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An exponentially fitted explicit hybrid method for solving oscillatory problems is obtained. This
method has four stages. The first three stages of the method integrate exactly differential systems
whose solutions can be expressed as linear combinations of {1, x, exp(μx), exp(−μx)}, μ ∈ C, while
the last stage of this method integrates exactly systems whose solutions are linear combinations of
{1, x, x2, x3, x4, exp(μx), exp(−μx)}. This method is implemented in variable step-size code basing
on an embedding approach. The stability analysis is given. Numerical experiments that have been
carried out show the efficiency of our method.

1. Introduction

There has been great interest in the research of new methods for numerically solving the
second-order initial value problems of the form

y′′(x) = f(x,y(x)),y(x0) = y0,y′(x0) = y′0 (1.1)

whose solution exhibits specific oscillatory behavior. Such problems arises in celestial
mechanics, in quantum mechanical scattering problems, and elsewhere, and they can be
solved by using general purposemethods or by using codes specially adapted to the structure
or to the solution of the problem. In the case of adapted hybridmethods, particular algorithms
have been proposed by several authors (e.g., see [1–3]) to solve these classes of problems.

This paper concerns derivation of a new method for the numerical integration of (1.1)
with oscillatory solution through the usage of an exponential-fitting technique proposed by
Vanden Berghe and Van Daele [4]. The coefficients of the newmethod depend on the product
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of frequency and step size, thus the method can only be applied when a good estimate of the
dominant frequency of the solution is known in advance. The exponential-fitting technique
is generally described in the context of linear multistep methods as follows.

Consider linear k-step methods of the form

k∑

j=1

αjyn+j = h2
k∑

j=1

βjy
′′
n+j , (1.2)

where αk = 1, α0, and β0 do not both vanish. Associate with the method is the linear operator

L[h, a]y(x) =
k∑

j=0

αjy
(
x + jh

) − h2
k∑

j=0

βjy
′′(x + jh

)
, (1.3)

where a = [α0, α1, . . . , αk, β0, β1, . . . , βk]. The linear operator L is said to integrate exactly
the function y(x) if L[h, a]y(x) = 0. We now impose the requirement that the operator L
integrates exactly the following functions:

1, x, x2, . . . , xK, e±μx, xe±μx, x2e±μx, . . . , xPe±μx (1.4)

with K + 2P = M − 3. Then, we solve the algebraic equations for αj and βj , j = 0, 1, . . . , k. In
particular, the step-by-step exponential-fitting procedure is described as follows.

Step 1. Find the maximal M such that L integrates exactly the set of power functions
{1, x, x2, . . . , xM−1} and that the resulting coefficients have the same value as those of a
classical method. The classical method is the method with constant coefficients.

Step 2. Consider this set of functions

1, x, x2, . . . , xK, e±μx, xe±μx, x2e±μx, . . . , xPe±μx (1.5)

with K + 2P = M − 3. Using M obtained from Step 1, we find suitable P and K which
correspond to a finite set consisting of power functions and exponentials. Then, solve
equations obtained by assuming that L integrates exactly elements of this set.

Considering each formula stage of a hybrid method as a linear multistep method with
nonequidistant grid points; we derive our exponentially fitted hybrid method. This approach
has also been employed by Simos and Vigo-Aguiar [1] and D’Ambrosio et al. [5] in their
derivation of exponential-fitting methods.
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2. Embedded Pairs of Hybrid Methods

For the numerical solution of (1.1), we consider the explicit hybrid method which has been
established by Franco [6]:

Y1 = yn−1, Y2 = yn,

Yi = (1 + ci)yn − ciyn−1 + h2
i−1∑

j=1

aijf
(
xn + cjh, Yj

)
, i = 3, . . . , s,

yn+1 = 2yn − yn−1 + h2

[
b1fn−1 + b2fn +

s∑

i=3

bif(xn + cih, Yi)

]
,

(2.1)

where fn−1 and fn represent f(xn−1, yn−1) and f(xn, yn), respectively. The method requires
s − 1 function evaluations or stages at each step of integration. The explicit hybrid method
can be represented by the Butcher tableau:

−1 0 0 0 · · · 0
0 0 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

. . .
...

