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The limit set of a topological transformation group on S1 generated by two generators is proved
to be totally disconnected (or thin) and perfect if the conditions (i–v) are satisfied. A concrete
application to a Doubly Periodic Riccati equation is given.

1. Introduction

The conception limit set of a transformation group plays an important role in both theory and
application of modern mathematics.

Assume that Γ is a transformation group (or semigroup) formedwith some continuous
self-mapping on a Hausdorff space X. For any x0 ∈ X, the set

Γ(x0) =
{
γ(x0) | γ ∈ Γ

}
(1.1)

is called an orbit through x0 under the action of Γ. For any subset A of X, let

Γ(A) =
⋃

x∈A
Γ(x). (1.2)

A subset A of X is called a Γ-invariant set if

Γ(A) = A. (1.3)
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A subset A of X is called the least invariant set of Γ if it is a nonempty closed invariant set,
in which there is not any nonempty closed proper subset which is Γ-invariant. Based on the
continuity of the elements in Γ, it is easy to obtain the following proposition.

Proposition 1.1. Let A be a least invariant set of Γ. For any x0 ∈ X, if there is such a point a ∈ A
that

a ∈ Γ(x0), (1.4)

then

A ⊂ Γ(x0). (1.5)

For any x0 ∈ X, a least invariant set A of Γ is called a limit set of the orbit Γ(x0) if

A ⊂ Γ(x0). (1.6)

It is easy to prove the following proposition.

Proposition 1.2. If the topology space X is compact, then under the action of the transformation
group (or semigroup) Γ, any least invariant set is perfect if it is not finite.

Therefore, it is quite possible that a limit set A under the action of Γ may be totally
disconnected and perfect (a Cantor set), and that A may be with fractal structure when some
measure is attached.

It is an important subject in the modern nonlinear science to study the exact structure
of the limit set for a given nonlinear system, especially, to determine if the limit set is a totally
disconnected and perfect set (for simple, called a Cantor set). However, it is usually not an
easy task to do so, because of the strong nonlinearity and nonintegrability of the system. So
it is necessary to explore the conditions for the existence of Cantor-type limit set.

As an example, a traditional dynamical system is a continuous (or discrete) group or
a semigroup φt (or φn), acting on a manifold M. The related group or semigroup is usually
generated by a single generator. Both the ω-limit set and α-limit set of an orbit through a point
x0 are limit sets of the corresponding group by the present definition [1]. If a least invariant
set or a limit set of a dynamical system is Cantor type, then the related complicated motion is
described as deterministic chaos. This kind of complicated motion has been considered widely.
And some methods for determining if the least invariant set of a dynamical system is Cantor
type, such as Melnikov function method, have been well developed.

In the study of structures of high-dimensional leaves of a foliation inmodern geometry
theory, or concretely, for a differential equation in the complex domain, in the study of
structures of the foliation formed with the solution manifolds (Riemann surfaces) as its
leaves in phase space, it is in need to study the corresponding monodromy group or holonomy
group, which is a kind of representative of the fundamental group of the foliation on its
leaf [2–4]. Different to the dynamic system, the monodromy group is usually generated by
several generators. Clearly, a complicated limit set of a monodromy group should reflect the
complicated structure of the corresponding foliation and its leaves.
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Besides the interest in geometry, the structure of the least invariant set of the mon-
odromy group usually relates the integrability of the corresponding ordinary differential
equation. In different theories on the integrability of ordinary differential equations, such
as the analytical theory [3, 5, 6], Lie group theory [7, 8], differential Galois theory [9–11], and
so forth, it is commonly implied that, for almost all of the integrable ordinary differential
equations, the least invariant sets of foliations in complex domain should have a simple
structure, or precisely, the corresponding monodromy groups should be solvable [3, 10].

Concretely, for a second-order linear homogeneous ordinary equation with rational
function coefficients, it is well known that every second-order linear homogeneous ordinary
equation is corresponding to a Riccati equation [12]; if it is integrable in quadratures,
then every least invariant set (including the limit set) of the monodromy group for the
corresponding Riccati equation should be a finite set, and each finite least invariant set
is corresponding to an algebraic curve solution of the Riccati equation. Otherwise, if a
limit set of the monodromy group is not finite, especially if it is of Cantor type, then the
Riccati equation and its corresponding second-order linear homogeneous ordinary equation
is clearly not integrable in quadratures.

