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A discrete predator-prey model with Holling II and Beddington-DeAngelis functional responses
is investigated. With the aid of differential equations with piecewise constant arguments, a
discrete version of continuous nonautonomous delayed predator-prey model with Beddington-
DeAngelis functional responses is proposed. By using Gaines andMawhin’s continuation theorem
of coincidence degree theory, sufficient conditions for the existence of positive solutions of the
model are established.

1. Introduction

In population dynamics, the functional response refers to the number of prey eaten per
predator per unit time as a function of prey density. Based on a lot of experiments on
mammals, Holling [1] proposed three kinds of functional responses as follows:

(1) p1(x) = ax,

(2) p2(x) = ax/(a + x),

(3) p3(x) = ax2/(a + x2),

where x represents the density of prey. Functions p1(x), p2(x), and p3(x) refer to Holling
types I, II, and III, respectively, and a > 0 is the predation rate of the predator. After that,
the dynamical properties of predator-prey systems with functional response have received
great attention from both theoretical and mathematical biologists; for example, Liu et al. [2]
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investigated the coexistence of predators and preys of the following predator-prey system
with Holling II functional response:

dx

dt
= rx(t)

[
1 − x(t)

K

]
− ax(t)y(t)

1 + bx(t)
− Ax(t)z(t)

1 + Bx(t)
,

dy

dt
= y(t)

[
−d +

ex(t)
1 + bx(t)

]
,

dz

dt
= z(t)

[
−D +

Ex(t)
1 + Bx(t)

]
,

(1.1)

where x(t) stands for the density of the prey, y(t) and z(t) are the densities of the
predators, respectively, and r, a, A, d, e, D, E, K, b, and B are positive constants. Assuming
that one predator consumes prey according to the Holling II functional response and the
other predator consumes prey according to the Beddington-DeAngelis functional response,
Cantrell et al. [3] proposed the revised version of system (1.1) as follows:

dx

dt
= rx(t)

[
1 − x(t)

K

]
− ax(t)y(t)

1 + bx(t)
− Ax(t)z(t)
1 + Bx(t) + Cz(t)

,

dy

dt
= y(t)

[
−d +

ex(t)
1 + bx(t)

]
,

dz

dt
= z(t)

[
−D +

Ex(t)
1 + Bx(t) + Cz(t)

]
.

(1.2)

By using dynamical system technique and the geometrical singular perturbation theory,
Cantrell et al. [3] made a discussion on the coexistence of predators and prey of system
(1.2) which occurred along a stable positive equilibrium. Ko and Ryu [4] discussed the
existence, stability, and uniqueness of coexistence states and the extinction and permanence
of a diffusive two-competing-prey and one-predator system with Beddington-DeAngelis
functional response. Chen et al. [5] analyzed the extinction of the predator and the global
asymptotic stability of the boundary solution of a nonautonomous predator-prey systemwith
the Beddington-DeAngelis functional response. Huo et al. [6] studied the global existence
of positive periodic solutions for a delayed predator-prey model with the Beddington-
DeAngelis functional response. For more knowledge about this topic, one can see [7, 8].

Recently, Song and Li [9] investigated the following two-prey one-predator model,
where two prey are competitive and the predator has Holling functional II functional re-
sponse:

dx1

dt
= x1(t)

[
b1 − x1(t) − αx2(t) −

ηx3(t)
1 +ω1x1(t)

]
,

dx2

dt
= x2(t)

[
b2 − x2(t) − βx1(t) −

μx3(t)
1 +ω2x2(t)

]
,

dx3

dt
= x3(t)

[
−b3 +

dηx1(t)
1 +ω1x1(t)

+
dμx2(t)

1 +ω2x2(t)

]
,

(1.3)
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where x1(t) and x2(t) stand for the population size of prey (pest) species and x3(t) is the
population size of the predator (natural species) species; bi > 0 (i = 1, 2, 3) are intrinsic rates
of increase or decrease, α > 0 and β > 0 are parameters representing competitive effects
between two prey, η > 0, μ > 0 are positive constants, ηx1(t)/(1 + ω1x1(t)) and μx2(t)/(1 +
ω2x2(t)) are the Holling II functional responses. d > 0 is the rate of conversing prey into
predator.

