SPECIAL MEASURES AND REPLETENESS

EL-BACHIR YALLAOUI

Department of Mathematics Polytechnic University Six Metro Tech Center Brooklyn, NY 11201

(Received November 14, 1989 and in revised form February 1, 1990)

ABSTRACT. Let X be an abstract set and \mathcal{L} a lattice of subsets of X. To each lattice-regular measure μ , we associate two induced measures $\hat{\mu}$ and $\tilde{\mu}$ on suitable lattices of the Wallman space $I_R(\mathcal{L})$ and another measure μ' on the space $I_R^{\sigma}(\mathcal{L})$. We will investigate the reflection of smoothness properties of μ onto $\hat{\mu}, \tilde{\mu}$ and μ' ; and try to set some new criterion for repleteness and measure repleteness.

KEY WORDS AND PHRASES. Replete and measure replete lattices, Lattice regular measure, Wallman space and remainder, σ -smooth, τ -smooth and tight measures, purely finitely additive measures, purely σ -additive measures, purely τ -additive measures.

1980 AMS SUBJECT CLASSIFICATION. 28C15.

1. INTRODUCTION: Let X be an abstract set and \mathcal{L} a lattice subsets of X. To each lattice regular measure μ , we associate following Bachman and Szeto [1], two induced measures $\hat{\mu}$ and $\tilde{\mu}$ on suitable lattices of subsets of the Wallman space $I_R(\mathcal{L})$ of (X,\mathcal{L}) ; we also associate to μ a measure μ' on the space $I_R^\sigma(\mathcal{L})$ (see below for definitions). We give in section 2, a brief review of the lattice notation and terminology relevant to the paper. We will be consistent with the standard terminology as used, for example, in Alexandroff [2], Frolik [3], Grassi [4], and Nöbeling [5]. We also give a brief review of the principal Theorems of [1] that we need in order to make the paper reasonably self-contained.

2. DEFINITIONS AND NOTATIONS

Let X be an abstract set, then \mathcal{L} is a lattice of subsets of X if for $A,B \subset X$ then $A \cup B \in \mathcal{L}$ and $A \cap B \in \mathcal{L}$. Throughout this work we will always assume that \emptyset and X are in \mathcal{L} . If $A \subset X$ then we will denote the complement of A by A' i.e. A' = X - A. If \mathcal{L} is a Lattice of subsets of X then \mathcal{L}' is defined $\mathcal{L}' = \{\mathcal{L}' \mid \mathcal{L} \in \mathcal{L}\}$.

Lattice Terminology

DEFINITIONS 2.1. Let \mathcal{L} be a Lattice of subsets of X. We say that:

- 1- \mathcal{L} is a δ -Lattice if it is closed under countable intersections.
- 2- \mathcal{L} is separating or T_1 if for $x, y \in X$; $x \neq y$ then $\exists L \in \mathcal{L}$ such that $x \in L$ and $y \notin L$.
- 3- \mathcal{L} is Hausdorff or T_2 if for $x, y \in X$; $x \neq y$ then $\exists A, B \in \mathcal{L}$ such that $x \in A', y \in B'$ and $A' \cap B' = \emptyset$.
- 4- \mathcal{L} is disjunctive if for $x \in X$ and $L \in \mathcal{L}$ where $x \notin L$; $\exists A, B \in \mathcal{L}$ such that $x \in A, L \subset B$ and $A \cap B = \emptyset$.
- 5- L is regular if for $x \in X, L \in L$ and $x \notin L$; $\exists A, B \in L$ such that $x \in A', L \subset B'$ and $A' \cap B' = \emptyset$.

6- \mathcal{L} is normal if for $A, B \in \mathcal{L}$ where $A \cap B = \emptyset \exists \tilde{A}, \tilde{B} \in \mathcal{L}$ such that $A \subset \tilde{A}', B \subset \tilde{B}'$ and $\tilde{A}' \cap \tilde{B}' = \emptyset$.

L is compact if $X = \bigcup_{\alpha} L'_{\alpha}$ where $L_{\alpha} \in \mathcal{L}$ then there exists a finite number of L_{α} that cover X i.e.

$$X = \bigcup_{i=1}^{n} L'_{\omega}$$
 where $L'_{\omega} \in \mathcal{L}$.

 $A(\mathcal{L})$ = the algebra generated by \mathcal{L} .

 $\sigma(\mathcal{L})$ = the σ -algebra generated by \mathcal{L} .

 $\delta(\mathcal{L})$ = the Lattice of countable intersections of sets of \mathcal{L} .

 $\tau(L)$ = the Lattice of arbitrary intersection of sets of L.

 $\rho(\mathcal{L})$ = the smallest class containing \mathcal{L} and closed under countable unions and intersections.

If $A \in \mathcal{A}(\mathcal{L})$ then $A = \bigcup_{i=1}^{n} (L_i - \bar{L}'_i)$ where the union is disjoint and $L_i, \bar{L}_i \in \mathcal{L}$.

Measure Terminology

Let \mathcal{L} be a lattice of subsets of X. $M(\mathcal{L})$ will denote the set of finite valued bounded finitely additive measures on $\mathcal{A}(\mathcal{L})$. Clearly since any measure in $M(\mathcal{L})$ can be written as a difference of two non-negative measures there is no loss of generality in assuming that the measures are non-negative, and we will assume so throughout this paper.

DEFINITIONS 2.2.

- 1- A measure $\mu \in M(\mathcal{L})$ is said to be σ -smooth on \mathcal{L} if for $L_n \in \mathcal{L}$ and $L_n \downarrow \emptyset$ then $\mu(L_n) \to 0$.
- 2- A measure $\mu \in M(L)$ is said to be σ -smooth on $\mathcal{A}(L)$ if for $A_n \in \mathcal{A}(L), A_n \downarrow \emptyset$ then $\mu(A_n) \to 0$.
- 3- A measure $\mu \in M(\mathcal{L})$ is said to be τ -smooth on \mathcal{L} if for $L_{\alpha} \in \mathcal{L}$, $\alpha \in \Lambda$, $L_{\alpha} \downarrow \emptyset$ then $\mu(L_{\alpha}) \to 0$.
- 4- A measure $\mu \in M(L)$ is said to be L-regular if for any $A \in \mathcal{A}(L)$

$$\mu(A) = \sup_{\substack{L \subset A \\ L \in \mathcal{L}}} \mu(L)$$

If \mathcal{L} is a lattice of subsets of X, then we will denote by:

 $M_R(L)$ = the set of L-regular measures of M(L)

 $M_{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on \mathcal{L} of $M(\mathcal{L})$

 $M^{\circ}(L)$ = the set of σ -smooth measures on $\mathcal{A}(L)$ of M(L)

 $M_R^{\sigma}(\mathcal{L})$ = the set of regular measures of $M^{\sigma}(\mathcal{L})$

 $M_R^{\tau}(\mathcal{L})$ = the set of τ -smooth measures on \mathcal{L} of $M_R(\mathcal{L})$

 $M'_r(\mathcal{L})$ = the set of tight measures on \mathcal{L} of $M_R(\mathcal{L})$.

