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In this work, a new robust regularized shrinkage regression method is proposed to recover and align high-dimensional images via
affine transformation and Tikhonov regularization. To be more resilient with occlusions and illuminations, outliers, and heavy
sparse noises, the new proposed approach incorporates novel ideas affine transformations and Tikhonov regularization into high-
dimensional images. *e highly corrupted, distorted, or misaligned images can be adjusted through the use of affine trans-
formations and Tikhonov regularization term to ensure a trustful image decomposition. *ese novel ideas are very essential,
especially in pruning out the potential impacts of annoying effects in high-dimensional images. *en, finding optimal variables
through a set of affine transformations and Tikhonov regularization term is first casted as mathematical and statistical convex
optimization programming techniques. Afterward, a fast alternating direction method for multipliers (ADMM) algorithm is
applied, and the new equations are established to update the parameters involved and the affine transformations iteratively in the
form of the round-robin manner. Moreover, the convergence of these new updating equations is scrutinized as well, and the
proposed method has less time computation as compared to the state-of-the-art works. Conducted simulations have shown that
the new robust method surpasses to the baselines for image alignment and recovery relying on some public datasets.

1. Introduction

High-dimensional images for alignment and recovery [1–4]
arise in different scenarios such as image processing [5] and
surveillance [6, 7]. However, analyzing high-dimensional
data is a challenging task due to miscellaneous adverse ef-
fects of occlusions and illuminations, corruptions, and
noises. As a result of this, it is important to develop new
robust regression methods to mitigate the adverse influence
of these annoying effects in high-dimensional data, which
are resilient to various annoying effects.

Since the inception of the pioneering work of robust
principal component analysis (RPCA) by Candès et al. [8],
a myriad of algorithms have been addressed for robust
sparse low-rank image recovery, e.g., [9, 10]. However,
these methods do not work well when the outliers and

heavy sparse noises are heavily skewed. To overcome this
drawback, a myriad of robust algorithms have been
addressed to deal with outliers and heavy sparse noises in
high-dimensional images. Likassa et al. [11–13] consid-
ered new robust algorithms via affine transformations and
L2,1 norms for image recovery and alignment which
boosted the performance of the algorithms. Moreover,
[14–17] proposed an efficient extension of RPCA using
affine transformations. However, it lacks robustness to
work well in high-dimensional data to remove the po-
tential impacts of adverse effects. *e authors of [18–20]
developed robust algorithms to decompose the original
corrupted data as clean and sparse errors. However, these
algorithms are not scalable and robust when the number
of observations becomes large. Podosinnikova et al. [21]
developed robust PCA to minimize the reconstruction
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error, but it is not effective to deal with the adverse effects
in high-dimensional data. To circumvent this dilemma,
Shahid et al. [22] incorporated the spectral graph regu-
larization into the robust PCA. However, it is unable to
recover the images due to the adverse effects of outliers and
heavy sparse noises lying in high-dimensional data. Shakeri
et al. [23] proposed an online sequential framework to recover
the low-rank component by pruning out the sparse cor-
ruptions. Zhang and Lerman [24] proposed robust subspace
recovery to tackle the influence of outliers and heavy sparse
noises; however, due to its computational complexity, it limits
its scalability to the high-dimensional data. *is work is also
reviewed in subspace recovery [25–27]. Moreover, De la Torre
and Black [28] proposed a parameterized component analysis
algorithm to find the low-rank component and used as a
robust fitting function to reduce the impact of outliers.
However, it is nonconvex, which lacks a polynomial-time
algorithm to solve it. Nevertheless, many real-world cor-
rupted images contain severe intensity distortions which are
dense and are thus difficult to be subtracted by RASL [17, 29].
Lu et al. [30] proposed an algorithm for tensor robust
principal component analysis to tackle the influence of
outliers and heavy sparse noises. To tackle this dilemma, Lu
et al. [31] addressed exact low-tubal-rank tensor recovery
from Gaussian measurements; however, its performance in
image recovery is not promising. Moreover, [30–35]
addressed an extended version of RPCA for image repre-
sentation, where these algorithms did not work well with the
adverse effects of outliers and heavy sparse noises. To over-
come these aggregated dilemmas, [33, 36, 37] addressed a
novel low-rank regularized regression model for facial rec-
ognition, which seeks to boost the performance of the al-
gorithm with the potential adverse effects. Additionally, there
are non-rigid transformation such as [33, 36, 37] some new
transformation estimation algorithms are proposed the L2E