To model mutual interference among predators, Beddington [10] andDeAngelis et al.
[11] argued that the well-known Holling type II functional response will be replaced by the
Beddington-DeAngelis functional responses which is similar to the Holling type II functional
response but has an extra term νix3 (i = 1, 2) in the denominator, then system (1.3) may
be modified as the following predator-prey system with Beddington-DeAngelis functional
responses:

dx1

dt
= x1(t)

[
b1 − x1(t) − αx2(t) −

ηx3(t)
1 +ω1x1(t) + ν1x3(t)

]
,

dx2

dt
= x2(t)

[
b2 − x2(t) − βx1(t) −

μx3(t)
1 +ω2x2(t) + ν2x3(t)

]
,

dx3

dt
= x3(t)

[
−b3 +

dηx1(t)
1 +ω1x1(t) + ν1x3(t)

+
dμx2(t)

1 +ω2x2(t) + ν2x3(t)

]
,

(1.4)

where x1(t) and x2(t) stand for the population size of prey (pest) species and x3(t) is the
population size of the predator (natural species) species; bi > 0 (i = 1, 2, 3) are intrinsic
rates of increase or decrease, α > 0 and β > 0 are parameters representing competitive
effects between two prey, η > 0, μ > 0 are positive constants, ηx3(t)/(1 + ω1x1(t) + ν1x3(t)),
μx3(t)/(1+ω2x2(t)+ν2x3(t)), ηx1(t)/(1+ω1x1(t)+ν1x3(t)), and μx2(t)/(1+ω2x2(t)+ν2x3(t))
are the Beddington-DeAngelis functional responses. d > 0 is the rate of conversing prey into
predator.

In the natural word, any biological and environmental parameters are naturally subject
to fluctuation in time. The effect of a periodically varying environment is important for
evolutionary theory as the selective forces on systems in a fluctuating environment differ
from those in a stable environment. Thus, assumptions of periodicity of parameters are a
way of incorporating periodicity of the environment, such as seasonal effect of weather,
food supplies, and mating habits [12]. Based on the point of view, the modification of (1.4)
according to the environmental variation is the nonautonomous differential equations

dx1

dt
= x1(t)

[
b1(t) − x1(t) − α(t)x2(t) −

η(t)x3(t)
1 +ω1(t)x1(t) + ν1(t)x3(t)

]
,

dx2

dt
= x2(t)

[
b2(t) − x2(t) − β(t)x1(t) −

μ(t)x3(t)
1 +ω2(t)x2(t) + ν2(t)x3(t)

]
,

dx3

dt
= x3(t)

[
−b3(t) +

d(t)η(t)x1(t)
1 +ω1(t)x1(t) + ν1(t)x3(t)

+
d(t)μ(t)x2(t)

1 +ω2(t)x2(t) + ν2(t)x3(t)

]
.

(1.5)

As is known to us, discrete time models governed by difference equations are more
appropriate to describe the dynamics relationship among populations than continuous ones
when the populations have nonoverlapping generations. Moreover, discrete time models can
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also provide efficient models of continuous ones for numerical simulations. Therefore, it is
reasonable and interesting to study discrete time systems governed by difference equations.
Recently, there are some papers which deal with these topics see [13–22]. The principle object
of this article is to propose a discrete analogue system (1.5) and explore its dynamics.

The remainder of the paper is organized as follows: in Section 2, with the help of
differential equations with piecewise constant arguments, we first propose a discrete ana-
logue of system (1.5), modelling the dynamics of time nonautonomous predator-prey sys-
tem with Beddington-DeAngelis functional responses, where populations have nonoverlap-
ping generations. In Section 3, based on the coincidence degree and the related continuation
theorem, sufficient conditions for the existence of positive solutions of themodel are obtained.

2. A Discrete Version of Model (1.5)

There are several different ways of deriving discrete time version of dynamical systems
corresponding to continuous time formulations. One of the ways of deriving difference
equations modelling the dynamics of populations with nonoverlapping generations that we
will use in the following is based on appropriate modifications of models with overlapping
generations. For more details about the approach, we refer to [15, 18].

In the following, we will discrete the system (1.5). Assume that the average growth
rates in system (1.5) change at regular intervals of time, then we can obtain the following
modified system:

1
x1(t)

ẋ1(t) = b1([t]) − x1([t]) − α([t])x2([t]) −
η([t])x3([t])

1 +ω1([t])x1([t]) + ν1([t])x3([t])
,

1
x2(t)

ẋ2(t) = b2([t]) − x2([t]) − β([t])x1([t]) −
μ([t])x3([t])

1 +ω2([t])x2([t]) + ν2([t])x3([t])
,

1
x3(t)

ẋ3(t) = −b3([t]) +
d([t])η([t])x1([t])

1 +ω1([t])x1([t]) + ν1([t])x3([t])

+
d([t])μ([t])x2([t])