Clearly

$$M_p^T(\mathcal{L}) \subset M_p^{\sigma}(\mathcal{L}) \subset M_p(\mathcal{L})$$

DEFINITION 2.3. If $A \in \mathcal{A}(\mathcal{L})$ then μ_x is the measure concentrated at $x \in X$.

$$\mu_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

 $I(\mathcal{L})$ is the subset of $M(\mathcal{L})$ which consists of non-trivial zero-one measures which are finitely additive on $\mathcal{A}(\mathcal{L})$.

 $I_R(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I(\mathcal{L})$

 $I_{\sigma}(\mathcal{L})$ = the set of σ -smooth measures on \mathcal{L} of $I(\mathcal{L})$

 $I^{\sigma}(L)$ = the set of σ -smooth measures on $\mathcal{A}(L)$ of I(L)

 $I_{\tau}(L)$ = the set of τ -smooth measures on L of I(L)

 $I_R^{\sigma}(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I^{\sigma}(\mathcal{L})$

 $I_R^{\tau}(\mathcal{L})$ = the set of \mathcal{L} -regular measures of $I_{\tau}(\mathcal{L})$

DEFINITION 2.4: If $\mu \in M(L)$ then we define the support of μ to be:

$$S(\mu) = \bigcap \{ L \in \mathcal{L}/\mu(L) = \mu(X) \}.$$

Consequently if $\mu \in I(\mathcal{L})$

$$S(\mu) = \bigcap \{L \in \mathcal{L}/\mu(L) = 1\}$$

DEFINITION 2.5. If \mathcal{L} is a Lattice of subsets of X, we say that \mathcal{L} is replete if for any $\mu \in I_R^o(\mathcal{L})$ then $S(\mu) \neq \emptyset$.

DEFINITION 2.6. Let \mathcal{L} be a lattice of subsets of X. We say that \mathcal{L} is measure replete if $S(\mu) \neq \emptyset$ for all $\mu \in M_R^{\sigma}(\mathcal{L}), \mu \neq 0$.

Separation Terminology

Let \mathcal{L}_1 and \mathcal{L}_2 be two Lattices of subsets of X.

DEFINITION 2.7. \mathcal{L}_1 separates \mathcal{L}_2 if for $A_2, B_2 \in \mathcal{L}_2$ and $A_2 \cap B_2 = \emptyset$ then there exists $A_1, B_1 \in \mathcal{L}_1$ such that $A_2 \subset A_1, B_2 \subset B_1$ and $A_1 \cap B_2 = \emptyset$.

REMARK 2.1. We now list few known facts found in [1] which will enable us to characterize some previously defined properties in a measure theoretic fashion.

- 1. \mathcal{L} is disjunctive if and only if $\mu_x \in I_R(\mathcal{L}), \forall x \in X$.
- 2. \mathcal{L} is regular if and only if for any $\mu_1, \mu_2 \in I(\mathcal{L})$ such that $\mu_1 \leq \mu_2$ on \mathcal{L} we have $S(\mu_1) = S(\mu_2)$.
- 3. \mathcal{L} is T_2 if and only if $S(\mu) = \emptyset$ or a singleton for any $\mu \in I(\mathcal{L})$.
- 4. \mathcal{L} is compact if and only if $S(\mu) \neq \emptyset$ for any $\mu \in I_R(\mathcal{L})$.

3. THE INDUCED MEASURES

If \mathcal{L} is a disjunctive lattice of subsets of an abstract set X then there is a Wallman space associated with it. We will briefly review the fundamental properties of this Wallman space, and then associate with a regular lattice measure μ , two measures $\tilde{\mu}$ and $\hat{\mu}$ on certain algebras in the Wallman space (see [1]). We then investigate how properties of μ reflect to those of $\hat{\mu}$ and $\tilde{\mu}$, and conversely, then give a variety of applications of these results. Let X be an abstract set and L a disjunctive lattice of subsets of X such that \emptyset and X are in L. For any A in A(L), define $A(L) = \{\mu \in I_R(L) : \mu(A) = 1\}$. If $A, B \in A(L)$ then

- 1) $W(A \cup B) = W(A) \cup W(B).$
- 2) $W(A \cap B) = W(A) \cap W(B)$.
- 3) W(A') = W(A)'.
- 4) $W(A) \subset W(B)$ if and only if $A \subset B$.
- 5) W(A) = W(B) if and only if A = B.
- 6) $W[\mathcal{A}(\mathcal{L})] = \mathcal{A}[W(\mathcal{L})].$

Let $W(\mathcal{L}) = \{W(L), L \in \mathcal{L}\}$. Then $W(\mathcal{L})$ is a compact lattice of $I_R(\mathcal{L})$, and $I_R(\mathcal{L})$ with $\tau W(\mathcal{L})$ as the topology of closed sets is a compact T_1 space (the Wallman space) associated with the pair X, \mathcal{L} . It is a T_2 -space if and only if \mathcal{L} is normal. For $\mu \in M(\mathcal{L})$ we define $\hat{\mu}$ on $\mathcal{R}(W(\mathcal{L}))$ by: $\hat{\mu}(W(A)) = \mu(A)$ where $A \in \mathcal{R}(\mathcal{L})$. Then $\hat{\mu} \in M(W(\mathcal{L}))$, and $\hat{\mu} \in M_R(W(\mathcal{L}))$ if and only if $\mu \in M_R(\mathcal{L})$.