In order to investigate a Riccati equation with more complicated coefficients, Guan et
al. studied a concrete doubly periodic Riccati equation with a Weierstrass elliptic function
coefficient [13–18]; Guan considered its monodromy group and proposed roughly a method
to check if its limit set is Cantor type based on numerical result.

In the present paper, this method is improved into a theorem in a more exact and more
general form in Section 2. Combining the result in [19], the critical parameter for the existence
of Cantor limit set is given exactly in Section 3.

2. The Theorem and Proof

Theorem 2.1. Let Γ be a transformation group on the 1-dimensional sphere,

S1 =
R

Z
. (2.1)

G is generated by two generators a and b, where a and b are both homeomorphic transformations onto
S1. The least invariant set of Γ is totally disconnected and perfect and is also the unique limit set of
any orbit Γ(x) if all of the following conditions (i–v) are satisfied.

(i) Both a and b have exactly two fixed points in S1, α1, α2, and β1, β2, respectively, that is,

a(αi) = αi, b
(
βi
)
= βi, i = 1, 2, (2.2)

where β1 is located in the inside of one of the two arcs of S1 separated by α1 and α2, while β2 is located
in the inside of the other one.

(ii) The arcs ̂α1β1α2 and ̂α1β2α2 are both invariant sets of a, that is,

a: ̂α1β1α2 �−→ ̂α1β1α2, a: ̂α1β2α2 �−→ ̂α1β2α2, (2.3)
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and the arcs ̂β1α1β2 and ̂β1α2β2 are both invariant sets of b.

(iii) For both i = 1 and i = 2,

lim
n→∞

an
(
βi
)
= α2, lim

n→∞
a−n

(
βi
)
= α1,

lim
n→∞

bn(αi) = β2, lim
n→∞

b−n(αi) = β1.
(2.4)

(iv) The commutator of a and b,

h = b−1a−1ba(∈ Γ), (2.5)

has exactly two different fixed points ξ1 and η1 located in the inside of the arc α̂1β1, that is,

ξ1, η1 ∈
(̂
α1β1

)
. (2.6)

where ξ1 is closer to α1 than η1. In this paper, ̂(α1β1) represents the open arc without two ends α1 and
β1, and ̂[α1β1] represent, the closed arc with the two ends α1 and β1,

(v) Under the actions of a and b, the points ξ1 and η1 are transformed into other three arcs
different to α̂1β1:

ξ2 = a(ξ1), η2 = a
(
η1
)
, ξ2, η2 ∈

(̂
β1α2

)
,

ξ3 = b(ξ2), η3 = b
(
η2
)
, ξ3, η3 ∈

(̂
β2α2

)
,

ξ4 = b(ξ1), η4 = b
(
η1
)
, ξ4, η4 ∈

(̂
α1β2

)
.

(2.7)

Proof. Let

I0 = ̂(ξ1η1). (2.8)

By the homeomorphic property of transformations and conditions (ii) and (v), we can see

(̂
ξ2η2

)
= a(I0),

(̂
ξ3η3

)
= b(a(I0)),

(̂
ξ4η4

)
= b(I0)

(
= a−1(b(a(I0)))

)
.

(2.9)
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Let

O(0) = I0
⋃

a(I0)
⋃

b(a(I0))
⋃

b(I0), (2.10)

and let

F(0) = S1 \O(0); (2.11)

then the following facts and conclusions can be derived step by step.

Fact 1. The closed set F(0) is formed with following four separated closed arcs:

Fα1 =
̂

[
η4α1ξ1

]
,

Fα2 =
̂

[
η2α2ξ3

]
,

Fβ1 =
̂

[
η1β1ξ2

]
,

Fβ2 =
̂

[
η3β2ξ4

]
.

(2.12)

Fact 2. Obviously,

a(Fα1) = Fβ2

⋃
Fβ1

⋃
Fα1

⋃
I0
⋃

b(I0),

a−1(Fα2) = Fβ2

⋃
Fβ1

⋃
Fα2

⋃
a(I0)

⋃
b(a(I0)),

b
(
Fβ1

)
= Fα2

⋃
Fα1

⋃
Fβ1

⋃
I0
⋃

a(I0),

b−1(Fβ2

)
= Fα2

⋃
Fα1

⋃
Fβ2

⋃
b(I0)

⋃
b(a(I0)).