estimator and apply it to nonrigid registration rather than
dense correspondences, and it better uses sparse image
representation. However, these methods cost computationally
more due to efficient cross-correlation coefficient for the
matching lower level of the hierarchy. *ereby, [38, 39]
proposed algorithms to deal with outliers and sparse errors;
however, they still need to be improved. *erefore, the search
of an affine transformation and Tikhonov regularization term
is required to improve the performance of algorithms. To
circumvent this dilemma, Likassa [11] proposed a low-rank
robust regression (LR-RR) algorithm to clean the outliers and
sparse errors from highly contaminated data. Although LR-
RR canmitigate the impact of sparse errors inside and outside
subspaces, its sensitivity to sparse errors and outliers lying in
the disjoint subspaces jeopardizes its performance in some
severe scenarios. *e recent papers also addressed the issue of
sparsity for image representation and decomposition [40, 41].
Likassa and Fang [12] addressed a low-rank sparse subspace
representation for robust regression (LRS-RR) approach to
find the clean low-rank part by low-rank subspace recovery
along with regression to deal with errors or outliers lying in
the corrupted disjoint subspaces.*emain challenge in image
recovery and head pose estimation is to tackle the potential
impact of outliers and heavy sparse noises.

In this paper, a new robust shrinkage regression algo-
rithm through affine transformation and Tikhonov regula-
rization is proposed for high-dimensional image alignment
and recovery. To be more resilient with occlusions and
outliers, the new algorithm incorporates affine transfor-
mations and Tikhonov regularization. *ereby, the Tikho-
nov regularization is considered tomitigate multicollinearity
in highly distorted data, which helps to reduce the redun-
dancy and tackles the potential impact of the outliers, heavy
sparse noises, and occlusions and illuminations. Conse-
quently, the distorted or misaligned images can be rectified
by affine transformations and Tikhonov regularization term
to render more accurate image decomposition.*e search of
the optimal parameters and affine transformations is first
cast as convex optimization programming. Afterward, the
alternating direction method for multipliers (ADMM) ap-
proach is employed, and the newly developed and modified
set of equations is established to update the parameters
involved and the affine transformations iteratively. In this
paper, the low-rank components are decomposed into the
product of a basis matrix and a regression coefficient matrix,
where the basis matrix consists of previously well-aligned
images. To constrain the possible solutions, the new method
considers the Tikhonov regularization term and nuclear and
Frobenius norms with more regularized penalty parameters.
Moreover, the convergence of these new updating equations
is scrutinized as well, and the proposed method has less time
computation as compared to the state-of-the-art works.
Conducted simulations show that the new algorithm excels
the state-of-the-art works in terms of accuracy on high-
dimensional face image alignment and face recovery on
some public datasets. *e major contributions of this paper
include the following:

(1) *e affine transformations and Tikhonov regulari-
zation term are incorporated into the new model to
fix the distorted or misaligned images so as to be
robust and resilient with the adverse effects of
outliers and heavy sparse noises

(2) *e ADMM approach is employed to solve the new
convex optimization problem, and a set of updating
equations is developed to iteratively solve this
problem in an iterative process

(3) To make more robust with outliers and occlusions,
the Tikhonov regularization term and the nuclear
norm of the sparse noises are additionally incor-
porated to relax, regularize, and constrain the rep-
resentation of images, which leads the problem to
have a unique and stable solution

(4) *e proposed method considers both a set of affine
transformations and Tikhonov regularization pa-
rameter which perform the error minimization
step and the error support step iteratively but
cannot guarantee the convergence of the whole
algorithm, and our method integrates error min-
imization and error support into one regression
model, and its ADMM algorithm theoretically
converges well

2 International Journal of Mathematics and Mathematical Sciences



*is paper is structured as follows. Section 2 indicates
the detail problem formulation of the paper. Section 3 de-
velops and describes the updating equations to solve the
proposed problem. In Section 4, experimental simulations
are conducted to justify the proposed method. Section 5
provides the results of time computation of the new algo-
rithm, and Section 6 provides some concluding remarks to
summarize the paper.