...
cs as1 as2 · · · as,s−1 0

b1 b2 · · · bs−1 bs

=
c A

bT
(2.2)

Adopting the concept of embedded p(q) pair of Runge-Kutta-Nystrom (RKN) methods (see
[7, 8]), we define an embedded p(q) pair of hybridmethods to be based on the hybridmethod
(c,A,b) of order p and another hybrid method (c,A,b) of order q < p, represented by the
following tableau:

c A

bT

bT

(2.3)

Embedded pairs of explicit hybrid methods are used in variable step-size algorithm because
they provide cheap error estimation. A local error estimation is determined by the formula

LTE =
∥∥yn+1 − yn+1

∥∥, (2.4)

where yn+1 and yn+1 are solutions obtained using the higher-order and the lower-order
formula, respectively. The LTE is used to control the step-size of which the procedure is given
by

(i) if tol/div < LTE < div ·tol, then hn+1 = hn,
(ii) if LTE ≤ tol/div, then hn+1 = 2hn,
(iii) if LTE ≥ div ·tol, then hn+1 = (1/2)hn and repeat the step,
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where, from numerical experiments, div is chosen to be 217. We do not allow step-size change
after each step because it would contribute to unnecessary rounding errors. If the step is
acceptable (i.e., tol/div < LTE < div · tol and LTE ≤ tol/div), then we adopt the widely used
of performing local extrapolation: although the LTE is the error estimation for the lower-order
formula, the solutions obtained by using the higher-order formula are actually accepted at
each point.

3. Construction of Hybrid Methods

3.1. The Sixth-Order Hybrid Method of Franco

In this section, we consider the sixth-order hybrid method which is zero dissipative and
dispersive of order six derived in [6]. The interval of periodicity of the method is (0, 2.75). In
order for the method to be implemented in variable step-size code as described in Section 2,
we derive a three-stage fourth-order explicit hybrid method. Order conditions for the fourth-
order hybrid methods with s = 4 as given in [9] are listed as follows.

Order conditions:

4∑

i=1

bi = 1,

4∑

i=1

bici = 0,

4∑

i=1

bic
2
i =

1
6
,

4∑

i=1

4∑

j=1

biaij =
1
12

,

4∑

i=1

bic
3
i = 0,

4∑

i=1

4∑

j=1

biciaij =
1
12

,

4∑

i=1

4∑

j=1

biaijcj = 0.

(3.1)

The two-step explicit hybrid methods (2.1) are a subclass of the two-step hybrid methods
considered by Coleman [9] by taking c1 = −1, c2 = 0, a21 = 0, and aij = 0 (j ≥ i). Substituting
c1 = −1, c2 = 0, a21 = 0, and aij = 0 (j ≥ i) together with coefficients ci and aij of the
sixth-order formula into (3.1), we get the following values of coefficients b for the three-stage
fourth-order method:

b1 =
5
68

, b2 =
47
42

, b3 = − 5
12

, b4 =
80
357

. (3.2)
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The embedded 6(4) pair of hybrid methods is denoted as EHM6(4) method and represented
by the tableau:

−1 0 0 0 0 0
0 0 0 0 0 0
1
5

4
125

11
125

0 0 0

7
10

119
2000

1071
2000

0 0 0

−1
2

− 11
204

− 7
144

− 7
144

4
153

0

1
68

11
42

25
84

50
357

2
7

5
68

47
42

− 5
12

80
357

(3.3)

3.2. Variable Step-Size Exponentially Fitted Explicit Hybrid Method

We consider the four-stage explicit hybrid method given by the following tableau:

−1 0 0 0 0 0
0 0 0 0 0 0
1
5

a31 a32 0 0 0

7
10

119
2000

a42 a43 0 0

−1
2

− 11
204

− 7
144

a53 a54 0

b1 b2 b3 b4 b5

(3.4)

Note that the c-values and some of theA-values are taken from the sixth-order hybridmethod
of Franco as described briefly in Section 3.1. The formula of a four-stage explicit hybrid
method is

Y1 = yn−1, Y2 = yn, (3.5)

Y3 = (1 + c3)yn − c3yn−1 + h2(a31fn−1 + a32fn
)
, (3.6)

Y4 = (1 + c4)yn − c4yn−1 + h2[a41fn−1 + a42fn + a43f(xn + c3h, Y3)
]
, (3.7)

Y5 = (1 + c5)yn − c5yn−1 + h2[a51fn−1 + a52fn + a53f(xn + c3h, Y3) + a54f(xn + c4h, Y4)
]
,
(3.8)

yn+1=2yn − yn−1 + h2[b1fn−1 + b2fn + b3f(xn + c3h, Y3)+b4f(xn + c4h, Y4) + b5f(xn + c5h, Y5)
]
.

