,) s W(L,) < V(L) + € which is a contradiction to our assumption. Therefore v = W onL,and thusv = g
onL',

This theorem is a generalization of the previous one in which we used the compactness of W(£) to
have a regular restriction of the measure. Also this theorem enables us to improve corollary 3.12 namely:

If X is coutably paracompact and normal then each measure p € M(Z) extends to a measure v € M(F)
which is Z-regular on 0.

THEOREM 4.10. Suppose £ is a separating and disjunctive lattice. Let x €X then {x} = r'i L,
1

ifand only if {x} = N W (L",).
1
PROOF.

1.  Suppose I?L', = {x} where L, € £. Consider r;'l W,(L,) inI3(c). Letp € r11 WL, =>pneEWLL',)
for all n = w(L',) = 1 for all n and since x = N L', and one can extend p to o(£) then p({x}) =1
i=1
therefore if A €4(L) and x EA => w(A) = 1 therefore

m,<ponL,p, EIL(L)ie p, =pandhence NW,(L,) = {x}.
1
2. If{u}= 5 0, in I3(£) where 0, are open then p € W,(L',) C 0, where L, € L. Therefore
1

{u}=NWiL',)= Wa( rl'\(L ',)) and hence NL', = &
1 1
thus
x € ﬁL'” =pu=p ie NL’, ={x}.
1 1

We now give some applications of the previous results.

THEOREM 4.11. Let £ be a lattice of subsets of X,L separating and disjunctive. Suppose for
every € Iy(£) - X there exists Z € z(tW(L)) such that pu EZ CIx(£) - X. Then £ is replete.

PROOF. Suppose £ is not replete i.e. X = Ig(£). Let p € Ig(£) - X then from the above condition

there exists Z € 2(tW(£)) such that pn EZ CIZ(£)-X but Z = N W(L,) where L, € L. Therefore
1
ReE ﬂl WyL,) CI{)-X

nE Wo[f;:lL’,] CL(L)-x

because
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wa(nL',) =NWL").
1 1

Therefore N L', = & because p € w,(NL',) which is a contradiction for

n=1
Wq( N L',,) CI3L)-Xie. Wo( N L’,,) NX=-g=-NL',
n=1 n-1 1

Therefore £ must be replete.
THEOREM 4.12. Let £ be a separating and disjunctive lattice of subsets of X. If £ is normal,
coutably paracompact and replete then for any p € I(£) - X; 3Z € Z(tW(£)) such that p EZ CIx(£) - X.
PROOF. Since £ is replete then IJL)=Ig(L)=X. Let pnEI(L)~X =Ix(£)-IR(L) then
3L, €L, | D such that

ne F} W(L,) C I(z)-X.

Now since £ is normal and countably paracompact then 34, € £ such that L, CA’, andA’, | & so
OW(L,)CNWA',)=Z ie.Z EZ[W(L)]and, nENW(L,) CZ CL(2)-X.

COROLLARY 4.13. Suppose L is separating, disjunctive, normal and countably paracompact.
Then £ is replete if and only if for all u € Ig(£) - X there exists Z € Z[tW(L)] such thatp EZ CIz(L) - X.
The proof is a simple combination of the two previous theorems.

THEOREM 4.14. Let £ be a separating and disjunctive lattice of subsets of X. L is replete if and
only if for each p € Iy(£) - X IB € of W(£)] such that p EB C (L) - X.

PROOF.

1. IfvEIYL)-X CI(L)-X then
3B €o[W(L)]suchthatvEB CI(L)-X.
Thenv(B) = 0 sincev € I(£) butv'({v}) = 1 and v € B which is a contradiction, and thus I{(£) = X.

2. Conversely if £ is replete, let @ € I(£) = X = Io(£) - I§(£) then p € Ig(£) — X. Therefore

3L, €L,L, | suchthatp€ N W(L,) CL(L)-X,B = N W(L,) EL(L)-X.
nel n=l

This theorem is somewhat more general than the previous corollary because we ask less from the
lattice £, however we get a set B € o W(£)] rather than a zero set z € Z(tW(L)).

EXAMPLES 4.15.