1 +ω2([t])x2([t]) + ν2([t])x3([t])
,

(2.1)

where [t] denotes the integer part of t, t ∈ (0,+∞) and t /= 0, 1, 2, . . . . Equations of type (2.1)
are known as differential equations with piecewise constant arguments, and these equations
occupy a position midway between differential equations and difference equations. By a
solution of (2.1), we mean a function x = (x1, x2, x3)

T , which is defined for t ∈ [0,+∞) and
has the following properties:

(1) x is continuous on [0,+∞);

(2) the derivative dx/dt = (dx1(t)/dt, dx2(t)/dt, dx3(t)/dt)
T exists at each point t ∈

[0,+∞) with the possible exception of the points t ∈ {0, 1, 2, . . .}, where left-sided
derivative exists;

(3) The equations in (2.1) are satisfied on each interval [k, k + 1) with k = 0, 1, 2, . . . .
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We integrate (2.1) on any interval of the form [k, k + 1), k = 0, 1, 2, . . ., and obtain for
k ≤ t < k + 1, k = 0, 1, 2, . . . ,

x(t) = x(k) exp
{[

b1(k) − x1(k) − α(k)x2(k) −
η(k)x3(k)

1 +ω1(k)x1(k) + ν1(k)x3(k)

]
(t − k)

}
,

y(t) = y(k) exp
{[

b2(k) − x2(k) − β(k)x1(k) −
μ(k)x3(k)

1 +ω2(k)x2(k) + ν2(k)x3(k)

]
(t − k)

}
,

z(t) = z(k) exp
{[

−b3(k)+
d(k)η(k)x1(k)

1 +ω1(k)x1(k)+ ν1(k)x3(k)
+

d(k)μ(k)x2(k)
1 +ω2(k)x2(k)+ ν2(k)x3(k)

]
(t − k)

}
.

(2.2)

Let t → k + 1, then (2.2) takes the following form:

x(k + 1) = x(k) exp
{
b1(k) − x1(k) − α(k)x2(k) −

η(k)x3(k)
1 +ω1(k)x1(k) + ν1(k)x3(k)

}
,

y(k + 1) = y(k) exp
{
b2(k) − x2(k) − β(k)x1(k) −

μ(k)x3(k)
1 +ω2(k)x2(k) + ν2(k)x3(k)

}
,

z(k + 1) = z(k) exp
{
−b3(k) +

d(k)η(k)x1(k)
1 +ω1(k)x1(k) + ν1(k)x3(k)

+
d(k)μ(k)x2(k)

1 +ω2(k)x2(k) + ν2(k)x3(k)

}
,

(2.3)

which is a discrete time analogue of system (1.5), where k = 0, 1, 2, . . . .

3. Existence of Positive Periodic Solutions

For convenience and simplicity in the following discussion, we always use the notations
below throughout the paper:

Iω := {0, 1, 2, . . . , ω − 1}, f :=
1
ω

ω−1∑
k=0

f(k), fL = min
k∈Iω

{
f(k)

}
, fM = max

k∈Iω

{
f(k)

}
,

(3.1)

where f(k) is an ω-periodic sequence of real numbers defined for k ∈ Z. For system (2.3), we
always assume that

(H1) bi (i = 1, 2, 3), d, α, β, η, μ, ωj , νj (j = 1, 2) : Z → R+ are ω-periodic.

In order to explore the existence of positive periodic solutions of (2.3) and for the
reader’s convenience, we will first summarize below a few concepts and results without
proof, borrowing from [23].

Let X,Y be normed vector spaces, L : DomL ⊂ X → Y is a linear mapping, N : X →
Y is a continuous mapping. The mapping Lwill be called a Fredholm mapping of index zero
if dim KerL = codim ImL < +∞ and ImL is closed in Y . If L is a Fredholm mapping of
index zero and there exist continuous projectors P : X → X and Q : Y → Y such that
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ImP = KerL, ImL = KerQ = Im(I −Q), it follows that L|DomL∩Ker P : (I −P)X → ImL is
invertible. We denote the inverse of that map byKP . IfΩ is an open bounded subset of X, the
mapping N will be called L compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X
is compact. Since Im Q is isomorphic to KerL, there exist isomorphisms J : ImQ → KerL.

Lemma 3.1 (see Continuation Theorem [23]). Let L be a Fredholm mapping of index zero, and let
N be L compact on Ω. Suppose that,

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;

(b) QNx/= 0 for each x ∈ KerL ∩ ∂Ω, and deg{JQN,Ω ∩ KerL, 0}/= 0,

then the equation Lx = Nx has at least one solution lying in DomL ∩ Ω.

