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We study characteristic r-lightlike submanifolds M tangent to the characteristic vector fields in
an indefinite metric S-manifold, and we also discuss the existence of characteristic lightlike sub-
manifolds of an indefinite S-space form under suitable hypotheses: (1) M is totally umbilical or
(2) its screen distribution S(T M) is totally umbilical in M.

1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds, it is interesting to study the
geometry of lightlike submanifolds due to the fact that the intersection of normal vector bun-
dle and the tangent bundle is nontrivial, making it interesting and remarkably different from
the study of nondegenerate submanifolds. In particular, many authors study lightlike sub-
manifolds on indefinite Sasakian manifolds (e.g., [1-4]).

Similar to Riemannian geometry, it is natural that indefinite S-manifolds are gener-
alizations of indefinite Sasakian manifolds. Brunetti and Pastore analyzed some properties
of indefinite S-manifolds and gave some characterizations in terms of the Levi-Civita con-
nection and of the characteristic vector fields [5]. After then, they studied the geometry of
lightlike hypersurfaces of indefinite S-manifold [6]. As Jin’s generalizations of lightlike sub-
manifolds of the Sasakian manifolds with the general codimension [3, 4, 7], Lee and Jin re-
cently extended lightlike hypersurfaces on indefinite S-manifold to lightlike submanifolds
with codimension 2 on an indefinite S-manifold, called characteristic half lightlike subman-
ifolds [8]. However, a general notion of characteristic lightlike submanifolds of an indefinite
S-manifold have not been introduced as yet.

The objective of this paper is to study characteristic r-lightlike submanifolds M of an
indefinite S-manifold M subject to the conditions: (1) M is totally umbilcial, or (2) S(TM)
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is totally umbilcal in M. In Section 2, we begin with some fundamental formulae in the theo-
ry of r-lightlike submanifolds. In Section 3, for an indefinite metric g.f.f-manifold we con-
sider a lightlike submanifold M tangent to the characteristic vector fields, we recall some
basic information about indefinite .S-manifolds and deal with the existence of irrotational
characteristic submanifolds of an indefinite .S-space form. Afterwards, we study characteris-
tic r-lightlike submanifolds of M in Sections 4 and 5.

2. Preliminaries

Let (M, g) be an m-dimensional lightlike submanifold of an (m + n)-dimensional semi-Rie-
mannian manifold (M, Q). Then the radical distribution Rad(TM) = TM N TM*" is a vector
subbundle of the tangent bundle TM and the normal bundle TM*, of rank r (1 < r <
min{m,n}). In general, there exist two complementary nondegenerate distributions S(T M)
and S(TM*) of Rad(TM) in TM and TM*, respectively, called the screen and coscreen dis-
tributions on M, such that

TM = Rad(TM)®orn S(TM),  TM* = Rad(TM)@Orthsr(TMi), 2.1)

where the symbol @, denotes the orthogonal direct sum. We denote such a lightlike sub-
manifold by (M, g, S(TM), S(TM*)). Denote by F(M) the algebra of smooth functions on M
and by I'(E) the F(M) module of smooth sections of a vector bundle E over M. We use the
same notation for any other vector bundle. We use the following range of indices:

ijk,...e(l,...,r}, a,py,...e{r+1,...,n}. (2.2)

Let tr(TM) and ltr(T M) be complementary (but not orthogonal) vector bundles to
TM in TM| M and TM* in S(TM )L, respectively, and let { N7, ..., N,} be a lightlike basis of
[(Itr(TM),,) consisting of smooth sections of S (TML)‘lM , where U is a coordinate neighbor-
hood of M, such that

S(Ny &) = 6ij, g(Ni,N;) =0, (2.3)
where {¢1,...,¢,} is a lightlike basis of I'(Rad(TM)). Then we have

TM =TM @ tr(TM) = {Rad(TM) & tr(T M) } @0, S(T M)
(2.4)
= (Rad(TM) @ ltr(T M) }eaorthS(TM)@orthS<TML>.