Finally, since $\tau W(L)$ and W(L) are compact lattices, and W(L) separates $\tau W(L)$, then $\hat{\mu}$ has a unique extension to $\tilde{\mu} \in M_R(\tau W(L))$. We note that by compactness $\hat{\mu}$ and $\tilde{\mu}$ are in $M_R^\tau(W(L))$ and $M_R^\tau(\tau W(L))$ respectively, where they are certainly τ -smooth and of course σ -smooth. $\hat{\mu}$ can be extended to $\sigma(W(L))$ where it is $\delta W(L)$ -regular; while $\tilde{\mu}$ can be extended to $\sigma(\tau(W(L)))$, the Borel sets of $I_R(L)$, and is $\tau W(L)$ -regular on it. One is now concerned with how further properties of μ reflect over to $\hat{\mu}$ and $\hat{\mu}$ respectively. The following are known to be true (see [1]) and we list them for the reader's convenience.

THEOREM 3.1. Let \mathcal{L} be a separating and disjunctive lattice of subsets of X, and let $\mu \in M_{\mathcal{R}}(\mathcal{L})$. Then

- 1. $\mu \in M_R^{\sigma}(\mathcal{L})$ if and only if $\hat{\mu}^*(X) = \hat{\mu}(I_R(\mathcal{L}))$.
- 2. $\mu \in M_R^{\tau}(L)$ if and only if $\tilde{\mu}^*(X) = \tilde{\mu}(I_R(L))$.
- 3. If \mathcal{L} is also normal (or T_2) then $\mu \in M_R^{\tau}(\mathcal{L})$ if and only if X is $\tilde{\mu}$ -measurable and $\tilde{\mu}(X) = \tilde{\mu}(I_R(\mathcal{L}))$.

We now give some further results related to the induced measures $\hat{\mu}$ and $\tilde{\mu}$.

THEOREM 3.2. Let \mathcal{L} be a separating and disjunctive lattice, and $\mu \in M_R(\mathcal{L})$ then $\tilde{\mu}$ is $W(\mathcal{L})$ regular on $(\tau W(\mathcal{L}))'$.

PROOF. We know that $W(\mathcal{L})$ and $\tau W(\mathcal{L})$ are compact lattices and that $W(\mathcal{L})$ separates $\tau W(\mathcal{L})$. Since $\mu \in M_R(\mathcal{L})$ then $\hat{\mu} \in M_R[W(\mathcal{L})]$. Extend $\hat{\mu}$ to $\tau W(\mathcal{L})$. The extension is

$$\tilde{\mu} \in M_R[\tau W(\mathcal{L})] = M_R^{\sigma}[\tau W(\mathcal{L})] = M_R^{\tau}[\tau W(\mathcal{L})] = M_R^{\tau}[\tau W(\mathcal{L})].$$

Let $0 \in [\tau W(L)]'$ then since $\tilde{\mu} \in M_R[\tau W(L)]$ there exists $F \in \tau W(L), F \subset 0$ and

$$|\tilde{\mu}(0) - \tilde{\mu}(F)| < \varepsilon; \varepsilon > 0.$$

Since $F \in \tau W(\mathcal{L})$, $F = \bigcap_{\alpha \in \Lambda} W(L_{\alpha}), L_{\alpha} \in \mathcal{L}$. Also since $F \subset 0$ then $F \cap 0' = \emptyset$ i.e. $\bigcap_{\alpha} W(L_{\alpha}) \cap 0' = \emptyset$ by

compactness there must exist $\alpha_0\in \wedge$ such that $W(L_{a0})\cap 0'=\varnothing$ thus $\overset{a}{F}\subset W(L_{a0})\subset 0''=0$ so

$$|\tilde{\mu}(0) - \tilde{\mu}(W(L_{\infty}))| \ll$$

i.e. $\tilde{\mu}$ is $W(\mathcal{L})$ regular on $(\tau W(\mathcal{L}))'$.

THEOREM 3.3. Let $\mu \in M_R(\mathcal{L})$ then $\hat{\mu}^* = \tilde{\mu}$ on $\tau W(\mathcal{L})$.

PROOF. Since $\mu \in M_R(\mathcal{L})$ and $W(\mathcal{L})$ is compact then $\hat{\mu} \in M_R[W(\mathcal{L})] = M_R^*[W(\mathcal{L})]$ and since $W(\mathcal{L})$ separates $\tau W(\mathcal{L})$ and $\tau W(\mathcal{L})$ is compact then $\tilde{\mu} \in M_R[\tau W(\mathcal{L})] = M_R^*[\tau W(\mathcal{L})]$ furthermore $\tilde{\mu}$ extends $\hat{\mu}$ to $\tau W(\mathcal{L})$ uniquely. Let $F \in \tau W(\mathcal{L})$ then

$$\hat{\mu}^*(F) = \inf \sum_{i=1}^{\infty} \hat{\mu}(A_i), F \subset \bigcup_{i=1}^{\infty} A_i \text{ and } A_i \in \mathcal{A}[W(L)]$$

and since $\hat{\mu} \in M_R^{\tau}[W(\mathcal{L})]$ then

$$\hat{\mu}(A_i) = \inf \hat{\mu}[W(L_i)], A_i \subset W(L_i), L_i \in \mathcal{L}$$

thus $F \subset \bigcup_{i=1}^{\infty} W(L'_i)$ but since $W(\mathcal{L})$ is compact then $F \subset \bigcup_{i=1}^{n} W(L'_i) = W(L')$ where $L \in \mathcal{L}$ and

$$\hat{\mu}^*(F) = \inf \hat{\mu}[W(L')]; F \subset W(L') \text{ and } L \in \mathcal{L}$$

Now $F \subset W(L') \Rightarrow F \cap W(L) = \emptyset$ then since W(L) separates $\tau W(L) \exists \tilde{L} \in L$ such that $F \subset W(\tilde{L})$ and $W(\tilde{L}) \cap W(L) = \emptyset$. Therefore $W(\tilde{L}) \subset W(L')$ and hence

$$\hat{\mu}^*(F) = \inf \hat{\mu}[W(\bar{L})]$$
: where $F \subset W(\bar{L})$; $\bar{L} \in \mathcal{L}$

i.e. that $\hat{\mu}^{\bullet}$ is regular on $\tau W(\mathcal{L})$. On the other hand since $\tau W(\mathcal{L})$ is δ then

$$F - \bigcap_{\alpha} W(L_{\alpha})$$
 and $\tilde{\mu} \left[\bigcap_{\alpha} W(L_{\alpha})\right] - \inf_{\alpha} \tilde{\mu}(W(L_{\alpha})) - \inf_{\alpha} \hat{\mu}(W(L_{\alpha}))$

where $F \subset W(L_{\alpha})$, $L_{\alpha} \in \mathcal{L}$. Therefore $\hat{\mu}^* = \tilde{\mu}$ on $\tau W(\mathcal{L})$.