Lemma 3.2 (see [15]). Let g : Z → R be ω-periodic, that is, g(k + ω) = g(k). Then for any fixed
k1, k2 ∈ Iω and any k ∈ Z, one has

g(k) ≤ g(k1) +
ω−1∑
s=0

∣∣g(s + 1) − g(s)
∣∣,

g(k) ≥ g(k2) −
ω−1∑
s=0

∣∣g(s + 1) − g(s)
∣∣.

(3.2)

Define

l3 =
{
u = {u(k)} : u(k) ∈ R3, k ∈ Z

}
. (3.3)

For a = (a1, a2, a3)
T ∈ R3, define |a| = max{|a1|, |a2|, |a3|}. Let lω ⊂ l3 denote the

subspace of all ω-periodic sequences equipped with the usual supremum norm ‖ · ‖, that
is, ‖u‖ = maxk∈Iω |u(k)|, for any u = {u(k) : k ∈ Z} ∈ lω. It is easy to show that lω is a
finite-dimensional Banach space.

Let

lω0 =

{
u = {u(k)} ∈ lω :

ω−1∑
k=0

u(k) = 0

}
,

lωc =
{
u = {u(k)} ∈ lω : u(k) = h ∈ R3, k ∈ Z

}
.

(3.4)

Then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 + lωc , dim lωc = 3. (3.5)
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In the following, we will be ready to establish our result.

Theorem 3.3. Let S1, S′
1, S2, S′

2, k0, and h0 be defined by (3.30), (3.50), (3.34), (3.46), (3.39), and
(3.55), respectively. In addition to the condition (H1), assume further that the following conditions:

(H2) b3 > max{dη exp{S1}, dμ exp{S′
2}}, ηL > bL1ν

M
1 ,

(H3) k0 < 0, h0 < 0

hold. Then system (2.3) has at least an ω-periodic solution.

Proof. Let u1(k) = ln[x1(k)], u2(k) = ln[x2(k)], and u3(k) = ln[x3(k)]. Then (2.3) takes the
form

u1(k + 1) − u1(k) = f1(k),

u2(k + 1) − u2(k) = f2(k),

u3(k + 1) − u3(k) = f3(k),

(3.6)

where

f1(k) = b1(k) − exp{u1(k)} − α(k) exp{u2(k)} −
η(k) exp{u3(k)}

1 +ω1(k) exp{u1(k)} + ν1(k) exp{u3(k)} ,

f2(k) = b2(k) − exp{u2(k)} − β(k) exp{u1(k)} −
μ(k) exp{u3(k)}

1 +ω2(k) exp{u2(k)} + ν2(k) exp{u3(k)} ,

f3(k) = −b3(k) +
d(k)η(k) exp{u1(k)}

1 +ω1(k) exp{u1(k)} + ν1(k) exp{u3(k)}

+
d(k)μ(k) exp{u2(k)}

1 +ω2(k) exp{u2(k)} + ν2(k) exp{u3(k)} .
(3.7)

Let X = Y = lω,

(Lu)(k) = u(k + 1) − u(k) =

⎛
⎜⎜⎝

u1(k + 1) − u1(k)

u2(k + 1) − u2(k)

u3(k + 1) − u3(k)

⎞
⎟⎟⎠, (3.8)

(Nu)(k) =

⎛
⎜⎜⎝

f1(k)

f2(k)

f3(k)

⎞
⎟⎟⎠, (3.9)

where u ∈ X, k ∈ Z. Then it is trivial to see that L is a bounded linear operator and

KerL = lωc , ImL = lω0 ,

dim KerL = 3 = codim ImL.
(3.10)
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Then it follows that L is a Fredholm mapping of index zero. Define

Pu =
1
ω

ω−1∑
s=0

u(s), u ∈ X, Qv =
1
ω

ω−1∑
s=0

v(s), v ∈ Y. (3.11)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL = KerQ = Im(I −Q). (3.12)

Furthermore, the generalized inverse (to L) KP : ImL → KerP
⋂
DomL exists and is given

by

KP (v) =
ω−1∑
s=0

v(s) − 1
ω

ω−1∑
s=0

(ω − s)v(s). (3.13)

Obviously,QN andKP (I−Q)N are continuous. SinceX is a finite-dimensional Banach space,

using the Ascoli-Arzela theorem, it is not difficult to show that KP (I −Q)N(Ω) is compact
for any open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded. Thus, N is L-compact on Ω
with any open bounded set Ω ⊂ X.

Now we are at the point to search for an appropriate open, bounded subset Ω for the
application of the continuation theorem. Corresponding to the operator equation Lu = λNu,
λ ∈ (0, 1), we have

u1(k + 1) − u1(k) = λf1(k),

u2(k + 1) − u2(k) = λf2(k),

u3(k + 1) − u3(k) = λf3(k).