2. Problem Formulation

Given n images I1, I2, . . . , In ∈ R
w×h, where w and h are the

width and height of the images, respectively. In many
situations, however, high-dimensional images are highly
impacted by the potential adverse effect of outliers, oc-
clusions and illuminations, and heavy sparse noises. We
can stack these images into a matrix M � [vec(I01)

|vec(I02)| · · · |vec(I0n)] ∈ Rm×n, where vec(·) denotes the
vectorization of stacking operators. In light of the fact that
the subspaces of the data are contaminated by large noises,
we decompose the original corrupted data matrix into a
low-rank component and sparse errors, i.e., M � Uβ + S

[42, 43], where U ∈ Rm×n is a clean low-rank dictionary,
β ∈ Rn×n is a recovery subspace coefficient matrix used to
represent M, and S ∈ Rm×n denotes a sparse error matrix
incurred by some adverse effects. When a new image I

arrives, the main task is to seek an optimal transformation
that warps this image with the previously aligned images.
*us, invoked by the potential impacts of outliers, oc-
clusions, illuminations, and heavy images, we need to
decompose the corrupted images into the low-rank com-
ponent and sparse noises. *erefore, this decomposition
process can be given by

M � Uβ + S, (1)

where Uβ is obtained from a low rank and decomposed into
the basis matrix U, β ∈ Rn×n is the weight regression co-
efficient vector, and S is independently and identically
distributed. *e main dilemma, in updating parameters
corresponding to the constraint Moτ � Uβ + S, is intrac-
table due to the nonlinearity of the constraint. To solve the
nonlinearity in Moτ , we can assume that the changes
produced by these affine transformations τ are small and an
initial affine transformation of τ is known; then, we can
linearize it by considering the first-order Taylor approxi-
mations as follows: Mo(τ+Δτ) ≈Moτ + 􏽐

n
i�1 JiΔτωiωT

i , where
Moτ ∈ R

m×n is being considered as the transformed image,
Δτ ∈ Rp×n, where p indicates the numbers which denote
the parameters, Ji � zvec(Iioτi)/zτi ∈ R

dm×p represents the
Jacobian of the ith images with respect to τi, vi denotes the
standard basis forRn, and the operator o denotes the affine
transformation incorporated into the highly and linearly
illuminated and corrupted data. *is linearization process
adjusts the misalignment problems in the batches of images
via an affine transformation. Following this procedure, we
attain approximate transformations to recover the low-

rank component and the batch image alignment from the
underlying subspaces and all other updating parameters.
*e pixels of each transformed image are considered in
matrix Moτ in which the affine transformation tries to align
images in a similar way; then, they can be considered as
samples drawn from a union of low-dimensional sub-
spaces. Inspired by [44], instead of processing the original
images, we seek an alignment in the image such that the
aligned images of the newly arrived images can be
decomposed as the sum of sparse error and linear com-
position. To constrain the possible solutions of our algo-
rithm, we add many more parameters to relax the
nonconvexity issues. To make the new robust regression
more resilient to the potential impact of large outliers and
sparse noise, the Tikhonov regularization term regularizes
the representation of high-dimensional images to lead to a
unique and stable solution for the least squares problem.
*is also helps to control the effect of the noise on solving
the updating parameters. Additionally, when the pixels
belong to the smooth regions, the Tikhonov regularization
adjusts and eliminates the potential impacts of outliers and
heavy sparse noises [45, 46], and it is also preferable to align
and recover when the data are dominated with noises and
incomplete data [47]. *e overall problem can be posted as
follows:

minβ,S,Δτ‖S‖
2
F + λ1‖Γβ‖

2
F + λ3‖S‖∗

+ λ2ηβ
Tβ: SubjMoτ + 􏽘

n

i�1
JiΔτωiω

T
i � Uβ + S,

(2)

where λ1, λ2, and η are the regularization parameters, Γ is the
Tikhonov matrix [48, 49], and λ1 is a global regularization
parameter which balances the minimization between the
reconstruction error and the Tikhonov regularization term.
Additionally, ‖S‖∗ � 􏽐

min(m,n)
i�1 σi(S) is the nuclear norm of S,

in which σi(S) indicates the singular values of S,
‖S‖2F � Trace(STS).

3. Proposed Method

To solve constrained convex optimization techniques as
shown in (2), we consider an alternating direction method
for multipliers (ADMM) as follows [50, 51]:

minβ,S,Δτ‖S‖
2
F + λ1‖Γβ‖

2
F + λ3‖S‖∗

+ λ2ηβ
Tβ: Subj: Moτ + 􏽘

n

i�1
JiΔτωiω

T
i � Uβ + S.

