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The aim of this paper is the variational study of the contact with adhesion between an elastic
material and a rigid foundation in the quasistatic process where the deformations are supposed
to be small. The behavior of this material is modelled by a nonlinear elastic law and the contact is
modelled with Signorini’s conditions and adhesion. The evolution of bonding field is described by
a nonlinear differential equation. We derive a variational formulation of the mechanical problem,
and we prove the existence and uniqueness of the weak solution using a theorem on variational
inequalities, the theorem of Cauchy-Lipschitz, a lemma of Gronwall, as well as the fixed point of
Banach.

1. Introduction

The phenomena of contact with or without friction between deformable bodies or between
deformable and rigid bodies abound in industry and everyday life. The contact of the tires
with the roads, the shoe with disc of break, pistons with skirts are current examples. Because
of the importance of contact process in structural and mechanical systems, a considerable
effort has been made in its mathematical modeling, mathematical analysis, and numerical
simulations.

Process of adhesion is important in many industrial settings where parts, nonmetallic,
are glued together. Recently, composite materials reached prominence, since they are very
strong and light, and therefore, of considerable importance in aviation, space exploration,
and in the automotive industry. Composite materials may undergo delamination under
stress, a process in which different layers debond and move relatively to each other. To
model the process when bonding is not permanent and debonding may take place, there is
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a need to add adhesion to the description of the contact process. For these reasons, adhesive
contact between bodies when a glue is added to prevent the surfaces from relative motion,
has recently received increased attention in the mathematical literature. In this paper we
introduce an internal variable of surface, known as bonding field and denoted in this paper
by β, which describes the fractional density of active bonds on the contact surface. When β = 1
at a point of contact surface, the adhesion is complete and all the bonds are active; when β = 0
all the bonds are inactive, severed, and there is no adhesion; when 0 < β < 1 the adhesion is
partial and only a fraction of the bonds is active. The problems of contact with adhesion were
studied by several authors. Significant results on these problems can be found in [1–7] and
references therein.

Here, the novelty consists in the introduction of the bonding field into the contact
between a material elastic and a rigid foundation where the process is quasistatic and the
material is modelled by a nonlinear elastic law. The main contribution of this study lies in the
proof of existence and uniqueness of the weak solution of the mechanical problem.

This work is organized as follows. In Section 2 we present some notations and
preliminaries. In Section 3 we state the mechanical models of elastic contact with adhesion,
list the assumptions on the data of the mechanical problem and deduce its variational
formulation. In Section 4 we state and prove the existence of a unique weak solution to the
mechanical problem; the proof is based on arguments of evolutionary equations and Banach
fixed point.

2. Notations and Preliminaries

In this section, we specify the standard notations used and we remind of some definitions
and necessary results for the study of this mechanical problem.

We denote by SN the space of second order symmetric tensors on R
N (N = 2, 3)while

“·” and | · | represent the inner product and the Euclidean norm on R
N and SN , respectively.

Thus, for every u, v ∈ R
N , and σ, τ ∈ SN we have

u · v = uivi, |u| = (u · u)1/2, σ · τ = σijτij , |σ| = (σ · σ)1/2. (2.1)

Here and below, the indices i, j run between 1,N and the summation convention over
repeated indices is adopted.

Let Ω ⊂ R
N be a bounded domain with a Lipschitz boundary Γ and let ν denote the

unit outer normal on Γ. Moreover, we use also the spaces

H =
{
u = (ui)/ui ∈ L2(Ω)

}
, H =

{
σ =

(
σij

)
/σij = σji ∈ L2(Ω)

}
,

H1 = {u ∈ H/ε(u) ∈ H}, H1 = {σ ∈ H/Divσ ∈ H},
(2.2)

where ε :H1→H, Div :H→H are the deformation and the divergence operators, respectively,
defined by

ε(u) =
(
εij(u)

