THE CAUCHY PROBLEM OF THE ONE DIMENSIONAL SCHRÖDINGER EQUATION WITH NON-LOCAL POTENTIALS

I.E. KOUGIAS

Department of Mathematics University of Patras, Patras, Greece

(Received July 16, 1992)

ABSTRACT. For a large class of operators A, not necessarily local, it is proved that the Cauchy problem of the Schrödinger equation:

$$- \frac{d^2 f(z)}{dz^2} + Af(z) = s^2 f(z), \quad f(0) = 0, \quad f'(0) = 1$$

possesses a unique solution in the Hilbert $(H_2(\Delta))$ and Banach $(H_1(\Delta))$ spaces of analytic functions in the unit disc $\Delta = \{z: |z| < 1\}$.

KEY WORDS AND PHRASES. Cauchy problem, Schrödinger equation, Hardy-Lebesque spaces.

1991 AMS SUBJECT CLASSIFICATION CODES. 34A20, 34A15, 47B37.

1. INTRODUCTION.

Let $C[0,\pi]$ be the Banach space of continuous functions on the interval $[0,\pi]$. The norm of an element f(x) of that space is defined by

$$||f|| = \sup_{x \in [0,\pi]} |f(x)|.$$

Assume that A is a linear bounded operator on $[0,\pi]$ not necessarily local, i.e., A need not be the multiplication operator by a continuous function a(x). It may, for instance, be an integral operator on $C[0,\pi]$. It is known that the Schrödinger equation:

$$-\frac{d^2f}{dx^2} + Af(x) = s^2 f(x)$$
(1.1)

possesses a unique solution in $C[0,\pi]$ satisfying the initial conditions:

$$f(0) = 0, \qquad f'(0) = 1$$
 (1.2)

provided that $|s| > c_o ||A||, c_o = \max_{\substack{o < \alpha < 1}} \frac{1 - \cos\alpha\pi}{\alpha} [1].$

Also it is known [1] that the solution is bounded for every s in the region:

$$G = \{s: |s| \ge \alpha c_0 \parallel A \parallel, \quad \alpha > 1\}$$

The purpose of this paper is to prove similar results for the initial valued problem [(1.1),(1.2)] in the Hardy spaces $H_2(\Delta)$ and $H_1(\Delta)$. These are the spaces of analytic functions: $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in the unit disk $\Delta = \{z: |z| < 1\}$, which satisfy respectively the conditions: $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty \text{ and } \sum_{n=1}^{\infty} |\alpha_n| < \infty \text{ or equivalently the conditions:}$

$$\sup_{o < r < 1} \int_{0}^{2\pi} |f(re^{i\vartheta})|^2 d\vartheta < \infty \text{ and } \sup_{o < r < 1} \int_{0}^{2\pi} |f(re^{i\vartheta})| d\vartheta < \infty,$$

for $re^{i\vartheta} = z$.

2. REDUCTION OF THE SCHRÖDINGER EQUATION.

$$-\frac{d^2f(z)}{dz^2} + Af(z) = s^2 f(z)$$
(2.1)

in $H_2(\Delta)(H_1(\Delta))$ to an abstract operator form. (We follow the method prescribed in [2] and [3]).

Let *H* denote an abstract separable Hilbert space with an orthogonal basis $\{e_n\}_1^\infty$ and let *V* be the unilateral shift operator on *H*, i.e.,

$$V: Ve_n = e_{n+1}, n = 1, 2, \cdots, V^*: V^*e_n = e_{n-1}, n \neq 1, V^*e_1 = 0$$

is the adjoint operator of V.

Every function $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in $H_2(\Delta)$ can be represented as follows: $f(z) = (f_z, f)$, where (\cdot, \cdot) means the scalar product in H and $f_z = \sum_{n=1}^{\infty} z^{n-1} e_n$, |z| < 1 are the eigenelements of V^* .

The space H_1 is the Banach space which consists of those elements $f = \sum_{n=1}^{\infty} \overline{\alpha}_n e_n$, in H, (overbar means complex conjugate), that satisfy the condition $\sum_{n=1}^{\infty} |(f, e_n)| < \infty$. This space under the isomorphism $f(z) = (f_z, f)$ is isomorphic to $H_1(\Delta)$.

The norm in H_1 is denoted by: $||f||_1 = \sum_{n=1}^{\infty} |(f,e_n)|$. To any open set or dense linear manifold E in $H(H_1)$ corresponds an open set or dense linear manifold \overline{E} in $H_2(\Delta)(H_1(\Delta))$. Suppose that A is a mapping in $H_2(\Delta)(H_1(\Delta))$ and \overline{A} is a mapping in $H(H_1)$. Then if the relation $Af(z) = (f_z, \overline{A}f)$ holds $\forall f \in E$, we call \overline{A} the abstract form of A. For example if A is the differential operator $\frac{d^2}{dz^2}$ in $H_2(\Delta)$, i.e., $Af(z) = \frac{d^2 f(z)}{dz^2}$, then $\overline{A} = (C_o V^*)^2 = C_o(C_o + I)V^{*2}$, where C_o is the diagonal operator $C_o e_n = ne_n, n = 1, 2, \cdots$ (see for details in [2] and [3]).