We are going to apply corollary (4.13) to special cases of lattices.

1. Let X beaT,space and L =2 then X is Z-replete if and only if Vp € X - X IZ a zero set of X
2

suchthatp EZ CRX - X.

2. Let X be a T,, countably paracompact space and L = ¥ then X is a-real compact if and only if
VpEwX -X3Z a zero set of wX such that pEZ CwX -X. Where wX is the Wallman
compactification of X.

3. Let X be a T space and £ = B (B is normal and countably paracompact and I(8) = I(B)) then X is
Borel-replete if and only if VpEIB)-X=Ix(B)~-X3Z a zero set of I(B) such that
pEZCIB)-X.

Let (Cl) be the following condition: If f;\ W(L,) C Iz(£) - X there exists a countable sequence {L,} such

that NW(L) C N W(L) CIx(z)-X.
a 1
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THEOREM 4.16. Suppose that £ is separating and disjunctive then £ is Lindeldf if and only if (CI)

holds.
PROOF.
1. Suppose £ is Lindeldf and let N W(L,) C Ix(£) - X where L, € £ then

XCUWL)=XCUWL')NX=UL',
a a a
but since £ is Lindelof then
XculLr',c LIJL",,- C LlJ(L’m.)

and therefore

NW(L,)C NW(L',) Cl(L)x, i.e. Cl holds.
a 1
2. Suppose (C1) holds and let X = N L', L, €X then
NW(L,) CIi(£)-X
a

using (C1 ) we get
NWEL,)C f;'i W(L,) CI(L)-X

SO
xc ;C.)l WL')=xC E)l W' )NX = iGlL'a,.
and since
.";”d cx
then
X=0UL',

i.e. £ is Lindel6f.

THEOREM 4.17. Suppose £ is separating, disjunctive, normal and countably paracompact then £
is Lindelof if and only if for any compact K CL(L)-X3Z a zero set, Z €z(tW(L)) such that
KCZCL(r)-X.

PROOF. Since £ is normal then [x(£) is T}, so if K is compact in Iz(L); K is closed and therefore

K=NW{IL)L,EL.

Now from the previous theorem we know that £ is Lindel6f if and only if (C1) holds so if
K=NWL)CIL(L)-X

there exists a countable set of L, such that
K=NW(L)C NW(L,)CL(£)-X
a i=1

but we know from previous work that if £ is normal and countably paracompact then there exists a zero

set Z such that

r}W(La,.) CZCL)-X
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SO
KCNW(IL,)CZ CIL)-X
1

so L is Lindeldf if and only if for each compact K € M(L) there exists a zero set Z € Z(t(W(£)) such that

KCZCR()-X.
EXAMPLES 4.18.
1. LetX beaT,, space and L = Z then L is Lindeldf if and only if for each compact K CIx(L)-X there
2

exists a zero set Z such that
KCZCBX-X,Z € 2(x(W(2)).
2. Let X be a 0-dim T, space and £ = C then £ is Lindeldf if and only if for each K C X — X there

exists a zero set Z such thatZ € Zz[tW(£)] and K CZ C B X - X.

3. X is a T space and L = B then B is Lindel6f if and only if for each compact K C I(B) - X there exists

Z €z[tW(B)]such that K CZ CI(B)-X.

Finally we give some further applications to measure-replete lattices.

THEOREM 4.19. Suppose L is separating and disjunctive. Let p € Mk(£) and suppose for each
F CIi(£)- X, F closed in Io(L); ' (F) = 0 then p € ME(L).

PROOF. We saw earlier work that " = 1 on TW(£). To show that p € M3(c) all we have to do is
show that p vanishes on each closed set F C I(£)-X. Since W(£) is compact then F = NW(L,) where
L, € L; mayassume L, |, F CtW(£) so W'(F) = a(F) but p'(F) =0 by hypothesis. Therefore i(F) =0
and hence p € Mg(£). .

THEOREM 4.20. Suppose £ is separating and disjunctive and for each F C Iy(£) - X, F closed in
Ix(£) there exists a set B € o[ W(£)] such that F C B C Iz(L) - X then MZ(L) = Mz(L).