(2.13)

Fact 3. From (i), (ii), and (iii), it follows that

lim
n→∞

an(x) = α2, lim
n→∞

a−n(x) = α1, ∀x ∈ S1 \ {α1, α2}, (2.14)

and that

lim
n→∞

bn(x) = β2, lim
n→∞

b−n(x) = β1, ∀x ∈ S1 \ {β1, β2
}
. (2.15)

Fact 4. Clearly, the commutator h of a and b is also a homeomorphic transformation. From
the condition (iv), it follows that, either

lim
n→−∞

hn(x) = ξ1, lim
n→+∞

hn(x) = η1 (2.16)
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or

lim
n→−∞

hn(x) = η1, lim
n→+∞

hn(x) = ξ1 (2.17)

if

x ∈ S1 \ {ξ1, η1
}
. (2.18)

Fact 5. Let Z0 represent the set of all nonzero integers, and let

Fα = Fα1

⋃
Fα2 , Fβ = Fβ1

⋃
Fβ2 ; (2.19)

then the family of transformations {am}m∈Z0
changes Fβ into a family of separated closed arcs

in Fα, which are condensed at α1 and α2, and the family of transformation {bm}m∈Z0
changes

Fα into a family of separated closed arcs in Fβ with β1 and β2 as their condensation points.

Fact 6. Let

Fα(1) =
⋃

m∈Z0

am
(
Fβ

) ⊂ Fα,

Fβ(1) =
⋃

m∈Z0

bm(Fα) ⊂ Fβ,
(2.20)

and let

O(1) =
⋃

m∈Z

[
am(O(0))

⋃
bm(O(0))

]
,

F(1) = Fα(1)
⋃

Fβ(1);

(2.21)

then it follows that

F(1) = S1 \O(1). (2.22)

For an integer n greater than 1, we may inductively let

Fα(n) =
⋃

m∈Z0

am
(
Fβ(n − 1)

) ⊂ Fα(n − 1),

Fβ(n) =
⋃

m∈Z0

am(Fα(n − 1)) ⊂ Fβ(n − 1),

O(n) =
⋃

m∈Z

[
am(O(n − 1))

⋃
bm(O(n − 1))

]
⊃ O(n − 1),

F(n) = Fα(n)
⋃

Fβ(n)
(
= S1 \O(n)

)
.

(2.23)
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Clearly, the closed set F(n) is formed with a family of separated closed arcs and their
condensation points. The ends of these closed arcs belong to the set

Γ(ξ1)
⋃

Γ
(
η1
)
, (2.24)

and these condensation points belong to the set

V = Γ(α1)
⋃

Γ(α2)
⋃

Γ
(
β1
)⋃

Γ
(
β2
)
. (2.25)

Obviously,

F(n) ⊃ F(n + 1). (2.26)

Fact 7. Let P(n) be the set of the ends of all separated closed arcs in F(n), and let

B = Γ(ξ1)
⋃

Γ
(
η1
)
. (2.27)

From the Fact 3 obtained, it follows that

P(n) ⊂ P(n + 1) ⊂ B,

B =
⋃

n

P(n).
(2.28)

Both B and B are obvious invariants under the action of Γ.

Fact 8. From the Facts 3 and 4, it follows that

B = V . (2.29)

Fact 9. Clearly, by the construction of the sets O(n),

Γ(I0) = Γ(O(0)) =
⋃

n∈N
O(n), (2.30)

and for any elements a1 and a2 in Γ, if

a1(I0)
⋂

a2(I0)/= ∅ (
empty set

)
, (2.31)

then

a1(I0) = a2(I0). (2.32)

Γ(I0) is an Γ invariant open set.
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Fact 10. By the definition of B,

B
⋂

Γ(I0) = ∅, (2.33)

and from Facts 3, 4, and 8,

V = B ⊂ Γ(I0). (2.34)

Fact 11. Let

L = V
(
= B

)
. (2.35)

Then from Fact 10, it is easy to see that there is no inner point in the closed set L. And from
the Fact 3 and 4, it follows that

L ⊆ Γ(x), ∀x ∈ S1, (2.36)

and that there is no isolated point in L. Therefore, L, as a limit set of Γ, is a totally disconnected
and perfect set.

Fact 12. From Facts 3 and 4, it is easy to see that

L = V = B = Γ(α1) = Γ(α2) = Γ
(
β1
)
= Γ

(
β2
)
= Γ(ξ1) = Γ

(
η1
)
. (2.37)

It follows that L is a least invariant closed set of Γ.
The theorem has been proved through the above facts.