(3.9)
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Associate with (3.6), (3.7), and (3.8) the linear operator L, we have

L[h, a]y(x) = y(x + cih) − (1 + ci)y(x) + ciy(x − h) − h2
i−1∑

j=1

aijy
′′(x + cih), i = 3, 4, 5.

(3.10)

Note that the operator L integrates exactly 1 and x for any x and h. The coefficients of
the variable step-size exponentially fitted hybrid method are obtained by solving equations
arising from the choice of integers M, K, and P described as follows.

Step 1. Consider the linear operator L that associated with (3.6). Solving equations obtained
by assuming that c3 = 1/5 and imposing L to integrate exactly x2 and x3, we obtain a31 =
4/125 and a32 = 11/125 which is the same value as the coefficients of EHM6(4)method. This
means thatM = 4. ChoosingK = 1, P = 0 gives us {1, x, e±μx}. Setting c3 = 1/5 and imposing
L to integrate exactly e±μx leads the following equations:

exp
(
1
5
μh

)
− 6
5
+

1
5 exp

(
μh

) − h2a31μ
2

exp
(
μh

) − h2a32μ
2 = 0,

exp
(
−1
5
μh

)
− 6
5
+
1
5
exp

(
μh

) − h2a31μ
2 exp

(
μh

) − h2a32μ
2 = 0.

(3.11)

Solving these equations, we get coefficients a31 and a32.

Step 2. Consider the linear operator L that associated with (3.7). Solving equations obtained
by assuming that c3 = 1/5, c4 = 7/10, a41 = 119/2000 and imposing L to integrate exactly x2

and x3, we obtain a42 = 1071/2000 and a43 = 0 which are of the same value as the coefficients
of EHM6(4) method. This means that M = 4. Choosing K = 1, P = 0 gives us {1, x, e±μx}.
Setting c3 = 1/5, c4 = 7/10, a41 = 119/2000, and L[h, a]e±μx = 0, we get the following
equations:

exp
(

7
10

μh

)
− 17
10

+
7

10 exp
(
μh

) − 119h2μ2

2000 exp
(
μh

) − h2a42μ
2 − h2a43μ

2 exp
(
1
5
μh

)
= 0,

1
exp

(
(7/10)μh

) − 17
10

+
7
10

exp
(
μh

) − 119
2000

h2μ2 exp
(
μh

) − h2a42μ
2 − h2a43μ

2

exp
(
(1/5)μh

) = 0.

(3.12)

Solving these equations, we get a42 and a43.

Step 3. Consider the linear operator L that associated with (3.8). Solving equations obtained
by assuming that c3 = 1/5, c4 = 7/10, c5 = −1/2, a51 = −11/204, a52 = −7/144 and imposing
L to integrate exactly x2 and x3, we obtain a53 = −7/144 and a54 = 4/153 which are of the
same value as the coefficients of EHM6(4) method. This means that M = 4. Choosing K = 1
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and P = 0 gives us {1, x, e±μx}. Setting c3 = 1/5, c4 = 7/10, c5 = −1/2, a51 = −11/204, a52 =
−7/144, and L[h, a]e±μx = 0 leads to the following equations:

exp
(
−1
2
μh

)
− 1
2
− 1
2 exp

(
μh

) +
11h2μ2

204 exp
(
μh

) +
7

144
h2μ2 − h2a53μ

2 exp
(
1
5
μh

)

− h2a54μ
2 exp

(
7
10

μh

)
= 0,

1
exp

(
(−1/2)μh) − 1

2
− 1
2
exp

(
μh

)
+

11
204

h2μ2 exp
(
μh

)
+

7
144

h2μ2 − h2a53μ
2

exp
(
(1/5)μh

)

− h2a54μ
2

exp
(
(7/10)μh

) = 0.