PROOF. Let p € MZ(£). We have to show that u € Mz(£) and that can be achieved if we show
that p/’(F) = 0. Recall that if . € Mg(£) then . € M[W(£)] = Mi[W(£)] and pi can be extended to o[ W(£)]
where the extension is 0 — W(£) regular. From the condition we have that if F CIz(£)-X and F closed
in Ip(L); there exists a set B € o[ W(£)] such that F CB CIr(£)-X therefore, p'(F) < 1’(B), but since
1 E MZ(£) then k' (Ix(£)). Hence '(B) = 0 and thus ' (F) = 0 i.e. M3(L) = ME(L).

THEOREM 4.21. Suppose L is separating and disjunctive, then Mg(£) = Mgz(£) if and only if
W(F) = 0,u € MZ(L) for all F CI(£) - X, F closed in Ix(L).

PROOF.

1. Suppose Mg(L) = Mz(L) then
W(F) =0 for all F CI(£) - X, F closed in I(£)

but F = N W(L,) therefore p(F) = p'(F) = 0.

2. Suppose p EMZ(L). Let F CIx(L) - X, F closed in [z(£) then 0'(F)=i(F)=0so fi vanishes on
all closed sets of I(£) - X i.e. E MR(L).
THEOREM 4.22. Suppose £ is a separating and disjunctive lattice. Suppose that for each closed
setin Iz(£),F CIz(L) - X there exists a Baire set B such that F C B C I(£) - X then £ is measure replete,
PROOF. Let pEMg(L) and F CIi(£)-X,F closed in I(£) then 3B € o[W(L)] such that

F CB CI(L)-X then
B(F) = i(B) = fully(£) - X) = 0
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therefore i(F) = 0 so 1 vanishes on every closed set of Ip(£) - X i.e. p € Mi(L).
EXAMPLES 4.23.
1. Xis T;i; L =Z then
2

MR(z) = Mi(2) if and only if p'(F) = p(F) = 0
for every F C X - X and F closed in Bx and p € M3(Z).
2. If X is T;; L = B then Mg(B) = M(B) and
MgR(B) = Mz(B) if and only if p’(F) = p(F) = 0
for every F CI(B) - XF closed in I(B).
3. If X is a 0-dim T, space L = C then Mg(C) = M(C) and
M?(c) = M(C) if and only if p(F) = p’(F) = 0
for F CBpX — XF closed in ByX.
4. If X is a T, space and L = ¥ then
ME(F) = M§(¥) if and only if p'(F) =0
for all F CwX - X; F closed in wX.
5. IfXis ng and L = Z then Z is measure-compact if for each F C X - X and F is closed in fX, there

exists a Baire set B of fX such that F CB C X -X.

5. THE SPACE Ig(£):

DEFINITION 5.1. Let £ be a disjunctive lattice of subsets of X.
1) WIL)={peEREL)|WL)=1}1LEL
2)  W()={W()LeEL}
3)  W)={nERL)|pnA)=1}A €AL)

Wo(L) = W(L)NIR(L)
The following properties hold:

PROPOSITION 5.2. Let £ be a disjunctive lattice then for A,B € A(£)
1) W (AUB)=W,(A)UW,B)
2) W, ANB)=W/(A)NW,B)
3)  WA)=WAy
4) W, (A)CW,B)if andonly ifA CB
5) AW (0)]=WlaL)]
The proof is the same as for W(£) by simply using the properties of W(L£) and the fact that
W (A) = W(A)NI(L) and W (B) = W(B)NIg(L).

REMARK. It is not difficult to show that of W,(£)] = W [o(£)]. Also, for each p € M(£) we define
W' on A[W(£)] as follows:

W[W,(A)]=wA)where A €4(L)

W is defined and the map p — ' from M(£) to M(W,(£)) is onto. In addition, it can readily be checked
that,

THEOREM 5.3. Let £ be disjunctive then
1) pEM(L)if and only if ' € M[W,(L)]
2)  WEMg(L) if and only if p’ € M[W,(L)]
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3) nEM(L)if and only if p' E M [W ()]
4) pEML)if and only if W € MTW(L)]
5)  wEM(L)if and only if p' € MW, (L)]
We next consider properties of the lattice W,(£).
PROPOSITION 5.4. Let £ be a disjunctive lattice of subsets of X then:
1) W, (L) is disjunctive.
2) W,L)isT,.
3)  W,(L)is replete.