Every bounded operator on $H_2(\Delta)(H)$ is defined on $H_1(\Delta)(H_1)$ and maps, in general, elements of $H_1(\Delta)(H_1)$ into $H_2(\Delta)(H)$.

The following properties follow easily:

(i) H_1 is invariant under the operators V, V^* and $||V||_1 = ||V^*||_1 = 1$, where $||A||_1$ means the norm of an operator on H_1 .

(ii) H_1 is invariant under every bounded diagonal operator $De_n = d_n e_n, n = 1, 2, \cdots$ on H and $||D||_1 = ||D|| = \sup_{n \in I} |d_n|$.

(iii) For every element $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1}$ in $H_1(\Delta)$ the uniform limit of the sequence $\sum_{i=1}^{n} \overline{\alpha}_i V^{i-1}$, i.e., $\lim_{n\to\infty} \sum_{i=1}^{n} \overline{\alpha}_i V^{i-1}$ exists and defines a bounded operator $f^*(V) = \overline{\alpha}_1 + \overline{\alpha}_2 V + \overline{\alpha}_3 V^2 + \cdots$ on H_1 . Moreover $||f^*(V)||_1 = ||f||_1$.

(iv) The null space of V^{*k} in *H* belongs to H_1 .

Now we write equation (2.1) in the form:

$$\frac{d^2f}{dz^2} + s^2 f(z) - Af(z) = 0.$$
(2.2)

The abstract form of equation (2.2) is the following:

$$((C_o V^*)^2 - \overline{A}_1)f = 0 \tag{2.3}$$

$$(V^{*2} - B_1 \overline{A}_1)f = 0, (2.4)$$

or

where $\overline{A}_1 = \overline{A} - s^2 I$ and B_1 is the diagonal operator on $H: B_1 e_n = \frac{1}{n(n+1)} e_n$, $n = 1, 2, \cdots$.

This means that equation (2.2) has a solution in $H_2(\Delta)(H_1(\Delta))$ satisfying the conditions f(0) = 0, f'(0) = 1 iff equation (2.4) has a solution in $H(H_1)$ satisfying the conditions:

$$(f, e_1) = 0,$$
 $(f, e_2) = 1.$ (2.5)

Note that H_1 is imbedded in H in the sense that f in H_1 implies f in H and $||f|| \le ||f||_1$. SOLUTION OF THE CAUCHY PROBLEM [(2.4), (2.5)] IN H AND H₁.

THEOREM 1. The equation $(V^* - B_1 \overline{A}_1)f = 0$ has at least one solution in *H* which satisfies the condition $(f, e_1) = 0$.

PROOF. Set f = Vg, then $(Vg, \epsilon_1) = (g, V^*e_1) = (g, 0) = 0$. Also $(V^{*2} - B_1\overline{A}_1)(Vg) = 0$ implies $V^*(I - VB_1\overline{A}_1V)g = 0$.

Thus
$$(I - VB_1\overline{A}_1V)g = ce_1$$
.

3.

Now since B_1 is compact, V and \overline{A} bounded the operator $VB_1\overline{A}_1V$ is compact and the Fredholm alternative implies that either: $(I - VB_1\overline{A}_1V)g = 0$ for $g \neq 0$ or $(I - VB_1\overline{A}_1V)^{-1}$ exists and it is bounded.

In the first case $g \neq 0$ is a solution of equation (2.4). In the second case we have $g = c(I - VB_1\overline{A}_1V)^{-1}e_1 \neq 0$ for $c \neq 0$. \Box

Theorem 1 implies that the Schrödinger equation (2.1) has at least one solution in $H_2(\Delta)$ which satisfies the condition f(0) = 0, for every real or complex s, and every bounded linear operator A on $H_2(\Delta)$.

THEOREM 2. If $\|\bar{A}_1\| < 2$, then equation (2.4) has a unique solution in *H* which satisfies the conditions (2.5).

PROOF. Set $f = e_2 + V^2 g$, then obviously $(f, e_1) = 0$ and $(f, e_2) = 1$. Also from equation (2.4) we get: $-B_1 \overline{A}_1 e_2 + Ig - B_1 \overline{A}_1 V^2 g = 0$ which implies that

$$(I - B_1 \overline{A}_1 V^2)g = B_1 \overline{A}_1 e_2. \tag{3.1}$$

(i) If $\overline{A}_1 e_2 = 0$, then e_2 is the unique solution in *H* which satisfies the initial conditions, since $(I - B_1 \overline{A}_1 V^2)g = 0$ implies that g = 0.