)
, εij(u) =

1
2
(
∂jui + ∂iuj

)
, Divσ =

(
∂jσij

)
. (2.3)
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The spaces H, H, H1, and H1 are real Hilbert spaces endowed with the canonical inner
products given by

〈u, v〉H =
∫

Ω
uividx, ∀u, v ∈ H,

〈σ, τ〉H =
∫

Ω
σijτijdx, ∀σ, τ ∈ H,

〈u, v〉H1
= 〈u, v〉H + 〈ε(u), ε(v)〉H, ∀u, v ∈ H,

〈σ, τ〉H1
= 〈σ, τ〉H + 〈Divσ,Div τ〉H, ∀σ, τ ∈ H.

(2.4)

The associated norms are denoted by | · |H , | · |H, | · |H1
, and | · |H1

, respectively.
Since the boundary Γ is Lipschitz continuous, the unit outward normal vector ν on

the boundary is defined almost everywhere for every vector field u ∈ H1, we also use the
notation u for the trace of u on Γ and we denote by uν and uτ the normal and tangential
components of u on the boundary Γ given by

uν = u · ν, uτ = u − uνν. (2.5)

For a regular (say C1) stress field σ, the application of its trace on the boundary to ν is the
Cauchy stress vector σν. We define, similarly, the normal and tangential components of the
stress on the boundary Γ by

σν = (σν) · ν, στ = σν − σνν. (2.6)

And we recall that the following Green’s formula holds

〈σ, ε(u)〉H + 〈Divσ, u〉H =
∫

Γ
σνuds, ∀u ∈ H1. (2.7)

Let Γ1 be a measurable part of Γ such that meas Γ1 > 0 and let V be the closed subset of H1

defined by

V = {v ∈ H1/v = 0 on Γ1}. (2.8)

Since measΓ1 > 0, then Korn’s inequality holds, and thus there exists a constant c > 0,
depending only on Ω and Γ1 such that

|ε(u)|H ≥ c|u|H1
∀u ∈ V . (2.9)

A proof of Korn’s inequality may be found in [8, page 79].
We define the inner product over the space V by

〈u, v〉V = 〈ε(u), ε(v)〉H, ∀u, v ∈ V. (2.10)
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It follows from Korn’s inequality that | · |V and | · |H1
are equivalent norms on V . Therefore

(V, | · |V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem, there exists a positive
constant c > 0, depending only on Ω, Γ1 and Γ3 such that

|v|L2(Γ3)
N ≤ c|v|V , ∀v ∈ V. (2.11)

Finally, we shall use the notation Q for the set defined by

Q =
{
β ∈ C

(
0, T ;L2(Γ3)

)
: 0 ≤ β(t) ≤ 1 ∀t ∈ [0, T] a.e. on Γ3, β(0) = β0

}
. (2.12)

We end this preliminary with the following version of the classical theorem of Cauchy-
Lipschitz which can be found in [9, page 60].

Theorem 2.1. Assume that (X, | · |X) is a real Banach space. Let F(t, ·) : X → X be an operator
defined almost everywhere on ]0, T[, satisfying the following conditions:

(1) |F(t, u) − F(t, v)|X ≤ LF |u − v|X ∀u, v ∈ X a.e. t ∈ ]0, T[, for some LF ,

(2) t 
→ F(t, u) ∈ Lp([0, T];X), ∀u ∈ X, and some p ≥ 1.

Then, for every u0 ∈ X, there exists a unique function u ∈ W1,p([0, T];X) such that

u̇(t) = F(t, u(t)) a.e. t ∈ ]0, T[,

u(0) = u0.
(2.13)

This theorem will be used in Section 4 to prove the theorem of existence and unique-
ness of weak solution of the mechanical problem.