THEOREM 3.4. Let \mathcal{L}_1 and \mathcal{L}_2 be two lattices of subsets of X such that $\mathcal{L}_1 \subset \mathcal{L}_2$ and \mathcal{L}_1 separates \mathcal{L}_2 If $\mathbf{v} \in M_R^{\sigma}(\mathcal{L}_2)$ then $\mathbf{v} = \mathbf{\mu}^{\bullet}$ on \mathcal{L}'_2 and $\mathbf{v} = \mathbf{\mu}_{\bullet}$ on \mathcal{L}'_2 where $\mathbf{\mu} = \mathbf{v} \mid_{\mathcal{L}_1}$.

PROOF. Let $v \in M_R^{\sigma}(\mathcal{L}_2)$ then since \mathcal{L}_1 separates \mathcal{L}_2 , $\mu \in M_R^{\sigma}(\mathcal{L}_1)$. Since $\mathcal{L}_1 \subset \mathcal{L}_2$ then $\sigma(\mathcal{L}_2) \subset \sigma(\mathcal{L}_2)$; Let $\in \subset X$ then

$$\mathbf{v}^{\bullet}(E) = \inf_{E \subset B, B \in \sigma(\mathcal{L}_2)} \mathbf{v}(B) \leq \inf_{E \subset A, A \in \sigma(\mathcal{L}_1)} \mathbf{v}(A) = \mu^{\bullet}(E)$$

therefore, $v' \le \mu'$. Now on L_2 , $v' = \le \mu'$. Suppose $\exists L_2 \in L_2$ such that $v(L_2) < \mu'(L_2)$ then since

$$v \in M_R^{\sigma}(L_2), v(L_2) = \inf v(\tilde{L}_2), L_2 \subset \tilde{L}_2$$
 and $\tilde{L}_2 \in L_2$

then $L_2 \cap \tilde{L}_2 = \emptyset$ and by separation $\exists L_1, \tilde{L}_2 \in \mathcal{L}_1$ such that $L_2 \subset L_1, \subset \tilde{L}'_1 \subset \tilde{L}'_2$ and therefore

$$\mathbf{v}(L_2) = \inf_{\alpha} \mathbf{\mu}(L_{1\alpha}) \text{ where } L_2 \subset L_{1\alpha}$$

$$= \inf_{\beta} \mathbf{v}(\bar{L'}_{2\beta}) \text{ where } L_2 \subset \bar{L'}_{2\beta}$$

$$< \mathbf{\mu}^{\bullet}(L_2)$$

 $\forall \varepsilon > 0 \exists L_1 \in \mathcal{L}_1$ such that $L_2 \subset L_1$ and $\mu(L_1) - \varepsilon < \nu(L_2) < \mu(L_1)$ but since $L_2 \subset L_1$ then $\mu^*(L_2) \le \mu(L_1) < \nu(L_2) + \varepsilon$ which is a contradiction to our assumption. Therefore $\nu = \mu^*$ on \mathcal{L}_2 and thus $\nu = \mu_*$ on \mathcal{L}'_2 . This theorem is a generalization of the previous one in which we used the compactness of $W(\mathcal{L})$ to have a regular restriction of the measure. Next consider the space $I_{\sigma}^{\sigma}(\mathcal{L})$ and the induced measure μ' .

DEFINITION 3.1. Let \mathcal{L} be a disjunctive lattice of subsets of X.

- 1) $W_{\sigma}(L) = \{ \mu \in I_{\rho}^{\sigma}(L) \mid \mu(L) = 1 \} : L \in L$
- 2) $W_{\sigma}(\mathcal{L}) = \{W_{\sigma}(L), L \in \mathcal{L}\}$
- 3) $W_{\sigma}(A) = \{ \mu \in I_R^{\sigma}(\mathcal{L}) \mid \mu(A) = 1 \}, A \in \mathcal{A}(\mathcal{L}) \}$
- 4) $W_{\sigma}(\mathcal{L}) = W(\mathcal{L}) \cap I_{R}^{\sigma}(\mathcal{L})$

The following properties hold:

PROPOSITION 3.1. Let \mathcal{L} be a disjunctive lattice then for $A, B \in \mathcal{A}(\mathcal{L})$

- 1) $W_{\sigma}(A \cap B) = W_{\sigma}(A) \cup W_{\sigma}(B)$
- 2) $W_{\sigma}(A \cup B) = W_{\sigma}(A) \cap W_{\sigma}(B)$
- 3) $W_{c}(A') = W_{c}(A)'$
- 4) $W_{\sigma}(A) \subset W_{\sigma}(B)$ if and only if $A \subset B$
- 5) $A[W_{\sigma}(L)] = W_{\sigma}[A(L)]$

The proof is the same as for $W(\mathcal{L})$ by simply using the properties of $W(\mathcal{L})$ and the fact that $W_{\sigma}(A) = W(A) \cap I_R^{\sigma}(\mathcal{L})$ and $W_{\sigma}(B) = W(B) \cap I_R^{\sigma}(\mathcal{L})$.

REMARK 3.1. It is not difficult to show that $\sigma[W_{\sigma}(L)] = W_{\sigma}[\sigma(L)]$. Also, for each $\mu \in M(L)$ we define μ' on $\mathcal{A}[W'_{\sigma}(L)]$ as follows:

$$\mu'[W_{\alpha}(A)] = \mu(A)$$
 where $A \in \mathcal{A}(\mathcal{L})$

 μ' is defined and the map $\mu \to \mu'$ from $M(\mathcal{L})$ to $M(W_{\sigma}(\mathcal{L}))$ is onto. In addition, it can readily be checked that,

THEOREM 3.5. Let \mathcal{L} be disjunctive then

- 1) $\mu \in M(L)$ if and only if $\mu' \in M[W_{\sigma}(L)]$
- 2) $\mu \in M_R(L)$ if and only if $\mu' \in M_R[W_{\sigma}(L)]$
- 3) $\mu \in M_{\sigma}(L)$ if and only if $\mu' \in M_{\sigma}[W_{\sigma}(L)]$
- 4) $\mu \in M^{\sigma}(L)$ if and only if $\mu' \in M^{\sigma}[W_{\sigma}(L)]$
- 5) $\mu \in M_R^{\sigma}(\mathcal{L})$ if and only if $\mu' \in M_R^{\sigma}[W_{\sigma}(\mathcal{L})]$

THEOREM 3.6. Let \mathcal{L} be a separating and disjunctive lattice of subsets of X, and let $\mu \in M_R^{\sigma}(\mathcal{L})$.