We say that a lightlike submanifolds (M, g, S(TM), S(TM%)) of M are characterized
as follows:

(1) r-lightlike if 1 < r < min{m, n};
(2) coisotropicif 1 <r =n<m;

(3) isotropicif 1 <r=m < mn;

(4) totally lightlike if 1 < r =m = n.
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The above three classes (2)—(4) are particular cases of the class (1) as follows: S(TM*) = {0},
S(TM) = {0},and S(TM) = S(TM*) = {0}, respectively. The geometry of r-lightlike subman-
ifolds is more general form than that of the other three type submanifolds. For this reason, in
this paper we consider only r-lightlike submanifolds M = (M, g, S(TM), S(TM%)), with the

following local quasiorthonormal field of frames on M:

{gll"'/é?‘l Nl/ ceey NT/ Fr+1/"-/Fm/ Wr+1/~"/Wn}/ (25)

where the sets {Fy1,...,Fy} and {W,,1,...,W,} are orthonormal basis of I'(S(TM)) and
['(S(TM%)), respectively.

Let V be the Levi-Civita connection of M and P the projection morphism of I'(T M) on
I'(S(TM)) with respect to (2.1). For an r-lightlike submanifold, the local Gauss-Weingartan
formulas are given by

VxY = VxY + ihf (X,Y)N; + i B (X, Y)W, (2.6)
i=1 a=r+1
VxNi=-AnX + in,» (X)N; + i Pia(X)W,, (2.7)
j=1 a=r+1
VxWy = —Aw, X + iqu- (X)N; + i Oap (X)W, (2.8)
i=1 P=r+1
VxPY = Vi PY + zr:h;* (X, PY)¢;, (2.9)
i=1
Vit = A} X - ﬁ;rﬁmg:j, 2.10)
=

for any X,Y € I'(TM), where V and V* are induced linear connections on TM and S(TM),
respectively, the bilinear forms h? and h on M are called the local lightlike and screen second
fundamental forms on T M, respectively, h} are called the local radical second fundamental forms on
S(TM). An;,, A;_, and Ay, are linear operators on I'(TM) and 7ij, pia, ¢Pai, and o,p are 1-forms
on TM. Since V is torsion-free, V is also torsion-free and both h¢ and hg are symmetric. From

the fact hf(X,Y) = §(VXY,§1-), we know that hf are independent of the choice of a screen
distribution. We say that

h(X,Y) = ihf(X,Y)N,- + i B (X, Y)W, (2.11)

i=1 a=r+1

is the second fundamental tensor of M.
The induced connection V on T M is not metric and satisfies

(Vx8)(Y,2) = (X, V)m(2) + K (X, 2) mi(Y) }, (2.12)

i=1
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forall X,Y € I'(T M), where #;s are the 1-forms such that

7:(X) =3(X,N;), VX eI (TM). (2.13)

But the connection V* on S(T M) is metric. The above three local second fundamental forms
are related to their shape operators by

h{(X,Y) = g(A;X/ Y) - ghi(X, &N (Y), (2.14)

h (X, PY) = g<A;X, PY), g(A;X, N]-) =0, (2.15)
exhS(X,Y) = g(Aw, X, Y) - Zrl¢ai(X)11i(Y), (2.16)
exhs(X, PY) = g(Aw, X, PY),  Z(Aw,X,Ni) = €apia(X), (2.17)
(X, PY) = g(ANX,PY),  7i(AnX) + qi<AN].X> -0, (2.18)

where X,Y € I'(TM) and ¢, is the sign of W, but it is +1 related to the causal character of W,.
From (2.18), we know that each A, is shape operator related to the local second fundamental
form h? on S(TM). Replacing Y by ¢; in (2.14), we have
h{(X,4)) +h{(X,&) =0, (2.19)
for all X € T'(TM). It follows
h(X,&) =0,  h{(,&)=0. (2.20)
Also, replacing X by ¢; in (2.14) and using (2.20), we have
He(X,¢) = g<X, A;g]-), Ajgi+ Arki=0,  A1&=0. (2.21)
For an r-lightlike submanifold, replace Y by ¢; in (2.16), we have
(X, &) = —€49ai(X), VX eT(TM). (2.22)
Note 1. Using (2.14) and the fact that h¢ are symmetric, we have