3. Problem Statement and Variational Formulation

We consider an elastic material which occupies a bounded domain Ω ⊂ R
N (N = 2, 3) and

assume that its boundary Γ is regular and partitioned into three disjoint measurable parts Γ1,
Γ2, and Γ3 such that meas Γ1 > 0. Let [0, T] be the time interval of interest, where T > 0. The
material is clamped on Γ1 × ]0, T[ and therefore the displacement field vanishes there. We also
assume that a volume force of density f0 acts inΩ× ]0, T[ and that a surface traction of density
f2 acts on Γ2 × ]0, T[. On Γ3 × ]0, T[ the material may come in contact with arigid foundation.
Moreover, the process is quasistatic and the evolution of the bonding field is described by a
nonlinear differential equation.

Under these conditions, the formulation of the mechanical problem is the following.
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Problem P. Find a displacement field u : Ω × [0, T] → R
N , a stress field σ : Ω × [0, T] → SN

and a bonding field β : Γ3 × [0, T] → [0, 1] such that

σ(t) = F (ε(u(t))) in Ω × ]0, T[, (3.1)

Divσ(t) + f0(t) = 0 in Ω × ]0, T[, (3.2)

u = 0, on Γ1 × ]0, T[, (3.3)

σν = f2, on Γ2 × ]0, T[, (3.4)

uν ≤ 0, σν + γνR(uν)β2 ≤ 0,
(
σν + R(uν)β2

)
uν = 0, on Γ3 × ]0, T[, (3.5)

στ = 0, on Γ3 × ]0, T[, (3.6)

β̇ = −
(
γνβ[(−R(uν))+]

2 − εa
)
+
, on Γ3 × ]0, T[, (3.7)

β(0) = 0, on Γ3. (3.8)

Here (3.1) is the nonlinear elastic constitutive law. Equation (3.2) represents the equilibrium
(3.3) and (3.4) are the displacement-traction boundary conditions, respectively. Conditions
(3.5) represent the Signorini conditions with adhesion where γν is a given adhesion coefficient
and R is the truncation operator defined by

R(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L, if s ≥ L,

s, if |s| < L,

−L, if s ≤ −L.
(3.9)

Here L > 0 being the characteristic length of the bond, beyond which it does not offer
additional traction. The introduction of the operator R, defined below, is motivated by the
mathematical argument but is not restrictive in terms of application, since no restriction on
the size of the parameter L is made in the sequel. Thus, by choosing L very large, we can
assume that R(uν) = uν and, therefore, from (3.5) we recover the contact conditions:

uν ≤ 0, σν + γνuνβ
2 ≤ 0,

(
σν + uνβ

2
)
uν = 0, on Γ3 × ]0, T[, (3.10)

it follows from (3.5) that there is no penetration between the material and the foundation,
since uν ≤ 0 during the process. Also, note that when the bonding vanishes, then the contact
conditions (3.5) become the classical Signironi contact conditions with zero gap function, that
is,

uν ≤ 0, σν ≤ 0, στ = 0, σνuν = 0, on Γ3 × ]0, T[. (3.11)

Condition (3.6) represents the frictionless contact and shows that the tangential stress
vanishes on the contact surface during the process. Equation (3.7) describes the evolution
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of the bonding field with given material parameters γν and εa. Also, the data β0 in (3.8) is the
given initial bonding field.

Assumptions. For the variational study of the mechanical problem, we assume that the
operator F satisfies the following conditions:

F : Ω × SN −→ SN such that ∃m > 0 such that (F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ m|ε1 − ε2|2

a.e. x ∈ Ω ∀ε1, ε2 ∈ SN,

(3.12a)

∃L > 0 such that |F(x, ε1) − F(x, ε2)| ≤ L|ε1 − ε2|

a.e. x ∈ Ω ∀ε1, ε2 ∈ SN,
(3.12b)

The mapping x 
−→ F(x, ε) is Lebesgue measurable

a.e. x ∈ Ω, ∀ε ∈ SN,
(3.12c)

The mapping x 
−→ F(x, 0) ∈ H. (3.12d)

We suppose that the adhesion coefficients satisfy

γν ∈ L∞(Γ3), εa ∈ L2(Γ3), γν, εa ≥ 0 a.e. on Γ3. (3.13)