Then

- 1. $\mu' \in M_R^{\tau}(W_{\sigma}(\mathcal{L}))$ if and only if $\hat{\mu}^{\bullet}(I_R^{\sigma}(\mathcal{L})) = \hat{\mu}(I_R(\mathcal{L}))$.
- 2. If \mathcal{L} is also normal or T_2 then $\mu' \in M_R^*(W_\sigma(\mathcal{L}))$ if and only if $I_R^\sigma(\mathcal{L})$ is $\tilde{\mu}^*$ -measurable and $\tilde{\mu}^*(I_R^\sigma(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$.

We note some consequences.

COROLLARY 3.1. If \mathcal{L} is a separating, disjunctive and replete lattice of subsets of X, then $\mu' \in [M_R^{\tau}(\mathcal{L})]$ implies $\mu \in M_R^{\tau}(\mathcal{L})$.

PROOF. Since \mathcal{L} is replete then $X = I_R^{\sigma}(\mathcal{L})$ then from the previous theorem we have

$$\tilde{\mu}(I_{\mathcal{B}}(\mathcal{L})) = \tilde{\mu}^*(I_{\mathcal{B}}^{\sigma}(\mathcal{L})) = \tilde{\mu}^*(X)$$

i.e. $\mu \in M_R^{\tau}(L)$ from theorem 3.1.

COROLLARY 3.2. Let \mathcal{L} be separating and disjunctive. If $\mu' \in M_R^{\tau}(W_{\sigma}(\mathcal{L})) \Rightarrow \mu \in M_R^{\tau}(\mathcal{L})$ then \mathcal{L} is replete.

PROOF. Let $\mu \in I_R^{\sigma}(\mathcal{L})$ then since $W_{\sigma}(\mathcal{L})$ is replete $\mu' \in I_R^{\tau}[W_{\sigma}(\mathcal{L})]$ then by hypothesis $\mu \in I_R^{\tau}(\mathcal{L})$ therefore $I_R^{\sigma}(\mathcal{L}) = I_R^{\tau}(\mathcal{L})$ or \mathcal{L} is replete. If we combine the two corollaries we get the following:

THEOREM 3.7. Let \mathcal{L} be separating and disjunctive. Then \mathcal{L}' is replete if and only if $\mu' \in M_R^{\tau}(W_{\sigma}(\mathcal{L})) \Rightarrow \mu \in M_R^{\tau}(\mathcal{L})$.

THEOREM 3.8. Let \mathcal{L} be a separating, disjunctive, normal and replete lattice. Then

$$\mu' \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$$
 if and only if $\mu \in M_R^{\tau}(\mathcal{L})$.

PROOF.

1. Let $\mu' \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$ then since \mathcal{L} is replete then $X = I_R^{\sigma}(\mathcal{L})$ and X is $\tilde{\mu}$ -measurable and

$$\tilde{\mu}^*(I_R^{\sigma}(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L})) = \tilde{\mu}(X)$$

then by theorem 3.1 we get that $\mu \in M_R^{\tau}(\mathcal{L})$.

2. Conversely suppose $\mu \in M_R^{\tau}(L)$ then from theorem 3.1 we get that

$$\tilde{\mu}^*(X) = \tilde{\mu}(I_p(\mathcal{L}))$$

and X is $\tilde{\mu}^*$ -measurable but $X \subset I_R^\sigma(\mathcal{L}) \subset I_R(\mathcal{L})$ therefore $\tilde{\mu}^*(I_R^\sigma(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$, then since \mathcal{L} is replete $X = I_R^\sigma(\mathcal{L})$ so $\tilde{\mu}^*(X) = \tilde{\mu}^*(I_R^\sigma(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$ then from theorems 3.1 and 3.7 $\mu' \in M_R^{\pi}[W_\sigma(\mathcal{L})]$.

4. SPECIAL MEASURES AND REPLETENESS

In this section we define a purely finitely additive measure (p. f. a.), a purely σ -additive measure (p. σ . a.) and a purely τ -additive measure (p. τ . a.) and for each type we give a characterization theorem. Then we will define strong σ -additive measures (s. σ . a.) and (s. τ . a.) measures and give for each a characterization theorem. Finally we will investigate relationships among these measures under repleteness.

LEMMA 4.1. Let \mathcal{L} be a lattice of subsets of X and $\mu \in M_R(\mathcal{L})$.

- 1. Consider $\hat{\mu}$ on $\sigma[W(\mathcal{L})]$; we saw in earlier work that $\hat{\mu}$ is $\delta(W(\mathcal{L}))$ regular on $\sigma[W(\mathcal{L})]$. Let $H \subset I_R(\mathcal{L})$ such that $\hat{\mu}^*(H) = a \neq 0$ then $\exists \rho$ countably additive on $\sigma[\tau W(\mathcal{L})]$ and $\tau - W(\mathcal{L})$ regular such that $0 \leq \rho \leq \hat{\mu}$ and $\rho^*(H) = \rho(I_R(\mathcal{L})) = a \neq 0$.
- 2. Consider $\tilde{\mu}$ in $O[\tau W(\mathcal{L})]$; we say that $\tilde{\mu}$ is $\tau W(\mathcal{L})$ regular on $O[\tau W(\mathcal{L})]$. Let $H \subset I_R(\mathcal{L})$ such that $\tilde{\mu}^{\bullet}(H) = a \neq 0$ then $\exists \rho$ countably additive on $\tau W(\mathcal{L})$ regular on $O[\tau W(\mathcal{L})]$ such that $0 \le \rho \le \tilde{\mu}$ and $\rho^{\bullet}(H) = \rho(I_R^{\sigma}(\mathcal{L})) = a$ DEFINITION 4.1.
- 1. Let $\mu \in M_R(\mathcal{L})$; we say that μ is p. f. a. if for $\gamma \in M_n(\mathcal{L})$ and $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$ then $\gamma = 0$.
- 2. Let $\mu \in M_R(\mathcal{L})$; we say that μ is p. σ . a. if for $\gamma \in M_{\sigma}(\mathcal{L})$, γ τ -smooth on \mathcal{L} and $0 \le \gamma \le \mu$ then $\gamma = 0$.