(ii) If $\overline{A}_1 e_2 \neq 0$, then from equation (3.1) since $||B_1|| = \frac{1}{2}$ and $||\overline{A}|| < 2$, we easily get that $||B_1\overline{A}_1V^2|| < 1$. Hence the inverse of $(I - B_1\overline{A}_1V^2)$ exists and it is bounded on *H*. Therefore $g = (I - B_1\overline{A}_1V^2)^{-1}B_1\overline{A}_1e_2$, $g \neq 0$ and g is uniquely defined. \Box

There has been defined, in [3], a class of bounded operators on $H(H_1)$ which have the socalled "k-invariant property." Abstract forms of local potentials of the form: Af(z) = a(z)f(z) are included in this class.

The importance of such operators is due to the fact that if \overline{A}_1 is k-invariant on the space H_2 , then the operator $A_2 = I - V^2 B_1 \overline{A}_1$ leaves invariant the space H_1 and when restricted on it, has a bounded inverse (see [3], Theorem 3.2).

DEFINITION. A bounded operator \overline{A} on H is called k-invariant iff its adjoint \overline{A}^* has the property: $\overline{A}^* e_i \in M_{i+k-1}$, where M_{i+k-1} is the subspace spanned by $\{e_1, e_2, \cdots e_{i+k-1}\}$, $i = 1, 2, \cdots$.

Such operators are the diagonal operators in the basis $\{e_n\}_{1}^{\infty}$, analytic functions of the shift V, algebraic combinations of the above and polynomial functions of V^* of degree less than k.

In accordance with the above definition a bounded operator A on $H_2(\Delta)(H_1(\Delta)))$ is called 2invariant iff its adjoint A^* has the property: $A^*z^i \in \{1, z, z^2, \dots, z^i\}$, where $\{1, z, z^2, \dots, z^i\}$, is the subspace of $H_2(\Delta)(H_1(\Delta))$ spanned by the elements $1, z, z^2, \dots, z^i$. For example the operator:

$$A = Af(z) = af(z) + zf(z) + \frac{1}{2}(f(z) - f(0))$$

is a 2-invariant self adjoint operator on $H_2(\Delta)$.

THEOREM 3. The Cauchy problem:

$$-\frac{d^2f(z)}{dz^2} + Af(z) = s^2 f(z)$$
(3.2)

$$f(0) = 0, \quad f'(0) = 1,$$
 (3.3)

where A is any 2-invariant operator on $H_1(\Delta)$, has a unique solution in $H_1(\Delta)$ for every $s \in \mathbb{C}$.

This solution is bounded for every z in the unit disc.

PROOF. The abstract form of (3.2) is:

$$(V^{*2} - B_1 \overline{A} + s^2 B_1)f = 0 \tag{3.4}$$

and the conditions (3.3) are equivalent to

$$(f, e_1) = 0,$$
 $(f, e_2) = 1.$ (3.5)

Setting $f = e_2 + V^2 g$ which obviously satisfies the initial conditions (3.5) we get:

$$(I - B_1(\overline{A} - s^2)V^2)g = B_1(\overline{A} - s^2)e_2.$$
(3.6)

The operators V, V^* and B_1 leave the space H_1 invariant. The same holds for the operator $(I - B_1(\overline{A} - s^2)V^2)$, which restricted on H_1 has a bounded inverse (see [3], Theorem 3.2). Also $B_1(\overline{A} - s^2)e_2 = h \in H_1$ and the unique solution of (3.6) is given by: $g = (I - B_1(\overline{A} - s^2)V^2)^{-1}h$.

For every $f(z) = \sum_{n=1}^{\infty} \alpha_n z^{n-1} \in H_1(\Delta)$ we have: $|f(z)| \leq \sum_{n=1}^{\infty} |\alpha_n| = ||f(z)||_{H_1(\Delta)} < \infty, |z| \leq 1$. This shows that the solution predicted by the theorem is bounded for $|z| \leq 1$. \Box

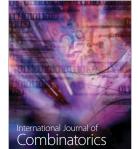
ACKNOWLEDGEMENT. I wish to express my deep appreciation to Professor E.K. Ifantis, for his great help and supervision on the completion of this work.

REFERENCES

- 1. NASR, A.H., A study of one-dimensional Schrödinger equation with nonlocal potential, <u>Siam J. Math. Anal. 15</u> (3) (1984), 459-467.
- IFANTIS, E.K., An existence theory for functional differential equations and functional differential systems, J. Diff. Eq. 29 (1978), 86-104.
- IFANTIS, E.K., Analytic solutions for nonlinear differential equations, <u>J. Math. Anal.</u> <u>Appl. 124</u> (1987), 339-380.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

