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In this paper with the help of the inverse function of the singular moduli we evaluate the Rogers-
Ranmanujan continued fraction and its first derivative.

1. Introductory Definitions and Formulas

For |g| < 1, the Rogers-Ramanujan continued fraction (RRCF) (see [1]) is defined as

R(q) = i (1.1)

We also define

n-1
(a:9), =T T(1-aq"),
K0 (1.2)
f)=T10-9" = @@a)..
n=1
Ramanujan give the following relations which are very useful:
1 _41/5
L R(g) - LETD) (1.3)

R(q) qof (=)
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fo(-a)
~11-R5(qg) = 1.4
r@ RO ey .
From the theory of elliptic functions (see [1-3]),
/2
K(x) = f (1.5)

\/1- xzsm(t

is the elliptic integral of the first kind. It is known that the inverse elliptic nome k = k,,
k’f =1 - k? is the solution of the equation

K(ky)

Kk VT, (1.6)

where r € R}. When r is rational then the k, are algebraic numbers.
We can also write the function f using elliptic functions. It holds (see [3])

F) = Zra ) () K k), (17)
and also holds
£(-¢)" - % (18)
From [4] it is known that
R(q) = 3077°F(-0)'R(@){/R(9) " - 11~ R(g)". (1.9
Consider now for every 0 < x < 1 the equation
x =k, (1.10)
which has solution
r =k (x). (1.11)
Hence for example
k<-1><i> =1. (1.12)
V2

With the help of k() function we evaluate the Rogers Ramanujan continued fraction.
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2. Propositions

The relation between ks, and k; is (see [1] page 280)
kekasy + kKb, +2 - 43 (Kpkas, ks, )/ = 1.

For to solve (2.1) we give the following.

Proposition 2.1. The solution of the equation

X0+ x° (—16 + 10x2>w +15x%w? - 20x3w® + 15x%w* + x<10 - 16x2>w5 +wb = 0.

when one knows w is given by

1 2/ [1/6 M1/6 2 1 /2 L1/6 M1/6
=—Ald+z\ —=-4——F ) +\/z| — -4——— ),
2 3\ Ml/6 L1/6 2\ 3\ Ml/e6 L1/6
L(18+ L)
=/——7% <1

“w=\6@earar) <"

_18+L
T 64+3L°

where

If it happens that x = k, and y = ks,, then r = k&Y (x) and w? = kys k,, (w')* = khs k..
Proof. The relation (2.3) can be found using Mathematica. See also [5].

Proposition 2.2. If g = e™™" and

2

K k, R

a=a,=| — Ms(r)™,
<k25r> . 5(7)

then
a, =R(q)" -11-R°(q),

where Ms(r) is root of (5x — 1)°(1 — x) = 256(k,)*(k.)*x.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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Proof. Suppose that N = n?u, where 7 is positive integer and y is positive real then it holds
that

K [m2p] = My ()K [p], (2:8)

where K[u] = K(k,)
The following formula for M5(r) is known:

(5M5(r) - 1)°(1 - Ms(r)) = 256(k,)? (k.)> Ms(r). (2.9)

Thus, if we use (1.4) and (1.7) and the above consequence of the theory of elliptic functions,
we get:

6(_ / 2
R?(q) -11-R(q) = qui—_zz) =a=ay= <k'f’ > k';r Ms(™. (210)

25r

See also [4, 5]. O

3. The Main Theorem

From Proposition 2.2 and relation w? = kos, k, we get

k2 (k% -
w® - kKw = ( ) (3.1)
arM5(r)
Combining (2.2) and (3.1), we get
[—10k§ +26k° + a, Ms(r)°k® - 16k§] + [—kf — 6a,M;s(r)°k® + k° — 6a,M5(r)3k§]w
(3.2)
+ [a,M5(r)3k3 + 15arM5(r)k‘,1] w? - 20a, Ms(r)’kK*w® + 15a, M (r)>k*w* = 0.
Solving with respect to a, M5(r)>, we get
16k — 26k? — wk? + 10k? k,
a,Ms(r)? = e e A (3.3)

k* - 6k3w — 20k3w + 15w2k2 — 6k, w + 15w* + w?’