 THEOREM 4.1. Let \mathcal{L} be a separating and disjunctive lattice and $\mu \in M_R(\mathcal{L})$ then:
- 1. μ is p. f. a. $\Rightarrow \hat{\mu}^*(X) = 0$.
- 2. μ is p. σ . a. $\Rightarrow \tilde{\mu}^*(X) = 0$.

If we further assume that \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then the converses are true.

PROOF. The proof will be given only for part (1) and is similar for the second one.

1. Suppose μ is purely finitely additive. If $\hat{\mu}^*(X) = a \neq 0$ then from previous Lemma 4.1 there exists $\rho \in M_R[W(L)] = M_R^*[W(L)]$ such that

$$0 \le \rho \le \hat{\mu}$$
 and $\rho^{\bullet}(X) = \rho(I_R(\mathcal{L})) = a$; then $\rho = \gamma$ and $\gamma \in M_R^{\sigma}(\mathcal{L})$ so $0 \le \rho = \hat{\gamma} \le \hat{\mu} \Rightarrow 0 \le \gamma \le \mu \Rightarrow \gamma = 0$

from the definition of purely finitely additive which is a contradiction because

$$\hat{\gamma}[I_R(\mathcal{L})] = a \neq 0$$
 and therefore $\hat{\mu}^*(X) = 0$.

2. Conversely if $\hat{\mu}^*(X) = 0$ and $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$ where $\gamma \in M_{\sigma}(\mathcal{L})$ and \mathcal{L} is δ and $\rho(\mathcal{L}) = \sigma(\mathcal{L})$ then $\gamma \in M_{\mathcal{R}}^{\sigma}(\mathcal{L})$ and $0 \le \hat{\gamma} \le \hat{\mu}$ on $\mathcal{A}[W(\mathcal{L})]$ then $0 \le \gamma \le \hat{\mu}$ on $\mathcal{A}(\mathcal{L})$; and therefore

$$0 \le \gamma^* \le \mu^*$$
 and since $\hat{\mu}^*(X) = 0 \Rightarrow \hat{\gamma}^*(X) = 0 = \hat{\gamma}[I_R(\mathcal{L})]$

hence $\gamma = 0$ i.e. μ is purely finitely additive.

DEFINITIONS 4.2. Let \mathcal{L} be any lattice of subsets of X.

- 1. Let $\mu \in M_R(\mathcal{L})$, we say that μ is σ . f. a. if for γ such that $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$ and $\gamma' \in M^{\sigma}[W_{\sigma}(\mathcal{L})]$ then $\gamma = 0$.
- 2. Let $\mu \in M_R^{\sigma}(\mathcal{L})$, we say that μ is s. σ . a. if for γ such that $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$ and $\gamma' \in M^{\sigma}[W_{\sigma}(\mathcal{L})]$, γ' τ -smooth on $W_{\sigma}(\mathcal{L})$ then $\gamma = 0$.

LEMMA 4.2. Let \mathcal{L} be a disjunctive lattice of subsets of X. If $\lambda \in M_R(\tau W(\mathcal{L})) - M_R^{\tau}(\tau W(\mathcal{L}))$ and $\lambda^*(I_R^{\sigma}(\mathcal{L})) - \lambda(I_R(\mathcal{L}))$ then $\exists \mu \in M_R(\mathcal{L})$ such that $\lambda - \tilde{\mu}$ and $\mu' \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$. The proof is not difficult.

THEOREM 4.2. Let \mathcal{L} be a disjunctive lattice of subsets of X. Let $\mu \in M_R^o(\mathcal{L})$ then:

- 1. If μ is s. σ . a. then $\tilde{\mu}^*(I_R^{\sigma}(L)) = 0$.
- 2. If $W_o(\mathcal{L})$ is δ , $\sigma[W_o(\mathcal{L})] = \rho[W_o(\mathcal{L})]$ and $\tilde{\mu}^*(I_R^\sigma(\mathcal{L})) = 0$ then μ is s. σ . a. PROOF.
- 1. Suppose μ is strong σ additive but $\tilde{\mu}^*(I_R^\sigma(\mathcal{L})) = a \neq 0$ then from lemma (4.1) $\exists \rho$ countably additive on $\sigma[\tau W(\mathcal{L})]$ and $\tau W(\mathcal{L})$ regular such that $0 \leq \rho \leq \tilde{\mu}$ and $\rho^*(I_R^\sigma(\mathcal{L})) = \rho(I_R(\mathcal{L})) = a$ from previous lemma 4.2 $\rho = \tilde{\gamma}$ where $\gamma' \in M_R^\sigma(W_\sigma(\mathcal{L}))$ then

$$0 \le \rho = \tilde{\gamma} \le \tilde{\mu} \Rightarrow 0 \le \tilde{\gamma} \le \tilde{\mu} \Rightarrow 0 \le \gamma \le \mu$$

and since μ is s. σ . a. then $\gamma = 0$ which is a contradiction to the fact that

$$\rho(I_{P}(\mathcal{L})) = \tilde{\gamma}(I_{P}(\mathcal{L})) = a \neq 0$$

and hence $\tilde{\mu}^*(I_R^{\sigma}(\mathcal{L})) = 0$.

2. Suppose $W_{\sigma}(\mathcal{L})$ is δ , $\sigma[W_{\sigma}(\mathcal{L})] = \rho[W_{\sigma}(\mathcal{L})]$ and $\tilde{\mu}^*(I_R(\mathcal{L})) = 0$. Let $\gamma \in M(\mathcal{L}), 0 \le \gamma \le \mu$ and $\gamma' \in M^{\sigma}[W_{\sigma}(\mathcal{L})]$ and τ -smooth on $W_{\sigma}(\mathcal{L})$ then $\gamma' \in M^{\sigma}_R[W_{\sigma}(\mathcal{L})]$ and even $\gamma' \in M^{\sigma}_R[W_{\sigma}(\mathcal{L})]$. So $0 \le \tilde{\gamma} \le \tilde{\mu}$ on $\mathcal{A}[W(\mathcal{L})]$

and therefore $0 \le \gamma' \le \mu'$ on $\mathcal{A}[W_{\sigma}(\mathcal{L})]$. Furthermore $0 \le \tilde{\gamma}^* \le \tilde{\mu}^*$ and since $\tilde{\mu}^*(I_R^{\sigma}(\mathcal{L})) = 0$ then $\tilde{\gamma}^*(I_R^{\sigma}(\mathcal{L})) = \tilde{\gamma}(I_R^{\sigma}(\mathcal{L})) = 0$ i.e. μ is s. σ . a.