(3.13)

Solving these equations, we get a53 and a54.

Step 4. The linear operator associating with (3.9) is given as

L[h, a]y(x) = y(x + h) − 2y(x) + y(x − h)

− h2[b1y′′(x − h) + b2y
′′(x) + b3y

′′(x + c3h) + b4y
′′(x + c4h) + b5y

′′(x + c5h)
]
,

(3.14)

where a = [b1, b2, b3, b4, b5]. Solving equations obtained by assuming that c3 = 1/5, c4 =
7/10, c5 = −1/2 and imposing L to integrate exactly x2, x3, x4, x5 and x6, we obtain

b1 =
1
68

, b2 =
11
42

, b3 =
25
84

, b4 =
50
357

, b5 =
2
7

(3.15)

which are of the same value as the coefficients of EHM6(4) method. This means that M = 7.
Choosing K = 4 and P = 0 gives us {1, x, x2, x3, x4, e±μx}. Setting c3 = 1/5, c4 = 7/10, c5 =
−1/2, L[h, a]x2 = 0, L[h, a]x3 = 0, L[h, a]x4 = 0 and L[h, a]e±μx = 0, the following equations
are obtained:

(x + h)2 − 2x2 + (x − h)2 − h2(2b1 + 2b2 + 2b3 + 2b4 + 2b5) = 0,

(x + h)3 − 2x3 + (x − h)3 − h2
[
b1(6x − 6h) + 6b2x

+b3
(
6x +

6
5
h

)
+ b4

(
6x +

21
5
h

)
+ b5(6x − 3h)

]
= 0,
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(x + h)4 − 2x4 + (x − h)4 − h2

[
12b1(x − h)2 + 12b2x2

+12b3
(
x +

1
5
h

)2

+ 12b4
(
x +

7
10

h

)2

+ 12b5
(
x − 1

2
h

)2
]
= 0,

exp
(
μh

) − 2 +
1

exp
(
μh

) − h2b1μ
2

exp
(
μh

) − h2b2μ
2 − h2b3μ

2 exp
(
1
5
μh

)
− h2b4μ

2 exp
(

7
10

μh

)

− h2b5μ
2 exp

(
−1
2
μh

)
= 0,

1
exp

(
μh

) − 2 + exp
(
μh

) − h2b1μ
2 exp

(
μh

) − h2b2μ
2

− h2b3μ
2

exp
(
(1/5)μh

) − h2b4μ
2

exp
(
(7/10)μh

) − h2b5μ
2

exp
(
(−1/2)μh) = 0.

(3.16)

Solving these equations, we get b1, b2, b3, b4, and b5.

Step 5. Consider

yn+1 = 2yn − yn−1 + h2
(
b1fn−1 + b2fn + b3f(xn + c3h, Y3) + b4f(xn + c4h, Y4)

)
. (3.17)

Associate with (3.17) is the linear operator L:

L[h, a]y(x) = y(x + h) − 2y(x) + y(x − h)

− h2
[
b1y

′′(x − h) + b2y
′′(x) + b3y

′′(x + c3h) + b4y
′′(x + c4h)

]
,

(3.18)

where a = [b1, b2, b3, b4]. Solving equations obtained by assuming that c3 = 1/5, c4 = 7/10
and imposing L to integrate exactly x2, x3, x4, and x5, we obtain b1 = 5/68, b2 = 47/42, b3 =
−5/12, b4 = 80/357 which are of the same value as the coefficients of EHM6(4) method. This
means that M = 6. Choosing K = 3 and P = 0 gives us {x2, x3, e±μx}. Setting c3 = 1/5,c4 =
7/10 and L[h, a]x2 = 0, L[h, a]x3 = 0, L[h, a]e±μx = 0, the following equations are obtained:

(x + h)2 − 2x2 + (x − h)2 − h2
(
2b1 + 2b2 + 2b3 + 2b4

)
= 0,

(x + h)3 − 2x3 + (x − h)3 − h2
(
b1(6x − 6h) + 6b2x + b3

(
6x +

6
5
h

)
+ b4

(
6x +

21
5
h

))
= 0,

e xp
(
μh

) − 2 +
1

exp
(
μh

) − h2b1μ
2

exp
(
μh

) − h2b2μ
2 − h2b3μ

2 exp
(
1
5
μh

)
− h2b4μ

2 exp
(

7
10

μh

)
= 0,
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1
exp

(
μh

) − 2 + exp
(
μh

) − h2b1μ
2 exp

(
μh

) − h2b2μ
2 − h2b3μ

2 exp
(
−1
5
μh

)

− h2b4μ
2 exp

(
− 7
10

μh

)
= 0.