r

(A% ) -g(x, A7) = S MK @mn - K amx) e
k=1

From this, (2.20) and (2.21), we show that A are self-adjoint on I'(T M) with respect to g if
and only if h¥(X,¢;) = 0 for all X € T(TM), i and j if and only if Aiéj = 0 foralli,j. We call
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self-adjoint A} the lightlike shape operators of M. It follows from the above equivalence and
(2.10) that the radical distribution Rad(T M) of a lightlike submanifold M, with the lightlike
shape operators Aj , is always an integrable distribution.

3. Characteristic Lightlike Submanifolds

A manifold M is called a globally framed f-manifold (or g.f.f-manifold) if it is endowed with a
nonnull (1,1)-tensor field ¢ of constant rank, such that ker ¢ is parallelizable, that is, there
exist global vector fields & a € {1,...,k}, with their dual 1-forms 1", satisfying 52 =-I+7"®
§_,,L and 7" (g) =

The g.f.f-manifold (M2n+r,$, §_,,,, 1n"), a € {1,...,k}, is said to be an indefinite metric

g.f.f-manifold if g is a semi-Riemannian metric, with index v, 0 < v < 2n + k, satisfying the
following compatibility condtion

3(PX.9Y) =3(XY) - X e ()T (Y), (3.1)
a=1

for any X,Y € I'(TM), being ¢, = +1 according to whether ¢, is spacelike or timelike. Then,
for any & € {1,...,k}, one has 7°(X) = €,%(X,¢,). An indefinite metric g.f.f-manifold is
called an indefinite S-manifold if it is normal and dn* = ®, for any a € {1,...,k}, where
D(X,Y) = g(X,$Y) for any X,Y € T[(TM). The normality condition is expressed by the van-
ishing of the tensor field N = N$+2dﬁ” ®¢,, N7 being the Nijenhuis torsion of ¢. Furthermore,
as proved in [5], the Levi-Civita connection of an indefinite S-manifold satisfies:

(Vx9)Y =2($X,3Y)E+7MP (%), (32)

where ¢ = 3% ¢ and 7 7] = Sk ean". We recall that V¢, = —e,¢X and ker ¢ is an integrable
flat distribution since V § = 0 (more details in [5]).

Following the notatlons in [9], we adopt the curvature tensor R, and thus we have
R(X,Y,Z) =VxVyZ-VyVxZ-Vxy1Z,and R(X,Y, Z, W) = g(R(Z,W,Y),X), forany X, Y,
Z,W eT(TM).

An indefinite S-manifold (M, ,¢,,7") is called an indefinite S-space form denoted by
M(c), if it has the constant (i) -sectional curvature ¢ [5]. The curvature tensor R of this space
form M(c) is given by

4R(X,Y,Z,W) = ~(c +3e){3(9Y,$2)3(#X, oW ) - 2(#X.$2)3 (Y, ¢W) }
—(c-e){DW,X)D(Z,Y) - D(Z, X)D(W,Y) +20(X,Y)D(W, Z)}
- {70 (2,9 ) - TWIINZ($Z,$X)
AMA2)Z(BW, $X) ~AH2)AOZ(PW, 9Y) |,

(3.3)

for any vector fields X, Y, Z, W € F(Tﬁ).
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Note 2. Although S(T M) is not unique, it is canonically isomorphic to the factor vector bun-
dle S(TM)* = TM/Rad(T M) considered by Kupeli [10]. Thus all screen distributions S(T M)
are mutually isomorphic. For this reason, we newly define generic lightlike submanifolds of
M as follows.