NOTE. If \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then $W_{\sigma}(\mathcal{L})$ is δ and $\sigma[W_{\sigma}(\mathcal{L})] = \rho(W_{\sigma}(\mathcal{L}))$ will hold.

PROPOSITION 4.1. Let \mathcal{L} be separating and disjunctive if \mathcal{L} is also δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then μ is s. σ . a. $\Rightarrow \mu$ is p. σ . a.

PROOF. μ is s. σ . a. $\Rightarrow \tilde{\mu}^*(I_R^{\sigma}(\mathcal{L})) = 0 \Rightarrow \tilde{\mu}^*(X) = 0$: $\tilde{\mu}^*(X) = 0$ and \mathcal{L} is δ and $\rho(\mathcal{L}) = \sigma(\mathcal{L}) \Rightarrow \mu$ is p. σ . a.

PROPOSITION 4.2. If \mathcal{L} is disjunctive then μ is s. f. a. if and only if μ is p. f. a. *PROOF*.

- 1. Suppose μ is s. f. a. and $\gamma' \in M_{\sigma}(\mathcal{L})$; $0 \le \gamma \le \mu$ then $\gamma' \in M^{\sigma}[W_{\sigma}(\mathcal{L})]$ and $0 \le \gamma \le \mu \Rightarrow \gamma = 0$ by s. f. a. Therefore μ is p. f. a.
- 2. Suppose μ is p. f. a. and $\gamma' \in M^{\sigma}[W_{\sigma}(L)]; 0 \le \gamma \le \mu$ then $\gamma \in M^{\sigma}(L)$ and $0 \le \gamma \le \mu \Rightarrow \gamma = 0$ by purely finitely additive. Therefore μ is s. f. a.

PROPOSITION 4.3. If L is replete then μ is s. σ . a. if and only if μ is p. σ . a.

PROOF. \mathcal{L} replete $\Rightarrow X = I_R^{\tau}(\mathcal{L}) = I_r^{\sigma}(\mathcal{L})$ then $\mathcal{L} = W_{\sigma}(\mathcal{L})$ and so $\gamma \in M^{\sigma}(\mathcal{L})$ and τ -smooth on $\mathcal{L} \Leftrightarrow \gamma' \in M^{\sigma}(W_{\sigma}(\mathcal{L}))$ and τ -smooth or W_{σ} therefore the definitions are equivalent.

THEOREM 4.3. Suppose \mathcal{L} is separating, disjunctive and δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then \mathcal{L} is replete if and only if for any $\mu \in M_R^{\sigma}(\mathcal{L})$, μ is p. σ . a. $\Rightarrow \mu$ is s. σ . a.

PROOF.

- 1. We saw in proposition 4.3 that if \mathcal{L} is replete then p. σ . a. \Leftrightarrow s. σ . a.
- 2. Conversely suppose that μ is p. σ . a. $\Rightarrow \mu$ is s. σ . a. for any $\mu \in M_R^{\sigma}(\mathcal{L})$ but $X \neq I_R^{\sigma}(\mathcal{L})$. Let $\mu \in I_R^{\sigma}(\mathcal{L})$ then $\tilde{\mu}$ is $\tau W(\mathcal{L})$ regular and $S(\tilde{\mu}) = \{\mu\}$, $\tilde{\mu}^*(X) = 0$. Now since $\tilde{\mu}^*(X) = 0$, \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then from theorem 4.1 μ is purely σ additive by assumption; but μ is s. σ . a. $\Rightarrow \tilde{\mu}^*(I_R^{\sigma}(\mathcal{L})) = 0$ from proposition 4.2; which is a contradiction because $\mu \in M_R^{\sigma}(\mathcal{L})$ and $\tilde{\mu}[\{\mu\}] = 1$. Therefore $X = I_R^{\sigma}(\mathcal{L})$. **DEFINITION 4.3.** Let $\mu \in M_R^{\sigma}(\mathcal{L})$.
- 1. We say that μ is p. τ a. if for $\gamma \in M_{\sigma}(\mathcal{L})$, $0 \le \gamma \le \mu$, and $\gamma \mathcal{L}$ -tight then $\gamma = 0$.
- 2. We say that μ is s. τ . a. if for $\gamma' \in M^{\circ}[W_{\sigma}(\mathcal{L})]$, $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$ and γ' is $W_{\sigma}(\mathcal{L})$ -tight then $\gamma = 0$.

THEOREM 4.4. Let \mathcal{L} be a separating, disjunctive and normal lattice. If $\mu \in M_R^{\tau}(\mathcal{L})$ then:

- 1. μ is p. τ . a. $\Rightarrow \tilde{\mu}^*(I_R(\mathcal{L}) X) = \tilde{\mu}(I_R(\mathcal{L}))$.
- 2. μ is s. τ . a. $\Rightarrow \tilde{\mu}^*(I_R(\mathcal{L}) I_R^{\sigma}(\mathcal{L})) = \tilde{\mu}(I_R(\mathcal{L}))$.

If we further assume that \mathcal{L} is δ and $\sigma(\mathcal{L}) = \rho(\mathcal{L})$ then the converses are true.

PROOF. We will prove only the second proposition and the proof of the first is similar.