(3.19)

Solving these equations we get b1, b2, b3 and b4.

Let z = μh. The Taylor series expansions for coefficients of the variable step-size
exponentially fitted explicit hybrid method:

a31 =
4

125
− 172
46875

z2 +
1352

3515625
z4 − 24188

615234375
z6 +

2763464
692138671875

z8 − · · · ,

a32 =
11
125

− 737
187500

z2 +
11099

28125000
z4 − 1557853

39375000000
z6 +

354282923
88593750000000

z8 − · · · ,

a42 =
1071
2000

− 14399
800000

z2 − 1716269
480000000

z4 − 793137431
5760000000000

z6 − 9029960159
3456000000000000

z8 − · · · ,

a43 =
65807

2400000
z2 +

2424421
1440000000

z4 +
220890061

5760000000000
z6 +

4729553527
10368000000000000

z8 + · · · ,

a53 = − 7
144

+
127
7200

z2 +
117733

21600000
z4 +

125191559
362880000000

z6 +
141838603

14515200000000
z8 + · · · ,

a54 =
4

153
− 413
28800

z2 − 42091
43200000

z4 − 3046063
207360000000

z6 − 127567
691200000000

z8 + · · · ,

b1 =
1
68

− 1
4760

z2 +
41

23990400
z4 − 473

49392000000
z6 +

1359917
4231906500000000

z8 − · · · ,

b2 =
11
42

− 3
980

z2 +
41

1646400
z4 − 8041

57624000000
z6 +

1359917
2904249600000000

z8 + · · · ,

b3 =
25
84

+
1

392
z2 − 41

1975680
z4 +

8041
69148800000

z6 − 1359917
3485099520000000

z8 − · · · ,

b4 =
50
357

− 1
3332

z2 +
41

16793280
z4 − 473

34574400000
z6 +

1359917
29623345920000000

z8 + · · · ,

b5 =
2
7
+

1
980

z2 − 41
4939200

z4 +
8041

172872000000
z6 − 1359917

8712748800000000
z8 − · · · ,

b1 =
5
68

− 21
6800

z2 +
5141

53550000
z4 − 4567

1912500000
z6 +

469816672
98960400000000000

z8 − · · · ,

b2 =
47
42

+
13
1400

z2 − 40051
132300000

z4 +
24539

2700000000
z6 − 25871517139

122245200000000000
z8 + · · · ,

b3 = − 5
12

− 1
400

z2 +
263

2700000
z4 − 12433

2700000000
z6 +

1177701697
8731800000000000

z8 − · · · ,

b4 =
80
357

− 11
2975

z2 +
122933

1124550000
z4 − 48097

22950000000
z6 +

30430643147
1039084200000000000

z8 − · · · .

(3.20)
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It is noted that, if z → 0 then the coefficients of EHM6(4) method will be recovered. This is
the important feature of the new method which will be denoted by EEHM6(4) method. In
our program code, we use μ as an imaginary number and thus, z can be written as z = iwh.
We first convert all coefficients (which are in term of z = μh) to trigonometric form by using
computer algebra package Maple. Then, we substitute μ = iw into the resulting expressions.
For small z, the coefficients are subject to heavy cancellations. Since z varies throughout the
integration, therefore it is convenient to use Taylor series expansions for the coefficients of
the method.