(3.14)

Suppose that u(k) = (u1(k), u2(k), u3(k))
T ∈ X is an arbitrary solution of system (3.14) for a

certain λ ∈ (0, 1). Summing both sides of (3.14) from 0 to ω − 1 with respect to k, respectively,
we obtain

ω−1∑
k=0

[
exp{u1(k)} + α(k) exp{u2(k)} +

η(k) exp{u3(k)}
1 +ω1(k) exp{u1(k)} + ν1(k) exp{u3(k)}

]
= b1ω,

ω−1∑
k=0

[
exp{u2(k)} + β(k) exp{u1(k)} +

μ(k) exp{u3(k)}
1 +ω2(k) exp{u2(k)} + ν2(k) exp{u3(k)}

]
= b2ω,

ω−1∑
k=0

[
d(k)η(k) exp{u1(k)}

1+ω1(k) exp{u1(k)}+ν1(k) exp{u3(k)}+
d(k)μ(k) exp{u2(k)}

1+ω2(k) exp{u2(k)}+ν2(k) exp{u3(k)}
]
= b3ω.

(3.15)



International Journal of Mathematics and Mathematical Sciences 9

It follows from (3.14) and(3.15) that

ω−1∑
k=0

|u1(k + 1) − u1(k)| ≤ 2b1ω, (3.16)

ω−1∑
k=0

|u2(k + 1) − u2(k)| ≤ 2b2ω, (3.17)

ω−1∑
k=0

|u3(k + 1) − u3(k)| ≤ 2b3ω. (3.18)

In view of the hypothesis that u = {u(k)} ∈ X, there exist ξi, ηi ∈ Iω such that

ui(ξi) = min
k∈Iω

{ui(k)}, ui

(
ηi
)
= max

k∈Iω
{ui(k)} (i = 1, 2, 3). (3.19)

Then it is obvious that

∇ui

(
ηi
) ≤ 0, ∇ui(ξi) ≥ 0, i = 1, 2, 3, (3.20)

where ∇ denotes the forward difference operator ∇u(k) = u(k + 1) − u(k).
In view of (3.8), we get

b1(ξ1) − exp{u1(ξ1)} − α(k) exp{u2(ξ1)} −
η(ξ1) exp{u3(ξ1)}

1 +ω1(ξ1) exp{u1(ξ1)} + ν1(ξ1) exp{u3(ξ1)} ≥ 0

(3.21)

b2(ξ2) − exp{u2(ξ2)} − β(ξ2) exp{u1(ξ2)} −
μ(ξ2) exp{u3(ξ2)}

1 +ω2(ξ2) exp{u2(ξ2)} + ν2(ξ2) exp{u3(ξ2)} ≥ 0

(3.22)

Then we have

exp{u1(ξ1)} < b1(ξ1), exp{u2(ξ2)} < b2(ξ2), (3.23)

which leads to

u1(ξ1) < ln b1(ξ1) = ln
[
bL1

]
, u2(ξ2) < ln b2(ξ2) = ln

[
bL2

]
(3.24)
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From (3.16), we have

ω−1∑
k=0

[
d(k)η(k) exp

{
u1
(
η1
)}

+ d(k)μ(k) exp
{
u2
(
η2
)}]

> b3ω, (3.25)

that is,

dη exp
{
u1
(
η1
)}

+ dμ exp
{
u2
(
η2
)}

> b3 (3.26)

In the sequel, we consider two cases.

Case 1. If u1(η1) ≥ u2(η2), then it follows from (3.26) that

dη exp
{
u1
(
η1
)}

+ dμ exp
{
u1
(
η1
)}

> b3, (3.27)

which leads to

u1
(
η1
)
> ln

[
b3

d(η + μ)

]
. (3.28)

In view of Lemma 3.2, (3.16), (3.24), and (3.28), we have

u1(k) ≤ u1(ξ1) +
ω−1∑
s=0

|u1(s + 1) − u1(s)|

≤ ln
[
bL1

]
+ 2b1ω := b1,

u1(k) ≥ u1
(
η1
) − ω−1∑

s=0
|u1(s + 1) − u1(s)|

≥ ln

[
b3

d(η + μ)

]
− 2b1ω := B1.