Definition 3.1. Let M be a r-lightlike submanifold of M such that all the characteristic vector
fields ¢, are tangent to M. A screen distribution S(T M) is said to be characteristic if ker ¢ C
S(TM) and ¢(S(TM)*) c T(S(TM)).

Definition 3.2. A r-lightlike submanifold M of M is said to be characteristic if ker ¢ ¢ TM and
a characteristic screen distribution (S(TM)) is chosen.

Proposition 3.3 (see [6]). Let (M, g, S(T M)) be a lightlike hypersurface of an indefinite S-manifold
(M, ¢, 84,7, %) such that the characteristic vector fields are tangent to M. Then there exists a screen
distribution such that ker$ C TM and $(E) Cc I'(S(TM)), where E is a nonzero section of
Rad(TM).

Proposition 3.4 (see [8]). Let (M, g, S(T M)) be a 1-lightlike submanifold of codimension 2 of an in-
definite S-manifold (M, ¢, &, 7", ). Then M is a characteristic lightlike submanifold of M.

Definition 3.5. A lightlike submanifold M is said to be irrotational [10] if Vxéi € T(TM) for any
X eT(TM) and ¢; € T(Rad(T M)) for all i.

Note 3. For an r-lightlike M, the above definition is equivalent to

h{(X,&) =0, hy(X,&)=¢ai(X) =0, VX e€I(TM). (3.4)

The extrinsic geometry of lightlike hypersurfaces depends on a choice of screen dis-
tribution, or equivalently, normalization. Since the screen distribution is not uniquely deter-
mined, a well-defined concept of S-manifold is not possible for an arbitrary lightlike sub-
manifold of a semi-Riemannian manifold, then one must look for a class of normalization for
which the induced Riemannian curvature has the desired symmetries. Let (M, g) be a semi-
Riemannian manifold, p € M. F ®4T;M is said to be an algebraic curvature tensor [11] on T, M
if it satisfies the following symmetries:

F(X,Y,ZW)=-F(,X,Z, W) = F(ZW,X,Y),
(3.5)
F(X,Y,Z, W) +F(Y,Z,X,W) +F(ZX,Y,W) =0.

Definition 3.6. A screen distribution S(T M) is said to be admissible if the associated induced
Riemannian curvature is an algebraic curvature tensor.

Theorem 3.7. Let (M, g, S(T M)) be an irrotational generic characteristic lightlike submanifold of an
indefinite S-space form (M(c), §, &, 7", 3) with an admissible screen distribution S(T M). Then one
has c = e.
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Proof. Denote by R and R the curvature tensors of V and V, respectively. Using the local
Gauss-Weingarten formulas for M, we obtain

RX,NZ=RX,YV)Z+ Y {h (X, 2)AnY - K (Y, Z) An X}
i=1

+ D {h(X, Z)Aw,Y — h(Y, Z) Aw, X }

a=r

S — (Vyk’
+ ;{(Vxh )Y, 2) - (Vyh) (X, 2)

+ S [EOR Y, 2) - (R (X, 2)]
=1

0 (3.6)
+ > [fi’ai(X)hi(Y,Z)—¢ai(Y)hZ(X,Z)]}Ni

a=r+1

a=r+1

. {(vxhs )(Y, Z) - (Vyh3)(X, Z)

+ PO, 2) = (N (X, 2)]

i=1

+ Z |05 (OR5(Y, 2) = 0 (VB3 (X, Z)]}

p=r+1

forall X,Y,Z € I'(TM). Replace Z by ¢k in (3.6) and use (2.10), (2.15), (2.17), and (3.4), we
have

r

REX )&= RX &+ Y {g(AY,ALX) - g(A;X, A, Y) N,
i=1
(3.7)

* Z ex (A Y, AL X) - g(Aw,X, ALY ) JW.

a=r+1

Using (3.7), the fact R(X,Y)Z € I'(TM) for X, Y, Z € I'(T M), and a screen distribution S(T M)
is admissible, we get