Also we have

K (kos;) 1 k25r 25r kasr ks, _ <w w' ww’)l
K(k )_M()_m'<\/ kK, ke k) o G4
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The above equalities follow from [1] page 280 Entry 13-xii and the definition of w. Note that
m is the multiplier.

Hence for given 0 < w < 1, we find L € R and we get the following parametric
evaluation for the Rogers Ramanujan continued fraction

R(e 7<L>)_5 ~11-R(e™ ’<L>)5

16k6 — 26k? — wk? + 10k2 + wk, (Z w  ww )3
k} - 6k2w — 20k, w? + 15w2k2 - 6k, w + 15w* + w? '

(3.5)

=ar = kTl kk

Thus for a given w we find L and M from (2.4) and (2.5). Setting the values of M, L, w in (2.3)

we get the values of x and y (see Proposition 2.1). Hence from (3.5) if we find kP (x) = r we
know R(e ”V7). The clearer result is as follows.

Main Theorem. When w is a given real number, one can find x from (2.3). Then for the Rogers-
Ramanujan continued fraction the following holds:

R<e‘”\/’m>_5 ~11- R(e"’”\/m>5

16x° — 26x* — wx® + 10x2 + wx

=T Y 6t — 20xwd + 15wPx? — bxw + 15wt + w? (36)

(w w' ww' >3

x(—+ - .

X V1-x2 xV1-x2
Theorem 3.1. (the first derivative). One has
R,<e_7r\/]m> _ 24/3x1/2(1 _ x2) <z .\ wl ~ wwl >1/2
5w!l/6y'?/3 X V1-x2 xvV1-x2 (3.7)
8 R(e,ﬂ_ /7,{(,1)(36)) K2 (x)e‘]f\/k(—l)(x) .
2

Proof. Combining (1.7) and (1.9) and Proposition 2.2 we get the proof. O

We will see now how the function k(P (x) plays the same role in other continued
fractions. Here we consider also the Ramanujan’s Cubic fraction (see [5]), which is
completely solvable using k;.

Define the function

X

G(x) = .
V2V - 3+ 2x3/2 = 27\ /T -3y + 4x — 3502 + 22

(3.8)

Set for a given 0 < w3 < 1

x = G(ws). (3.9)
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Then as in Main Theorem, for the Cubic continued fraction V(g), the following holds (see

[5]):

. 1-x2) Pl
21/3x1/3(1 _ \/@ )

Observe here that again we only have to know kY (x).
If x = k,, for a certain r, then

w
ko, = k_j' (3.11)

and if we set

T=1/1-8V(q)’, (3.12)

then the follwing holds:

2 _
()= 1+T)3-T)>

(3.13)

which is solvable always in radicals quartic equation. When we know w3 we can find k, = x
from x = G(ws3) and hence t.

The inverse also holds: if we know ¢t = V(g) we can find T and hence k, = x. The w;
can be found by the degree 3 modular equation which is always solvable in radicals:

ek + 4 kogkl, = 1. (3.14)

Let now
V(g)=ze=q9=V"(2), (3.15)
if
Vi(t)::\J1-m<3+m>3l 516
1+vV1-83\3-v1-8
then

w(v(a’fﬁ)) = ks, (3.17)
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or
V<e—ﬁ\ﬁ> — ‘/i(*l) (kr)/
(3.18)
V(e VW) = v (),
or
e—.?rw/k(*l)(x) — V(—l) <‘/I(—1) (.X')> — (‘/z o V) (-1) (.X),
(3.19)

KD (Vi(V(9))) = -5 log (4)? =7

Setting now values into (3.19) we get values for k(P (-). The function V;(-) is an algebraic
function.

4. Evaluations of the Rogers-Ramanujan Continued Fraction
Note that if x = k,, r € Q¥, then we have the classical evaluations with k, and ks,

Evaluations

(1) We have

o -1 5 5++/5
R<32>=7—7+ 2
(4.1)

R'(e—z,,> ) 8\/% <9 +5v5 —21/50 + 22\/§> i—:r<g>4.