(3.29)

It follows from (3.29) that

max
k∈Iω

{u1(k)} < max{|b1|, |B1|} := S1. (3.30)

By (3.26), it is easy to obtain that

dη exp{S1} + dμ exp
{
u2
(
η2
)}

> b3. (3.31)
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Hence,

u2
(
η2
)
> ln

[
b3 − dη exp{S1}

dμ

]
. (3.32)

In view of Lemma 3.2, (3.18), (3.24), and (3.32), we have

u2(k) ≤ u2(ξ2) +
ω−1∑
s=0

|u2(s + 1) − u2(s)|

≤ ln
[
bL2

]
+ 2b2ω := b2,

u2(k) ≥ u2
(
η1
) − ω−1∑

s=0
|u2(s + 1) − u2(s)|

≥ ln

[
b3 − dη exp{S1}

dμ

]
− 2b2ω := B2.

(3.33)

It follows from (3.33) that

max
k∈Iω

{u2(k)} < max{|b2|, |B2|} := S2. (3.34)

Noticing that η(ξ1) exp{u3}/(1+ω1(ξ1) exp{u1(ξ1)}+ν1(ξ1) exp{u3}) is an increasing function
with respect to u3, from (3.21), we have

bL1 = b1(ξ1) >
η(ξ1) exp{u3(ξ1)}

1 +ω1(ξ1) exp{u1(ξ1)} + ν1(ξ1) exp{u3(ξ1)}

≥ ηL exp{u3(ξ3)}
1 +ωM

1 exp{S1} + νM1 exp{u3(ξ3)}
.

(3.35)

Hence,

u3(ξ3) < ln

[
bL1
(
1 +ωM

1 exp{S1}
)

ηL − bL1ν
M
1

]
. (3.36)

From (3.16), we get

ω−1∑
k=0

[
d(k)η(k) exp{−S1}

1 +ωM
1 exp{S1} + νM1 exp

{
u3
(
η3
)} +

d(k)μ(k) exp{−S2}
1 +ωM

2 exp{S2} + νM2 exp
{
u3
(
η3
)}
]
≤ b3ω.

(3.37)
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Then,

k2 exp
{
2u3

(
η3
)}

+ k1 exp
{
u3
(
η3
)}

+ k0 ≥ 0, (3.38)

where

k0 = b3
(
1 +ωM

1 exp{S1}
)(

1 +ωM
2 exp{S2}

)

− dη exp{−S1}
(
1 +ωM

2 exp{S2}
)

− dμ exp{−S2}
(
1 +ωM

1 exp{S1}
)
,

k1 = b3
[
νM2

(
1 +ωM

1 exp{S1}
)
+ νM1

(
1 +ωM

2 exp{S2}
)]

−
[
dηνM2 exp{−S1} + dμνM1 exp{−S2}

]
,

k2 = b3ν
M
1 νM2 .

(3.39)

Thus,

u3
(
η3
) ≥ ln

⎡
⎢⎣−k1 +

√
k2
1 − k2k0

2k2

⎤
⎥⎦. (3.40)

In view of Lemma 3.2, (3.18), (3.36), and (3.40), we have

u3(k) ≤ u3(ξ3) +
ω−1∑
s=0

|u3(s + 1) − u3(s)|

≤ ln

[
bL1
(
1 +ωM

1 exp{S1}
)

ηL − bL1ν
M
1

]
+ 2rω := b3,

u3(k) ≥ u3
(
η3
) − ω−1∑

s=0
|u3(s + 1) − u3(s)|

≥ ln

⎡
⎢⎣−k1 +

√
k2
1 − k2k0

2k2

⎤
⎥⎦ − 2b3ω := B3.

(3.41)

It follows from (3.41) that

max
k∈Iω

{u3(k)} < max{|b3|, |B3|} := S3. (3.42)
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Case 2. If u1(η1) < u2(η2), then it follows from (3.26) that

dη exp
{
u2
(
η2
)}

+ dμ exp
{
u2
(
η2
)}

> b3, (3.43)

which leads to

u2
(
η2
)
> ln

[
b3

d(η + μ)

]
. (3.44)

In view of Lemma 3.2, (3.17), (3.24), and (3.44), we have

u2(k) ≤ u2(ξ2) +
ω−1∑
s=0

|u2(s + 1) − u2(s)|

≤ ln
[
bL2

]
+ 2b2ω := b′2,

u2(k) ≥ u2
(
η2
) − ω−1∑

s=0
|u2(s + 1) − u2(s)|

≥ ln

[
b3

d(η + μ)

]
− 2b2ω := B′

2.