F(RXNZ,4) = -3(RX, V), Z)

r

= -g(R(X, V)& 2) + Y {g(A; X AL Y) - g (A Y, AL X) bni(2)

i=1
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= 2(R(X,Y)Z &) + Z{ g<AEiX, Agky) - g(A;y, Agkx) }rl,-(Z)
i=1

i{ (arx, A, Y) -g(AyY, AL X) J1d(2), VX, Y, Z € T(TM).

i=1
(3.8)

On the other hand, since 77(¢,) = 0 and §($§u,$X) =0 for any X € I'(TM), M(c) is an in-
definite S-space form implies the Riemannian curvature R in (3.3) is given by

AR(X,Y, Z, &) = (¢ = ) [ D, X)D(Z,Y) = D(Z, X)D(ée, Y) +20(X, V) D (s, Z))

= ~(c- &) {3(960, X)D(Z,Y) - D(Z,X)g (P2, Y ) +20(X, V)P4 Z) |,

(3.9)

forany X, Y, Z,€ I'(TM). So, replacing X, Y, Z by PX, ¢, PZ in (3.9), we find

4R(X,Y, Z,8) = ~(c - )-8 (9t PX)2(PZ, Ptu) ~ 28(X, $8 )2 (P 2) |
(3.10)
=3(c - )3 (#éw PX) 3 (P PZ).
Then, using (3.3), (3.8), and (3.9), we get
42{ (Arx, a3 Y) -g(ayy, AL X) ()

(3.11)

-3(c - 8 (¢éu PX)Z (92 PZ), VX, Y, Z T(TM).
Choosing X = Z = $Nu eI'(S(TM)), we obtain ¢ = e. O

Corollary 3.8. There exist no irrotational characteristic r-lightlike submanifolds (M, g, S(TM)) of
an indefinite S-space form (M(c), , ¢z, 1", ) with ¢ # € such that the screen distribution S(T M) is
admissible.

4. Totally Umbilical Characteristic Lightlike Submanifolds

Definition 4.1. An r-lightlike submanifold M of M is said to be totally umbilical [1] if there is
a smooth vector field H € I'(tr(T M)) such that

h(X,Y) = #g(X, PY), (4.1)

forall X,Y e I'(TM). In case H = 0, we say that M is totally geodesic.
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It is easy to see that M is totally umbilical if and only if, on each coordinate neighbor-
hood U, there exist smooth functions A; and B, such that

h{(X,Y) = Aig(X,Y),  hy(X,Y)=Bag(X,Y), (42)
forany X,Y € I'(TM). From (4.2) we show that any totally umbilical r-lightlike submanifold

of M is irrotational. Thus, by Theorem 3.7, we have the following.

Theorem 4.2. Let (M, g, S(TM)) be a totally umbilical characteristic r-lightlike submanifold of an
indefinite S-space form (M(c), ¢, &, 7", 5). Then one has c = e.

Theorem 4.3. Let (M, g, S(TM)) be a totally umbilical characteristic r-lightlike submanifold of an
indefinite S-manifold (M, ¢, &, 7", g). Then M is totally geodesic.

Proof. Apply Vx to §($§i, W,) = 0with X € I'(TM), for alli and a, and use (2.8), (2.10), (2.15),
(2.17), (2.22), and (3.2), we have

I (x,awu) = ek (X, $§i), VX € T(TM). (4.3)
Assume that M is totally umbilical. Then we have
Aig(X,9Wo) = eaBag (X, 48i), ¥X € T(TM). (4.4)

Replace X by $N; and X by W, by turns, we get A; = 0 for all i and B, = 0 for all a. Thus we
show that # = 37 | A;N; + X _,.1BaW, = 0 and M is totally geodesic. O

Corollary 4.4 (see [1]). Let (M, g, S(TM)) be a totally umbilical characteristic r-lightlike sub-
manifold of an indefinite S-manifold (M, ¢, &,,7",3). Then there exists a unique torsion-free metric
connection V on M induced by the connection V on M.