And the body forces and surface traction have the regularity:

f0 ∈ W1,∞(0, T ;H), f2 ∈ W1,∞
(
0, T ;L2(Γ2)N

)
. (3.14)

The initial data satisfy

β0 ∈ Q. (3.15)

We use the convex subset of admissible displacements defined by

U = {u ∈ V such that uν ≤ 0 on Γ3}. (3.16)

It follows from (3.14) and Riesz-Frechet representation theorem that there exists a unique
function f : [0, T] → V such that:

〈
f(t), v

〉
V =

〈
f0(t), v

〉
H +

〈
f2(t), v

〉
L2(Γ2)

N ∀v ∈ V, t ∈ ]0, T[. (3.17)

Moreover, we note that the conditions (3.14) imply

f ∈ W1,∞(0, T ;V ). (3.18)
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Finally, we define the adhesion functional j : L∞(Γ3) × V × V → R by

j
(
β, u, v

)
= −

∫

Γ3
γνβ

2(−R(uν))+vνds. (3.19)

3.1. Variational Formulation

By applying Green’s formula, and using the equilibrium equation and the boundary con-
ditions, we easily deduce the following variational formulation of the mechanical Problem
P.

Problem PV. Find a displacement u : [0, T] → V , and a bonding field β : [0, T] → L∞(Γ3)
such that:

u(t) ∈ U, 〈F(ε(u(t))), ε(v − u(t))〉H + j
(
β(t), u(t), v − u(t)

) ≥ 〈
f(t), v − u(t)

〉
V

∀v ∈ U, t ∈ ]0, T[,
(3.20)

β̇(t) = −
(
γνβ(t)[(−R(uν(t)))+]

2 − εa
)
+
a.e. t ∈ ]0, T[, (3.21)

β(0) = β0. (3.22)

Note that the variational Problem PV is formulated in terms of displacement and bonding
field, since the stress field was eliminated. However, if the solution (u, β) of these variational
problems is known, the corresponding stress field σ can be easily obtained by using the
nonlinear elastic law (3.1).

Below in this subsection β, β1, and β2 denote various elements of Q, and u, u1, u2, and
v represent elements of V , and c > 0 represent constants which may depend on Ω, Γ1, Γ3,
γν, and L. Note that the adhesion functional j is linear with respect to the last argument and
therefore

j
(
β, u,−v) = −j(β, u, v). (3.23)

Next using (3.19), as well as the properties (3.9) of the truncation operator R, we find

j
(
β1, u1, u2 − u1

)
+ j

(
β2, u2, u1 − u2

) ≤ c

∫

Γ3

∣∣β1 − β2
∣∣|u1 − u2|ds. (3.24)

And by the Sobolev theorem trace we obtain

j
(
β1, u1, u2 − u1

)
+ j

(
β2, u2, u1 − u2

) ≤ c
∣∣β1 − β2

∣∣
L2(Γ3)

|u1 − u2|V . (3.25)

We now take β = β1 = β2 in (3.25) to deduce

j
(
β, u1, u2 − u1

)
+ j

(
β, u2, u1 − u2

) ≤ 0. (3.26)
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Similar computations, based on the Lipschitz continuity of R, show that the following
inequality also holds

∣∣j(β, u1, v
) − j

(
β, u2, v

)∣∣ ≤ c|u1 − u2|V |v|V . (3.27)

We take u1 = v and u2 = 0 in (3.26) then we use equality R(0) = 0 and (3.23) to obtain

j
(
β, v, v

) ≥ 0. (3.28)

The inequalities (3.25)–(3.28)will be used in various places to prove the theorem of existence
and uniqueness of the weak solution.