(3.45)

Combining both equation of (3.45), one obtains

max
k∈Iω

{u2(k)} < max
{∣∣b′2∣∣, ∣∣B′

2

∣∣} := S′
2. (3.46)

By (3.26), it is easy to obtain that

dη exp
{
u1
(
η1
)}

+ dμ exp
{
S′
2
}
> b3. (3.47)

Hence,

u1
(
η1
)
> ln

[
b3 − dμ exp

{
S′
2

}
dη

]
. (3.48)
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By virtue of Lemma 3.2, (3.16), (3.24), and (3.48), we have

u1(k) ≤ u1(ξ1) +
ω−1∑
s=0

|u1(s + 1) − u1(s)|

≤ ln
[
bL1

]
+ 2b2ω := b′1,

u1(k) ≥ u1
(
η1
) − ω−1∑

s=0
|u1(s + 1) − u1(s)|

≥ ln

[
b3 − dμ exp

{
S′
2

}
dη

]
− 2b1ω := B′

1.

(3.49)

It follows from (3.49) that

max
k∈Iω

{u1(k)} < max
{∣∣b′1∣∣, ∣∣B′

1

∣∣} := S′
1. (3.50)

Considering that η(ξ1) exp{u3}/(1 + ω1(ξ1) exp{u1(ξ1)} + ν1(ξ1) exp{u3}) is an increasing
function with respect to u3, from (3.21), we have

bL1 = b1(ξ1) >
η(ξ1) exp{u3(ξ1)}

1 +ω1(ξ1) exp{u1(ξ1)} + ν1(ξ1) exp{u3(ξ1)}

≥ ηL exp{u3(ξ3)}
1 +ωM

1 exp
{
S′
1

}
+ νM1 exp{u3(ξ3)}

.

(3.51)

Therefore,

u3(ξ3) < ln

[
bL1
(
1 +ωM

1 exp
{
S′
1

})
ηL − bL1ν

M
1

]
. (3.52)

From (3.16), we know that

ω−1∑
s=0

[
d(k)η(k) exp

{−S′
1

}
1 +ωM

1 exp
{
S′
1

}
+ νM1 exp

{
u3
(
η3
)} +

d(k)μ(k) exp
{−S′

2

}
1 +ωM

2 exp
{
S′
2

}
+ νM2 exp

{
u3
(
η3
)}
]
≤ b3ω.

(3.53)

Then,

h2 exp
{
2u3

(
η3
)}

+ h1 exp
{
u3
(
η3
)}

+ h0 ≥ 0, (3.54)
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where

h0 = b3
(
1 +ωM

1 exp
{
S′
1

})(
1 +ωM

2 exp
{
S′
2
})

− dη exp
{−S′

1

}(
1 +ωM

2 exp
{
S′
2
})

− dμ exp
{−S′

2
}(

1 +ωM
1 exp

{
S′
1

})
,

h1 = b3
[
νM2

(
1 +ωM

1 exp
{
S′
1

})
+ νM1

(
1 +ωM

2 exp
{
S′
2
})]

−
[
dηνM2 exp

{−S′
1

}
+ dμνM1 exp

{−S′
2
}]
,

h2 = b3ν
M
1 νM2 .

(3.55)

Thus,

u3
(
η3
) ≥ ln

⎡
⎢⎣−h1 +

√
h2
1 − h2h0

2h2

⎤
⎥⎦. (3.56)

In view of Lemma 3.2, (3.18), (3.52), and (3.56), we have

u3(k) ≤ u3(ξ3) +
ω−1∑
s=0

|u3(s + 1) − u3(s)|

≤ ln

[
bL1
(
1 +ωM

1 exp{S1}
)

ηL − bL1ν
M
1

]
+ 2rω := b′3,

u3(k) ≥ u3
(
η3
) − ω−1∑

s=0
|u3(s + 1) − u3(s)|

≥ ln

⎡
⎢⎣−k1 +

√
k2
1 − k2k0

2k2

⎤
⎥⎦ − 2b3ω := B′

3.

(3.57)

It follows from (3.57) that

max
k∈Iω

{u3(k)} < max
{∣∣b′3∣∣, ∣∣B′

3

∣∣} := S′
3. (3.58)
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Obviously, S1, S2, S′
2, S3, and S′

3 are independent of λ ∈ (0, 1). Take M = S1 +max{S2, S
′
2} +

max{S3, S
′
3}+M0, whereM0 is taken sufficiently large such that each solution (u∗

1, u
∗
2, u

∗
3)

T of
the following algebraic equations:

b1 − exp(u1) − α exp(u2) − 1
ω

ω−1∑
k=0

[
η(k) exp(u3)

1 +ω1(k) exp(u1) + ν1(k) exp(u3)

]
= 0,

b2 − exp(u2) − β exp(u1) − 1
ω

ω−1∑
k=0

[
μ(k) exp(u3)

1 +ω2(k) exp(u2) + ν2(k) exp(u3)

]
= 0,

− b3+
1
ω

ω−1∑
k=0

[
d(k)η(k) exp(u1)

1+ω1(k) exp(u1)+ ν1(k) exp(u3)

]
+
1
ω

ω−1∑
k=0

[
d(k)μ(k) exp(u2)

1+ω2(k) exp(u2)+ ν2(k) exp(u3)

]
= 0

(3.59)

satisfies max{|u∗
1|, |u∗

2|, |u∗
3|} < M0.