(2) Assume that x = 1/+/2, hence kY (1/+/2) = 1. From (2.5) which for this x can be solved
in radicals, with respect to w, we find

w=\/T§<\/§—1>—% 7+/5 - 15. (4.2)

Hence from

4
w J 1—%\/1-3& (4.3)
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we get

1/4
. [ 1+421V=-30 + 145 - 9V/-150 + 70+/5
w' = . (4.4)

V2

Setting these values to (3.6) we get the value of a, and then R(g) in radicals. The result is

R(e™)° =11-R(e™™)’ = —% (3 ++/5-1/-30+ 14@)
x 1—\/§+\/-30+14\@+23/8<—3+f—\/—30+14\@>

1/4
x (1 + 21\/-30 +14v/5 - 9\/—150 + 70%)

-1
x [\/—1574 +704v/5 — 6551/ =30 + 14v/5 + 2931/ ~150 + 70+/5 | .

(4.5)
(3) Set w = 1/64 and a = 1359863889, b = 36855, then

x =9(Va+b)”?[49152. 612 (va+b) "/ ~960(v/a+b)”*+2 - 623 (va+b) ™
+384- 23316, /[-64(/a+b) + 3V - 22/2/453287963 - (b + v/a) "'’
+8192-6'/%(Va+b)'"? +12285 - 62 (va + b)*’]
-2.6°/%(Va+b)'"""y/[4096 - 21/ - 39/01/453287963 (v/a + b)

+ 36855 - 2%/331/61/453287963 (v/a + b)*"*

1/3 2/3

+1509580806'/% (v/a+b) 7453025819 - 6*/%(v/a+b)

-1
~192(453025819 + 12285v/a) | .

(4.6)
(4) For
_4/277 13/385 (47)

108 " 108’
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we get
\/277/12 + <13\/385> /12
X = . 4.8
447 “8)
Hence
1/2
\/277/ 12+ (13385) /12
R| exp |- kD
P 447
(4.9)
8071 1075v55 1 e
= <- T T ﬁ\/5(25740148 - 3470530@)) )
(5) Set g = e™™V™, then from
V(e‘”m> = Vi(_l)(kro) =W,
) V( ) V( )2 (4.10)
—-vig)+Vviq
V(q"°) = 4|V (a) ;-
1+ ZV(q) + 4V(q)
We can evaluate all
V(go(n)) = by(n) = Algebraic function of ry, (4.11)
where
qo(n) = e ™V,
(4.12)
Vi(V(go(n))) = Vi(bo(n)) = ky,/on,
hence

KD (Vitbo(m) = g5 (413)
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An example for ry = 2 is

1/3
1 4.14
V<e”m>=m<‘“ §> , (4.14)

V<e—zn/i/9> _ p§/3,

where p3 can be evaluated in radicals but for simplicity we give the polynomial form

-1 = 72x — 6408x% + 50048x> + 51264x* — 4608x° + 512x° = 0
(4.15)

Then, respectively, we get the values

kD <—49 +35v/2 + 44 /3(99 - 70\6)) - g,

D (Vi<p§/3>> _ %, (4.16)

Hence

KO Vitbo(m) = g5 (417)

Also it holds that
R<e’”m/3">_5 11— R(ﬂﬁv/?’")“:'

6 4 3 2
16x; — 26x;, — wyx;, + 10x7, + Wwyx,

Xh = 6x3w, — 20x,w; + 15Wix2 — 6x,w, + 15w + w3 (4.18)

3
! !
w w WywW
x| ==+ 1 - nn ,
Xn 2 2
\V1-x; x,\/1-xp

where x, = Vi(bp(n)) = known. The w, are given from (2.2) (in this case we do not find a
way to evaluate w,, in radicals).
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Theorem 4.1. Set

\/ 108 + 144a* + 2408 + a® — /11664 + (108 + 144a* + 24a8 + a?)?

w = ~ , (4.19)
then
\/108 +at(12+a%)? —\/at (6 + a*) (12 + a*)(36 + 18a* + a)
. 2\/§<3 +at - a2m> ’ (4.20)
R(e—”\/mf5 ~11- R(e"’\/"‘T("’)S = Aa),
where

4
w = 4[11-ZV1-x2. (4.21)
X
The A(a) is a known algebraic function of a and can calculated from the Main Theorem.
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