4. Existence and Uniqueness of Weak Solution

Theorem 4.1. Assume that (3.12a)–(3.15) hold. Then there exists a unique solution (u, β) to Problem
PV and it satisfies

u ∈ W1,∞(0, T ;V ),

β ∈ W1,∞(0, T ;L∞(Γ3)).
(4.1)

A triple (u, σ, β) which satisfies (3.1) and (3.20)–(3.22) is called weak solution of
the mechanical Problem P. We conclude that under the stated assumptions, the mechanical
problem has a unique weak solution. The regularity of the weak solution in terms of stress is
given by

σ ∈ W1,∞(0, T ;H1). (4.2)

Indeed, taking v = ϕ ∈ D∞(Ω) in (3.20) and using (3.1), (3.17)we find:

Divσ(t) + f0(t) = 0. (4.3)

Now (3.14) and (4.3) imply that Divσ ∈ W1,∞(0, T ;H), which in its turn implies σ ∈
W1,∞(0, T ;H1).

The proof of Theorem 4.1 will be carried out in several steps. In the first step we
consider the following problem in which β ∈ Q, is given.

Problem 1. Find a displacement uβ : [0, T] → V such that

uβ(t) ∈ U, F
〈(
ε
(
uβ(t)

))
, ε
(
v − uβ(t)

)〉
H + j

(
β(t), uβ(t), v − uβ(t)

) ≥ 〈
f(t), v − uβ(t)

〉
V

∀v ∈ U, t ∈ ]0, T[.
(4.4)

We have the following result.
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Lemma 4.2. There exists a unique solution to Problem 1 which satisfies

uβ ∈ C(0, T ;V ). (4.5)

Proof. Let t ∈ [0, T]. We consider the operator At : V → V defined by

〈Atu, v〉V = 〈F(ε(u(t))), ε(v)〉H + j
(
β(t), u(t), v

) ∀u, v ∈ V. (4.6)

Let u1, u2 ∈ V . We have

〈Atu1 −Atu2, u1 − u2〉V = 〈F(ε(u1)) − F(ε(u2)), ε(u1 − u2)〉H
− j

(
β, u1, u2 − u1

) − j
(
β, u2, u1 − u2

)
.

(4.7)

We use (3.26), (3.12a), Korn’s inequality and the equivalence of the two norms | · |H1

and | · |V to show that

〈Atu1 −Atu2, u1 − u2〉V ≥ c|u1 − u2|2V . (4.8)

The operator At is, therefore, strongly monotone.
Let u1, u2, v ∈ V . We have

|〈Atu1 −Atu2, v〉V | ≤ |〈F(ε(u1)) − F(ε(u2)), ε(v)〉H|
+
∣∣j(β, u1, v

) − j
(
β, u2, v

)∣∣.
(4.9)

Using Cauchy-Schwartz’s inequality, (3.12b) and (3.27), one obtains

|Atu1 −Atu2|V ≤ c|u1 − u2|V . (4.10)

Therefore,At is a continuous Lipschitz operator. SinceU is a nonempty convex closed
subset of V , it follows from the standard results on elliptic variational inequalities that there
exists a unique element uβ, such that

uβ ∈ U,
〈
Atuβ, v − uβ

〉 ≥ 〈
f, v − uβ

〉
V

∀v ∈ U. (4.11)

Using (4.6) we get

uβ(t) ∈ U,
〈
F
(
ε
(
uβ(t)

))
, ε
(
v − uβ(t)

)〉
H + j

(
β(t), uβ(t), v − uβ(t)

)≥ 〈
f(t), v − uβ(t)

〉
V

∀v ∈ U, t ∈ ]0, T[.
(4.12)

We now show that uβ ∈ C(0, T ;V ).
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Let t1, t2 ∈ [0, T]. Denote uβ(ti), β(ti), and f(ti) by ui, βi and fi (for i = 1, 2), respectively.
Then we have

〈F(ε(u1)) − F(ε(u2)), ε(u1 − u2)〉H ≤ 〈
f1 − f2, u1 − u2

〉
V

+ j
(
β1, u1, u2 − u1

)
+ j

(
β2, u2, u1 − u2

)
.