2.a) Suppose μ is s. τ . a. but $\tilde{\mu}^{\bullet}(I_R(\mathcal{L}) - I_R^{\sigma}(\mathcal{L})) < \tilde{\mu}(I_R(\mathcal{L}))$, then there exists $G \in [\tau W(\mathcal{L})]'$ such that $I_R(\mathcal{L}) - I_R^{\sigma}(\mathcal{L}) \subset G$ and $\tilde{\mu}(G) < \tilde{\mu}(I_R(\mathcal{L}))$. Let $F = I_R(\mathcal{L}) - G$, $F \in \tau W(\mathcal{L})$ then $F \subset I_R^{\sigma}(\mathcal{L})$ and F is $W_{\sigma}(\mathcal{L})$ compact, for if $F \subset \bigcup_{\alpha} W_{\sigma}(L_{\alpha})' \Rightarrow F \subset \bigcup_{\alpha} W(L_{\alpha})$. Therefore

$$F \subset \bigcup_{fin} W(L_{cu}) = W(\hat{L})'\hat{L} \in \mathcal{L}$$

thus $F \subset W_{\sigma}(\hat{L})'$ since $F \subset I_R^{\sigma}(L)$ and $\tilde{\mu}(F) > 0$ since $\tilde{\mu}(G) < \tilde{\mu}(I_R(L))$. Also since $W_{\sigma}(L)$ is normal and T_2 then $F \in \tau W_{\sigma}(L)$. Now $\mu \in M_R^{\tau}(L)$ projects onto $I_R^{\sigma}(L)$ and μ' is the projection on $\tau W_{\sigma}(L)$. For $E \in \mathcal{A}(W_{\sigma}(L))$ let $\lambda(E) = \mu''(E \cap F)$ then $0 \le \lambda(E) \le \mu''(E) = \mu'(E)$ so $0 \le \lambda \le \mu'$ on $\mathcal{A}[W_{\sigma}(L)]$. Now if

$$W_{\sigma}(L_{\alpha})\downarrow\varnothing, L_{\alpha}\in\mathcal{L} \text{ then } W_{\sigma}(L_{\alpha})\cap F\downarrow\varnothing \text{ and } \lambda[W_{\sigma}(L_{\alpha})]=\mu''[W_{\sigma}(L_{\alpha})\cap F]\to 0$$

then

$$\lambda \in M_R^{\tau}(W_{\sigma}(L)).$$

Since λ is τ -smooth and $W_{\sigma}(\mathcal{L})$ is regular. Also $\lambda \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$ since $\forall \in > 0$, $\lambda(I_R^{\sigma}(\mathcal{L})) = \mu''(F)$ then

$$\lambda^{*}(F) = \lambda^{*} \binom{\bigcap W_{\sigma}(L_{\alpha})}{\alpha} = \inf \lambda [W_{\sigma}(L_{\alpha})]$$
$$= \inf \mu''[W_{\sigma}(L_{\alpha}) \cap F] = \mu''(W_{\sigma}(L_{\alpha}) \cap F) = \mu''(F).$$

Therefore

$$\lambda^{\bullet}(F) = \mu''(F) = \lambda(I_R^{\sigma}(\mathcal{L})) > \lambda(I_R^{\sigma}(\mathcal{L})) - \varepsilon.$$

Thus

$$\lambda \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$$

Therefore

$$\lambda = \gamma' \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$$

so

$$0 \le \gamma' \le \mu'$$
 on $\mathcal{A}[W_{\alpha}(\mathcal{L})]$ and $0 \le \gamma \le \mu$ on $\mathcal{A}(\mathcal{L})$

and $\gamma' \in M_R^{\tau}[W_q(\mathcal{L})]$ and $\lambda = \gamma' \neq 0$ contradiction. Hence

$$\tilde{\mu}^*(I_{\mathbb{R}}(\mathcal{L}) - I_{\mathbb{R}}^{\sigma}(\mathcal{L})) = \tilde{\mu}(I_{\mathbb{R}}(\mathcal{L}))$$

2.b) Let $\gamma' \in M_R^{\sigma}(W_{\sigma}(L))$ then $\gamma \in M_R^{\sigma}(L)$ also $\gamma' \in M_R^{\sigma}(W_{\sigma}(L))$ because γ' is $W_{\sigma}(L)$ -tight. Now

$$0 \le \gamma' \le \mu'$$
 on $\mathcal{A}[W_{\sigma}(\mathcal{L})] \Rightarrow 0 \le \gamma'' \le \mu''$ on $\mathcal{A}[\tau W_{\sigma}(\mathcal{L})]$

also $I_R^{\sigma}(\mathcal{L})$ is $\tilde{\gamma}$ -measurable since $\gamma' \in M_R^{\tau}[W_{\sigma}(\mathcal{L})]$ then $\tilde{\gamma}(I_R^{\sigma}(\mathcal{L})) = \tilde{\gamma}(I_R(\mathcal{L}))$ from previous work.

Therefore $\exists F, W_{\sigma}(\mathcal{L})$ -compact, $F \subset I_{R}^{\sigma}(\mathcal{L})$ such that

$$\gamma''(F) > \frac{1}{2}\gamma''(I_R^{\sigma}(\mathcal{L})) = \frac{1}{2}\gamma'[I_R^{\sigma}(\mathcal{L})]$$

so

$$\gamma''(F) \le \mu''(F) = 0$$
 since $F \subset I_p^{\sigma}(\mathcal{L})$

and since by hypothesis

$$\tilde{\mu}^*(I_R(\mathcal{L}) - I_R^{\sigma}(\mathcal{L})) = \tilde{\mu}[I_R(\mathcal{L})]$$

then

$$\tilde{\mu}^*(I_R^\sigma(\mathcal{L}))=0$$

and

$$\tilde{\mu}(F) = 0$$

but then

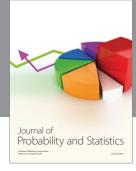
$$\gamma'(I_{\bullet}^{\sigma}(\mathcal{L})) = 0 \Rightarrow \gamma' = 0 \Rightarrow \gamma = 0$$

therefore μ is s. τ . a.

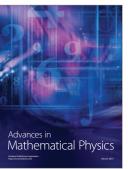
REFERENCES

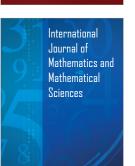
- 1. Bachman, G. and Szeto, M., On Strongly Measure Replete Lattices, Support of a Measure and the Wallman Remainder, <u>Per. Math. Hung</u>, 15(2) (1981), 127-155.
- 2. Alexandroff, A. D., Additive Set Functions in Abstract Spaces, Mat. Sb, (N.S.) 8, 50 (1940), 307-348.
- 3. Frolik, Z., Prime Filter with C.I.P., Comment. Math. Univ. Carolina, 13, No. 3 (1972), 553-573.
- 4. Grassi, P., On Subspaces of Replete and Measure Replete Spaces, <u>Canad. Math. Bull.</u>, 27(1), (1984), 58-64.
- 5. Nöbeling, G., Grundlagender Analytischen Topologie, Springer-Verlag, Berlin, 1954.





Submit your manuscripts at http://www.hindawi.com





Journal of Discrete Mathematics