Proof. From (4.2) and Theorem 4.3, we have hf(X,Y) =0 for all X,Y € I'(TM) and i. Thus,
using (2.12), we obtain our assertion. O

5. Totally Umbilical Screen Distributions

Definition 5.1. A screen distribution S(T M) of M is said to be totally umbilical [1] in M if, for
each locally second fundamental form h}, there exist smooth functions C; on any coordinate
neighborhood % in M such that

h (X, PY) =Cig(X,Y), VX, Y € (TM). (5.1)

In case C; = 0 for all i, we say that S(T M) is totally geodesic in M.
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Due to (2.18) and (5.1), we know that S(T'M) is totally umbilical in M if and only if
each shape operators Ay, of S(T'M) satisfies

g(AN.X,PY) = Cig(X, PY), VX, Y e T(TM), (5.2)

for some smooth functions C; on U C M.
In general, S(T M) is not necessarily integrable. The following result gives equivalent
conditions for the integrability of a screen S(T'M).

Theorem 5.2 (see [1]). Let M be an r-lightlike submanifold of a semi-Riemannian manifold (M, 2).
Then the following assertions are equivalent:

(1) S(TM) is integrable,
(2) h} is symmetric on T'(S(TM)), for each i,
(3) AN, is self-adjoint on I'(S(T M)) with respect to g, for each i.

We know that, from (5.2), each shape operator Ay, is self-adjoint on I'(S(TM)) with
respect to g, which further follows from that above theorem that any totally umbilical screen
distribution S(T M) of M is integrable.

Theorem 5.3. Let (M, g, S(T M)) be a characteristic r-lightlike submanifold of an indefinite S-mani-
fold (M, ¢, &4, 7°,%). If S(T M) is totally umbilical in M, then S(T M) is totally geodesic in M.

Proof. Apply the operator Vx to §($N k,N;) = 0 for some k, j such that k #j, and use (2.7)
and (2.18)

h;(x, $NJ-) = I} <X, $Nk), VX € T(TM). (5.3)
Assume that S(T'M) is totally umbilical in M. Then we have

Crg(X $N;) = Cig(X,§Nk), VX €T(TM). (5.4)

Replacing X by $§]~ in (5.4) and taking (k,j) = (1,2),(2,3),...,(r—1,r) and (, 1) by turns and
use the above method, we have C; =0 foralli € {1,...,r}. Thus we have our assertion. O

Theorem 5.4. Let (M, g, S(T M)) be a characteristic r-lightlike submanifold of an indefinite S-mani-
fold (M, ¢, ¢, 1", g) such that S(T M) is totally umbilical in M. Then M is not irrotational.

Proof. Apply the operator Vx to §($§i,Nj) = 0 for all i and j, and use (2.6), (2.10), (2.15),
(2.18), and Theorem 5.3, we have

K’ (X, $N7> = I (X,&;-), VX € [(TM). (5.5)
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Since S(T'M) is totally umbilical, by Theorem 5.3, we have that S(TM) is totally geodesic.
Then, by (5.5), we have

I (X, $Nj) =0, VYXeI(TM). (5.6)

Apply the operator Vy to §(§_a, &) = 0and use (2.6), (2.10), (2.15), we have
h (X&) = —eag(X,$&), VX €T(TM). (5.7)
Replace X by ¢Nj in this equation and (5.6), we have
0=h{($Ni &) = -g(PNi §&:) = -1. (538)

It is a contradiction. Thus M is not irrotational. O

Since any totally umbilical r-lightlike submanifold of M is irrotational, by
Theorem 5.4,
we have the following result.

Corollary 5.5. There exist no totally umbilical characteristic r-lightlike submanifolds (M, g,
S(TM)) of an indefinite S-manifold (M, ¢, &, 7", ) equipped with a totally umbilical screen dis-
tribution S(TM) in M.
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