PROOF. The proof of this Theorem is known. Let (C2) be the following condition: For each
u E Ix(£) there exists at most one v € Ip(£) such that p<v on L.

THEOREM 5.5. Let £ be a separating and disjunctive lattice of subsets of X. Then (J3(£), TW,(£))
is T, if and only if (C2) holds.
PROOF.
1)  Suppose(Ig(£),TW(L))is Ty; then W (L) is To; if @’ € I[W,(£)}thenS(w') = Sor {v}, wherev € I3(L).
Since S(0') = {v ER(£)|p sy on L} = B or a singleton then (C2) holds.
2)  Suppose (C2) holdsand let ' € I[W,(£)]if S(W) = Sand v, v, ES(W)v, = vy thenu s v andpu = v,

on £ which is a contradiction to (C2) therefore S(u') = & or {v}. i.e. tW,(£) is T, Let p € My(L),
then ' € Mp(W,(£)) by theorem 5.1. We wish to investigate conditions under which p’ has further
smoothness properties. Recalling the notations of section 4 we have,

THEOREM 5.6. Let £ be a disjunctive lattice of subsets of X. If p € M(£) then the following

statements are equivalent:
L wWeEMW()]

2. If{L.} isanetin £ such that L, |, N W(L) C Ix(z) - I3(£) then a[ n W(La)] -0

3. WURE)) = alx(L))
PROOF.
1=>2. Suppose p' € Mz[W,(£)]and let {L,} be a net in £ such that L, | then W(L,) } and W,(L,) } then

ﬁ[ n W(Lg] - inf ((W(L,)) = lim fW(L,) = lim p(L,) = lim w[W,L,)]
but since W,(L,,) | and p’' € Mg[W_(£)] then
0= lim W[W,L ] 5 TWE).

2= 1. Let W(L,) | &,L, €L then
NW,L,) =S or [WELYNIL)] = B.

Therefore N W(L,) CIx(£) - IF(£) and using 2 we get,
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0= QW) | nwta)
2 = 3. Assume 2 is true then
RUIR(L)) = pelI(L) - IR()] + (IR (L))
S0
BIR(L)) = (' (I5(2)) if and only if pulI(£) - IS(£)] = 0.
Now
WIR(£) - I5(£)] = {(K),K EtW(L) and K C I - IF(£)}K € TW(L) then
K= NW(L,) CI(£)-Iz(c)
where we may assume W(L,) | then
)= i W) -0
and therefore
(Tx(£) - IR(£)) = 0.
3 => 2. Assume 3 is true and let
L,ec,L, | andNW(L,) Clx(£)-I5(L)
then
0<i{NWELY) <it0)- ) -0.

COROLLARY 5.7. If £ is a separating, disjunctive and replete lattice of subsets of X then
W € Mg[W(£)] implies p € Mz(£).

PROOF. Since £ is replete then X = Ig(£) then from the previous theorem we have

WIR(L)) = R (IR(L) = W (X)

i.e. p € Mz(£) from theorem (4.5).

COROLLARY 5.8. Let £ be separating and disjunctive. Suppose p' € Mg(W (L)) = p € Mz(L)
then £ is replete.

PROOF. Let p EI5(L) then since W (L) is replete p' € Ig[W,(£)] then by hypothesis p € Iz(£)

therefore Ig(£) = Ig(L) or L is replete.

If we combine the two corollaries we get the following:

THEOREM 5.9. Let £ be separating and disjunctive. Then L is replete if and only if
W EMR(W,(L)) => n E ME(L).