(4.13)

Using (3.12a) we obtain

m|ε(u1 − u2)|2H ≤ 〈
f1 − f2, u1 − u2

〉
V + j

(
β1, u1, u2 − u1

)
+ j

(
β2, u2, u1 − u2

)
. (4.14)

Using Korn’s inequality and the fact that | · |V , | · |H1
are equivalent norms on V ,

Cauchy-Schwartz’s inequality and (3.25)we get

|u1 − u2|V ≤ c
(∣∣f1 − f2

∣∣
V +

∣∣β1 − β2
∣∣
L2(Γ3)

)
. (4.15)

From the previous inequality, the fact that β ∈ Q and the regularity of the function f
given by (3.18), it follows that uβ ∈ C(0, T ;V ).

In the second step we use the displacement field uβ, obtained in Lemma 4.2 and we
consider the following auxiliary problem.

Problem 2. Find a bonding field θβ : [0, T] → L∞(Γ3) such that

θ̇β(t) = −
(
γνθβ(t)

[(−R(uβν(t)
))

+

]2 − εa
)
+

a.e. t ∈ ]0, T[, (4.16)

θβ(0) = β0. (4.17)

We have the following result.

Lemma 4.3. There exists a unique solution to Problem 2 which satisfies

θβ ∈ W1,∞(0, T ;L∞(Γ3)) ∩ Q. (4.18)

Proof. Consider the mapping Fβ : [0, T] × L∞(Γ3) → L∞(Γ3) defined by

Fβ

(
t, θβ

)
= −

(
γνθβ(t)

[(−R(uβν(t)
))

+

]2 − εa
)
+
. (4.19)

It follows from the properties of the truncation operator R, that Fβ is Lipschitz
continuous with respect to the second argument, uniformly in time. Moreover, for any
θβ ∈ L∞(Γ3), the mapping

t 
→ Fβ(t, θβ) belongs to L∞(0, T ;L∞(Γ3)). Then from Theorem 2.1, we deduce the
existence of a unique function θβ ∈ W1,∞(0, T ;L∞(Γ3)), which satisfies (4.16)-(4.17). The
regularity θβ ∈ Q, follows from (4.16)-(4.17) and assumption 0 ≤ β0 ≤ 1 a.e. on Γ3. Indeed,
(4.16) implies that for a.e. x ∈ Γ3, the function t → θβ(x, t) is decreasing and its derivative
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vanishes when γνθβ(t)[(−R(uβν(t)))+]
2 ≤ εa. Combining these properties with the inequality

0 ≤ β0 ≤ 1 we deduce that 0 ≤ θβ(t) ≤ 1, for all t ∈ [0, t], a.e. on Γ3, which shows that
θβ ∈ Q.

In the third step we denote by uβ the solution of Problem 1 and θβ the solution of
Problem 2, for every β ∈ Q. Moreover, we define the operator Λ : Q → Q by

Λβ = θβ. (4.20)

Lemma 4.4. The operator Λ has a unique fixed point β∗.

Proof. We show that for a positive integer p the mapping Λp is a contraction on Q. For this,
suppose that βi are two functions of Q and we denote by ui, θi the functions obtained in
Lemmas 4.2 and 4.3, respectively, for β = βi, (i = 1, 2).

Let t ∈ [0, T]. We use (4.4) and (3.25) to deduce that

〈F(ε(u1(t)) − F(ε(u2(t)))), ε(u1(t) − u2(t))〉H ≤ c
∣∣β1(t) − β2(t)

∣∣
L2(Γ3)

|u1(t) − u2(t)|V . (4.21)

Using the fact that F is a strongly monotone, Korn’s inequality and | · |V , | · |H1
are equi-

valent norms on V , we get

|u1(t) − u2(t)|V ≤ c
∣∣β1(t) − β2(t)

∣∣
L2(Γ3)

, (4.22)

which implies

∫ t

0
|u1(s) − u2(s)|V ds ≤ c

∫ t

0

∣∣β1(s) − β2(s)
∣∣
L2(Γ3)

ds. (4.23)