Now we have proved that any solution u = {u(k)} = {(u1(k), u2(k), u3(k))
T} of (3.6)

in X satisfies ‖u‖ < M, k ∈ Z.
LetΩ := {u = {u(k)} ∈ X : ‖u‖ < M}. Then it is easy to see thatΩ is an open, bounded

set in X and verifies requirement (a) of Lemma 3.1. When u ∈ ∂Ω ∩ KerL, u = {(u1, u2, u3)
T}

is a constant vector in R3 with ‖u‖ = max{|u1|, |u2|, |u3|} = M. Then

QNu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 − exp(u1) − α exp(u2) − 1
ω

ω−1∑
k=0

[
η(k) exp(u3)

1 +ω1(k) exp(u1) + ν1(k) exp(u3)

]

b2 − exp(u2) − β exp(u1) − 1
ω

ω−1∑
k=0

[
μ(k) exp(z)

1 +ω2(k) exp(u2) + ν2(k) exp(u3)

]

−b3 + 1
ω

ω−1∑
k=0

[
d(k)η(k) exp(u1)

1 +ω1(k) exp(u1) + ν1(k) exp(u3)

]

+
1
ω

ω−1∑
k=0

[
d(k)μ(k) exp(u2)

1 +ω2(k) exp(u2) + ν2(k) exp(u3)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/= 0.

(3.60)

Define the homotopy φ : DomL×[0, 1] → X by φ(u1, u2, u3, μ) = μQNu+(1−μ)Gu, μ ∈ [0, 1],
where

Gu =
1
ω

ω−1∑
k=0

⎛
⎜⎜⎜⎜⎜⎝

b1 − exp(u1)

b2 − exp(u2)

−b3 + 1
ω

ω−1∑
k=0

[
d(k)η(k) exp(u1)

1 +ω1(k) exp(u1) + ν1(k) exp(u3)

]

⎞
⎟⎟⎟⎟⎟⎠

. (3.61)



International Journal of Mathematics and Mathematical Sciences 17

Let J be the identity mapping. According to the definition of topology, direct calculation
yields

deg
{
JQN(u1, u2, u3)T ;Ω ∩ kerL; 0

}

= deg
{
QN(u1, u2, u3)T ;Ω ∩ KerL; 0

}

= deg
{
QN(u1, u2, u3, 1)T ;Ω ∩ KerL; 0

}

= deg
{
QN(u1, u2, u3, 0)T ;Ω ∩ KerL; 0

}

= sign

⎧⎪⎪⎨
⎪⎪⎩
det

⎛
⎜⎜⎝

exp
(
u∗
1

)
0 0

0 exp
(
u∗
2

)
0

f1(u∗) 0 f2(u∗)

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭
,

(3.62)

where

f1(u∗) =
1
ω

ω−1∑
k=0

[
d(k)η(k) exp

(
u∗
1

)(
1 + ν1(k) exp

(
u∗
3

))
(
1 +ω1(k) exp

(
u∗
1

)
+ ν1(k) exp

(
u∗
3

))2
]
> 0,

f2(u∗) = − 1
ω

ω−1∑
k=0

[
d(k)η(k)ν1(k) exp

(
u∗
1 + u∗

3

)
(
1 +ω1(k) exp

(
u∗
1

)
+ ν1(k) exp

(
u∗
3

))2
]
< 0.

(3.63)

Then, it follows from (3.62) that

deg
{
JQN(u1, u2, u3)T ;Ω ∩ kerL; 0

}
= sign

[− exp
(
u1 + u∗

2
)
f2(u∗)

]
= −1 < 0. (3.64)

By now, we have proved that Ω verifies all requirements of Lemma 3.1. Then it follows
that Lu = Nu has at least one solution in DomL ∩ Ω, that is to say, (3.6) has at
least one ω-periodic solution in DomL ∩ Ω, say u∗ = {u∗(k)} = {(u∗

1(k), u
∗
2(k), u

∗
3(k))

T}.
Let x∗

1(k) = exp{u∗
1(k)}, x∗

2(k) = exp{u∗
2(k)}, and x∗

3(k) = exp{u∗
3(k)}. Then we know

that (x∗
1(k), x

∗
2(k), x

∗
3(k))

T is an ω-periodic solution of system (2.3) with strictly positive
components. We complete the proof.
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