REMARK. Let p € Mi(£). We say that there is a one to one correspondence between Mg(£) and
M[W(£)], and we defined p on A[W(£)] such that for all A €A(L), {W(A)]=wA). Since
W,(£) = W(L)NIZ(L) we can restrict ju on A[W,(£)] and we call the restriciton W, defined as

Wl WA)] = W WA) NIR(L)] = fW(A)).
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W, is well defined and the restriction is a 1-1 correspondence since p'(I3(£)) = ﬁ(lR(L)) i.e. by thickness.

Hence p'q in Mg[W (£)] and p'y = ',
PROPOSITION 5.10. Let £ be a separating, disjunctive and normal lattice. Let A € Mg[tW(£)]
and ATIR(£)] = NlIx(£)] then A = 1, 0 € Mk(L) and p' € MY(W,(L)).
PROOF. Suppose
A E M(TW(L)) = MF(tW(L)) = MR(xW(L)) and N(IF(L)) = MIR(L)).

Restrict A to L EMg(W(L)). The restriction is unique because W(L) separates TW(L) and since
R (IR(£)) = p(IR(£)) then A = 1. A = p projects onto Ig(£) and is denoted by v. W' € MZ(W,(£)) and has a
unique extension to Mz(tW,(£)) and of course v is that extension.

V(Q WO(LQ)) - &(Q W(La)) = inf W(W(L,)) = inf W' (W,(L,)).

THEOREM 5.11. Suppose L is a separating, disjunctive and normal lattice of subsets of X, then

the following statements are equivalent:
L weMmw, )
2. I(£)is p’-measurable and p(I5(£)) = p(IR(L)).
PROOF,
1=>2. Suppose 1 holds then p’ € Mz[W,(£)] and then using theorem 5.4 we get i (IF(£)) = i(lr(£)). We

saw in earlier work that p projects on Ig(£) where the projection is v € ME[tW,(£)] and is the unique
extension of p' € Mg[W,(£)]). Now since p' € Mz[W,(L)] there exists a compact set K € W,(£) such that
wW.(Ig(£)-K) <eforany e > 0 so

WlR(L) - K) + W (K) = W(IR(L)) = pllR(L))

w(K)=infw'(A), K CA and A € o[W,(£)]
=infv(4), K CA andA € o{W,()]
= v(K).

Therefore u'"(K) = v(K). K €tW,(£), since IZ(£) is T, because £ is normal; then K = N W,(L,),L €L
and may assume L, | so )
v(K) = infv[W,(L)] = inf v(A) = n(K).
A€alW )
Therefore v(K) = n”(K) and
VIR(L) - K] = W JIR(£) - K] =V[[o(£)-K] <
where K is compact in Ig(£) and I,(£) because it is a closed subset of a T, space. So Ix(£)-K is open,

Ix(L) ~ K CI(£) - I(c) and p{fR(£) - K) < € . Therefore ' (Iz(£) - I3(£)) = 0 . SoI(L) is p’-measurable
and

RUR(L)) = pUIR(£))-
2 => 1. Suppose 2 holds. Since p' € Mg[W,(£)] then
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1 (IR(2)) = sup{(K);K ETW,(£) and K C (L)}
then there exists a compact set KETIW(L),KCI3(£) and K-W, (L) such that
WK)> ' (I3L)-EVE>O. LetK' =I(£)-K then
V(K') = @' o(K') = @' (K) = v(K) but
V(K) = V(IRL)NK) = WK) > ' (IF(L)) - & > pIp(£)) - €
so
Wo(K') = (Ig(L)-K) <€
i.e. W EMg(L).
THEOREM 5.12. Let L be a separating, disjunctive, normal and replete lattice then
W € Mg[W(£)] if and only if p € Mg(L).
PROOF.
1. Letw €Mi[W,(£)] then since L is replete we have that X = I3(£) and X is i"-measurable and

R UR(L)) = WIR(L)) = m(X)
then by theorem 4.6 we get that p € Mi(£L).
2. Conversely suppose p € Mz(L) then from theorem 4.6 we get that
R (X) = W (£))

and X is i"-measureable but X C I5(£) C Iz(£) therefore 1 (Ig(£)) = p(z(£)), then since L is replete
X =I3(£) so 0’ (X) = p’(IS(L)) = p(Ix(£)) then from theorem 5.11 p' € My[W,(£)].
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