4. Stability

Now our interest lies in the stability analysis for an exponentially fitted explicit hybrid
method of the form (2.1) in which its coefficients are functions of one frequency μ and the
step-length h. Applying this method to the test problem

y′′ = −λ2y, λ > 0, (4.1)

we obtain

Y = (e + c)yn − cyn−1 −H2AY, (4.2)

yn+1 = 2yn − yn−1 −H2bTY (4.3)

which is written in vector form where H = λh, Y = (Y1, . . . , Ys)
T , and e = (1, . . . , 1)T . Solving

for Y in (4.2) and then substitute it into (4.3) leads to the following recursion:

yn+1 − S
(
H2, z

)
yn + P

(
H2, z

)
yn−1 = 0, (4.4)

where S(H2, z) = 2 −H2bT (I +H2A)−1(e + c) and P(H2, z) = 1 −H2bT (I +H2A)−1c.
The characteristic equation associated with (4.4) is

ξ2 − S
(
H2, z

)
ξ + P

(
H2, z

)
= 0. (4.5)

The subsequent definitions are introduced to provide the stability concept for exponentially
fitted hybrid methods corresponding to the characteristic equation (4.5). Here, we follow the
main ideas given by Coleman and Ixaru [3].

Definition 4.1. For exponentially fitted hybrid methods corresponding to the characteristic
equation (4.5) and satisfying P(H2, z) = 1, a region of stability Ω is a region of theH-z plane
throughout which |S(H2, z)| < 2. Any closed curve defined by |S(H2, z)| = 2 is a stability
boundary.
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Re(z)

(c)

Figure 1: Stability region of the exponentially fitted method which is based on the higher-order formula of
EHM6(4) method. (a) (H = 0.1, z ∈ C), (b) (H = 0.5, z ∈ C), (c) (H = 1, z ∈ C).

Definition 4.2. For exponentially fitted hybrid methods corresponding to the characteristic
equation (4.5) and satisfying |P(H2, z)| < 1, a region of stability Ω is a region of the H-z
plane such that, for every (H,z) ∈ Ω,

∣∣∣S
(
H2, z

)∣∣∣ < P
(
H2, z

)
+ 1. (4.6)

Any closed curve defined by P(H2, z) = 1 and |S(H2, z)| = P(H2, z)+1 is a stability boundary.
In Figure 1, we illustrate the stability region of the exponentially fitted method which

is based on the higher-order formula of EHM6(4) method whereas, in Figure 2, we show the
stability region of the exponentially fitted method which is based on the lower-order formula
of EHM6(4)method. From Figures 1 and 2, it is observed that the stability regions get smaller
asH increases.

5. Numerical Experiments

The following are abbreviations representing the codes that have been used in the com-
parisons.
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Figure 2: Stability region of the exponentially fitted method which is based on the lower-order formula of
EHM6(4) method. (a) (H = 0.5, z ∈ C), (b) (H = 1, z ∈ C), (c) (H = 2, z ∈ C).

(i) EEHM6(4): Variable step-size exponentially fitted explicit hybrid method derived
in this paper. This method requires four function evaluations at each step.

(ii) EHM6(4): Embedded explicit hybrid method 6(4) pair derived in this paper. This
method requires four function evaluations at each step.

(iii) FRKN4(3): Modified embedded explicit RKN 4(3) pair proposed by Van de Vyver
[10]. This method requires three function evaluations at each step.

We have applied all the above codes to four problems to evaluate their efficiency. For
controlling the step-size in FRKN4(3) code, we use the step-size control procedure discussed
in [10]. In Figures 3, 4, 5, and 6, the efficiency curves of natural logarithm of maximum
global error (MAXGE) versus the computational effort measured by the natural logarithm
of number of function evaluations (NFE) are depicted. The maximum global error (MAXGE)
is given by this formula

MAXGE = max
(∥∥y(xn) − yn

∥∥), (5.1)
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Figure 3: Efficiency curves for Problem 1.

where y(xn) is the true solution and yn is the computed solution. In the following test
problems, the tolerances used are tol = 10−2i, i = 1, . . . , 6. The exact solutions are used to
obtain all the starting values.

Problem 1 (perturbed system). Source: Franco [11]:

y′′
1 + 100y1 +

2y1y2

y2
1 + y2

2

= f1(x), y1(0) = 1, y′
1(0) = ε,

y′′
2 + 25y2 +

y2
1 − y2

2

y2
1 + y2

2

= f2(x), y2(0) = −ε, y′
2(0) = 5

(5.2)

with ε = 10−3 and

f1(x) =
2 cos(10x) sin(5x) + 2ε(sin(5x) sin(x) − cos(10x) cos(x)) − ε2 sin(2x)

cos2(10x) + sin2(5x) + 2ε(sin(x) cos(10x) − cos(x) sin(5x)) + ε2
+ 99ε sin(x),

f2(x) =
cos2(10x) − sin2(5x) + 2ε(sin(x) cos(10x) + cos(x) sin(5x)) − ε2 cos(2x)

cos2(10x) + sin2(5x) + 2ε(sin(x) cos(10x) − cos(x) sin(5x)) + ε2
− 24ε cos(x).