3. Application of the Theorem

In [13]we considered a doubly periodic Riccati equation in the complex domain:

dz

dt
= z2 − λ
(t), z, t ∈ C, (3.1)

where the coefficient 
(t) is a Weierstrass elliptic function satisfying

[

′(t)

]2 = 4
[

2(t) − 1

]

(t), 
(0) = 0,


(t + T) = 
(t + iT) = 
(t), ∀t ∈ C,

(3.2)
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where

T =
Γ(1/2)Γ(1/4)

2Γ(3/4)
(3.3)

is the real period of 
(t).
Because of the doubly periodicity, (3.1) can be treated as a differential equation defined

on the torus T2 [18].
By the numerical results, we guessed that the solution space may have a fractal limit

set when λ < 0.
In [18], Guan had qualitatively proved the existence of the fractal structure for λ ∈

(−∞, λ0), where the critical value λ0 was evaluated approximately as −0.227.
In [19], using the symmetries of (3.1), Guan et al. obtained the exact formulae of two

generatorsE andU of themonodromy groupG of (3.1), which are represented by theMöbius

transformations on the extended complex plane Ĉ as follows:

E(c) = e2τc,

U(c) =
i sinh τ + c cosh τ

cosh τ − ic sinh τ
,

∀c ∈ Ĉ, (3.4)

where the parameter τ depends on the parameter λ in (3.1) through

sinh2(τ) = cos

(√
1 + 4λ
2

π

)

. (3.5)

In addition, it is proved further that

τ = μT, (3.6)

where μ is the Floquet exponent of the related second-order linear ordinary differential
equation

ü − λ
(t)u = 0. (3.7)

Therefore, (3.4), (3.5), and (3.6) give the exact relation between the generators of the
monodromy group, the Floquet exponent and the parameter λ in the equation. In the theory
of the differential equations, this is a very rare case that these exact relations could be
obtained.

Now by the exact relation (3.4) and (3.5), we may see that, if

λ ≤ 0, or λ ∈ [2n(2n − 1), 2n(2n + 1)], n ∈ N, (3.8)

then the extended imaginary axis, the left half complex plane corresponding to the negative
real part, and the right half complex plane corresponding to the positive real part are all
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G-invariant sets. And the extended imaginary axis is just homeomorphic to S1, in which
the points c1 = 0, c2 = ∞, c3 = i, and c4 = −i are, respectively, the fixed points of E and
U. Notice that, if and only if the real parameter λ satisfies

λ < −1
4
, (3.9)

then

cos

(√
1 + 4λ
2

π

)

> 1, (3.10)

so that, either

e2τ > 3 + 2
√
2, (3.11)

or

0 < e2τ < 3 − 2
√
2, (3.12)

and that the commutator of E and U, H = U−1E−1UE, has exactly two different fixed points
on the extended imaginary axis,

ξ1 =

[
1 − e2τ +

√
(1 − e2τ)2 − 4e2τ

]
i

2e2τ
,

η1 =

[
1 − e2τ −

√
(1 − e2τ)2 − 4e2τ

]
i

2e2τ
.

(3.13)

In this case, either the two fixed points are both located in the interval between the
points c4 = −i and c1 = 0, if e2τ > 3 + 2

√
2 is hold, or they are both located in the interval

between c3 = i and c2 = ∞, if 0 < e2τ < 3 − 2
√
2 is hold. It is easy to prove further that

the conditions (i)–(v) are all satisfied if λ < −1/4. Therefore, the least invariant set of G on
the extended imaginary axis is totally disconnected and perfect. So, by the theorem obtained,
the critical value of λ for the existence of the Cantor limit set can be exactly determined as
λ0 = −1/4.

Now, it can be seen that, if λ < −1/4, the doubly periodic Riccati equation (3.1) is not
integrable by quadratures, and the limit set of foliation of the equation is like a Cantor book,
since each point in the limit set of the monodromy group is corresponding to a piece of leaf
of the foliation’s limit set [18].

The related Hausdorff dimension of the least invariant set of the monodromy group is
evaluated in [18] through some measure consideration.
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4. Conclusion

The theorem obtained provides the condition for determining if a transformation group on S1

with two generators has a Cantor-like limit set. The example in Section 3 shows this theorem
can be applied to the study of the complexity of the limit sets of foliations. This theorem can
also be applied to the theory of discrete groups to determine if a discrete group is a Fuchsian
group of the second kind [20].
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