On the other hand, it follows from (4.16) and (4.17) that

θi(t) = β0 −
∫ t

0

(
γνθi(s)[(−R(uiν(s)))+]

2 − εa
)
+
ds i = 1, 2. (4.24)

And then

|θ1(t) − θ2(t)|L2(Γ3) ≤ c

t∫

0

∣∣∣θ1(s)[(−R(u1ν(s)))+]
2 − θ2(s)[(−R(u2ν(s)))+]

2
∣∣∣
L2(Γ3)

ds. (4.25)

Using the definition (3.9) and writing θ1 = θ1 − θ2 + θ2, we get

|θ1(t) − θ2(t)|L2(Γ3) ≤ c

∫ t

0
|θ1(s) − θ2(s)|L2(Γ3)ds + c

∫ t

0
|u1ν(s) − u2ν(s)|L2(Γ3)ds. (4.26)
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By Gronwall’s inequality and the Sobolev trace theorem, it follows that:

|θ1(t) − θ2(t)|L2(Γ3) ≤ c

∫ t

0
|u1(s) − u2(s)|V ds. (4.27)

Using (4.20) and (4.27), we obtain

∣∣Λβ1(t) −Λβ2(t)
∣∣
L2(Γ3)

≤ c

∫ t

0
|u1(s) − u2(s)|V ds. (4.28)

We now combine (4.23) and (4.28) to see that

∣∣Λβ1(t) −Λβ2(t)
∣∣
L2(Γ3)

≤ c

∫ t

0

∣∣β1(s) − β2(s)
∣∣
L2(Γ3)

ds. (4.29)

And reiterating this inequality p times, yields

∣∣Λpβ1 −Λpβ2
∣∣
C(0,T ;L2(Γ3))

≤ cpTp

p!
∣∣β1 − β2

∣∣
C(0,T ;L2(Γ3))

∀p ∈ N. (4.30)

Recall thatQ is a nonempty closed set in the Banach space C(0, T ;L2(Γ3)) and note that
inequality (4.30) shows that for p sufficiently large Λp : Q → Q, then Λ has a unique fixed
point β∗ ∈ Q.

Now, the proof of the Theorem 4.1, is a consequence of the previous lemmas.

Proof. Existence. Let β∗ ∈ Q be the fixed point of Λ and u∗ be the solution of Problem 1 for
β = β∗, that is, u∗ = uβ∗ . Arguments similar to those used in proof of (4.22) lead to

|u∗(t1) − u∗(t2)|V ≤ c
∣∣β∗(t1) − β∗(t2)

∣∣
L2(Γ3)

∀t1, t2 ∈ [0, T]. (4.31)

Since β∗ = θβ∗ it follows from Lemma 4.3 that β∗ ∈ W1,∞(0, T ;L∞(Γ3)) and therefore
(4.31) implies that u∗ ∈ W1,∞(0, T ;V ). From (4.4), (4.16) and (4.17) we conclude that (u∗, β∗)
is a solution of the Problem PV which satisfies (4.1).

Uniqueness. The uniqueness of the solution is a consequence of the fixed point of the
operator Λ defined by (4.20). Indeed, let (u, β) be a solution of Problem PV which satisfies
(4.1). Since β ∈ Q, it follows from (3.20) that u is solution to Problem 1, but the Lemma 4.2
implies that this problem has a unique solution denoted uβ, we get

u = uβ. (4.32)

We put u = uβ in (3.21) and using the initial condition (3.22) then we can see that β is a
solution to Problem 2, but the Lemma 4.3 implies that this last problem has a unique solution
denoted θβ, we get

β = θβ. (4.33)
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We use now (4.20) and (4.33) to see thatΛβ = β, that is, β is a fixed point of the operator
Λ. It follows now from Lemma 4.4 that

β = β∗. (4.34)

The uniqueness of the solution is now a consequence of (4.32) and (4.34).
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