(5.3)

Solution:

y1(x) = cos(10x) + ε sin(x), y2(x) = sin(5x) − ε cos(x), 0 ≤ x ≤ 10. (5.4)
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Figure 4: Efficiency curves for Problem 2.

For EEHM6(4) and FRKN4(3) codes, we choose z = 10i for the first component whereas
z = 5i for the second component.

Problem 2 (linear oscillatory problem). Source: Franco [6]:

y′′
1 = −13y1 + 12y2 + 9 cos(2x) − 12 sin(2x), y1(0) = 1, y′

1(0) = −4,
y′′
2 = 12y1 − 13y2 − 12 cos(2x) + 9 sin(2x), y2(0) = 0, y′

2(0) = 8
(5.5)

with the theoretical solution:

y1(x) = sin(x) − sin(5x) + cos(2x), y2(x) = sin(x) + sin(5x) + sin(2x), 0 ≤ x ≤ 10 (5.6)

For EEHM6(4) and FRKN4(3) codes, we choose z = 5i.

Problem 3 (perturbed system). Source: Hans Van de Vyver [10]:

y′′
1 + 25y1 + ε

(
y2
1 + y2

2

)
= εf1(x), y1(0) = 1, y′

1(0) = 0,

y′′
1 + 25y2 + ε

(
y2
1 + y2

2

)
= εf2(x), y2(0) = ε, y′

1(0) = 5
(5.7)
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Figure 5: Efficiency curves for Problem 3.

with ε = 10−3 and

f1(x) = 1 + ε2 + 2ε sin
(
5x + x2

)
+ 2 cos

(
x2
)
+
(
25 − 4x2

)
sin

(
x2
)
,

f2(x) = 1 + ε2 + 2ε sin
(
5x + x2

)
− 2 sin

(
x2
)
+
(
25 − 4x2

)
cos

(
x2
)
.

(5.8)

Solution:

y1(x) = cos(5x) + ε sin
(
x2
)
, y2(x) = sin(5x) + ε cos

(
x2
)
, 0 ≤ x ≤ 5 (5.9)

For EEHM6(4) and FRKN4(3) codes, we choose z = 5i.

Problem 4 (the undamped Duffing equation). Source: Van de Vyver [10]:

y′′ = −y − y3 + B cos(vx), y(0) = 0.200426728067, y′(0) = 0, (5.10)

where B = 1/500 and v = 1.01. The exact solution computed by the Galerkin method with a
precision 10−12 of the coefficients is given by

y(x) = A1 cos(vx) +A3 cos(3vx) +A5 cos(5vx) +A7 cos(7vx) +A9 cos(9vx), 0 ≤ x ≤ 20,
(5.11)

where A1 = 0.200179477536, A3 = 2.46946143 · 10−4, A5 = 3.04014 · 10−7, A7 = 3.74 · 10−10, and
A9 = 0.000000000000. For EEHM6(4) and FRKN4(3) codes, we choose z = i.
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Figure 6: Efficiency curves for Problem 4.

From Figures 3–5, it is obvious that EEHM6(4) performs more efficiently than
EHM6(4) and FRKN4(3) codes for solving Problems 1–3. For Problem 4, EEHM6(4) is as
efficient as EHM6(4) code.

6. Conclusions

The embedding approach for hybrid methods has been devised by adopting the embedding
concept in RKN methods. By using this embedding approach, we present Franco’s sixth-
order explicit hybrid method for variable step-size code, denoted as EHM6(4)method. Based
on EHM6(4) method, the new variable step-size exponentially fitted hybrid method has
been developed and it is denoted as EEHM6(4) method. The numerical results show that
EEHM6(4) method is efficient for the numerical solution of oscillatory problems. Further-
more, EEHM6(4) method is preferable to handle perturbed oscillators.
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