(3)

*is can be solved by using ADMM.*emajor necessary
condition of ADMM is the convexity issue; we give sufficient
conditions under which the algorithm asymptotically rea-
ches the standard first-order necessary conditions for local
optimality. *en, employing an augmented Lagrangian
function on (3), we can get the following Lagrangian
function which is given by
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Lμ(β, S, U, Z,Δτ) � min
c

2
‖S‖

2
F + λ1‖Γβ‖

2
F + λ3‖S‖∗ + λ2ηβ

Tβ

+ Trace Z
T

Moτ + 􏽘
n

i�1
JiΔτωiω

T
i − S − Uβ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +

μ
2

Moτ + 􏽘
n

i�1
JiΔτωiω

T
i − S − Uβ

���������

���������

2

F

,

(4)

where μ ± 0 is a penalty parameter, Z is the Lagrange
multiplier, and Tr(.) is the trace operator. Afterward, solving
(4) directly is a formidable task; thus, we solve each updating
parameter independently via the alternating direction
method for multipliers (ADMM).

Firstly, to find the optimal of β, we fix Δτ, Z, and S as
constants; then, β can be updated by

β(k+1)
� argmin Lμ(β)􏼐 􏼑. (5)

To get the optimal updating parameter β, first let us
denote Q � [vec(U1), . . . , vec(Un)] and g � vec(Moτ+

JΔτ + S − (1/μ)Z), where vec(.) converts the matrix into a
vector. *erefore, the subproblem indicated in (5) can also
be rewritten as

Lμ(β) �
η
2
βTβ + Trace Z

T
Uβ􏼐 􏼑 + λ1‖Γβ‖

2
F +

μ
2
‖Uβ − S − M‖

2
F.

(6)

*erefore, the updates corresponding to the regression
coefficient β are updated from the following expression.*is
problem can also be further reduced to the following:

β(k+1)
� argmin

μ
2
‖Qβ − g‖

2
F +

η
2
βTβ + Trace (Γβ)

TΓβ􏽨 􏽩􏼒 􏼓.

(7)

Using product matrix multiplication and the property of
Frobenius, the above equation can be rewritten as given in
the following equation:

β(k+1)
� argmin

η
2
βTβ + Trace (Γβ)

T
(Γβ)􏼐 􏼑 +

μ
2
‖Qβ − g‖

2
F.

(8)

*is equation has a form of an ordinary least square
regression. So, we can obtain the solution of equation (8) by

β(k+1)
� Q

T
Q +

λ1
μ
ΓTΓ􏼐 􏼑 +

η
μ

I􏼠 􏼡􏼢 􏼣

− 1

Q
T
g. (9)

Secondly, to find the update of S, we follow along the
same line as in: (5):

S
(k+1)

� argmin Lμ(S)􏼐 􏼑. (10)

Following the same procedures as in (6) and ignoring all
the irrelevant parameters of the updating parameter S, (10)
can be reduced to

Lμ(S) � ‖S‖
2
F + λ3‖S‖∗ − Trace Z

T
S􏼐 􏼑 +

μ
2

Uβ − S − Moτ + 􏽘
n

i�1
JiΔτωiω

T
i

���������

���������

2

F

� ‖S‖
2
F + λ3‖S‖∗ − Trace Z

T
S􏼐 􏼑 +

μ
2
Trace (Uβ − S − M)

T
Uβ − S − Moτ( 􏼁􏼐 􏼑

� λ3‖S‖∗ +
μ + 2
2

􏼒 􏼓 S −
μ

2 + μ
U(β)

T
− Moτ + 􏽘

n

i�1
JiΔτωiω

T
i +

1
μ

Z
T⎛⎝ ⎞⎠

����������

����������

2

F

.

(11)

*e above can be solved following [52] the singular value
threshold operator; the above optimization problem is
solved by

S
k+1

� UTλ3/(μ+2)[D]W
T
, (12)

where (U, D, WT) � svd((μ/(μ + 2))(Uβ − Moτ + 􏽐
n
i�1 JiΔτ

ωiωT
i + (1/μ)Z)).
*irdly, invoked by an affine transformation, keeping all

the other parameters as constant, we obtained an extra
updating parameter Δτ. Along the same line as above,
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keeping all the other parameters as constant, we can get the
update of Δτ:

Δτ(k+1)
� argmin Lμ(Δτ)􏼐 􏼑, (13)

argmin
μ
2

Uβ − S − Moτ + 􏽘
n

i�1
JiΔτωiω

T
i +

Z

μ

���������

���������

2

F

. (14)

Solving (13) with the threshold operators as similar as
[53, 54], we can get the update of Δτk+1:

Δτk+1
� J

†
U

k+1β + S
k+1

− Moτ + 􏽘
n

i�1
JiΔτωiω

T
i +

Z
k

μ
⎛⎝ ⎞⎠.

(15)
Finally, following the same steps as above, the La-

grangian multiplier can be updated based on

Z
(k+1)

� Z
k

+ μ Moτ + 􏽘
n

i�1
JiΔτωiω

T
i − S − Uβ⎛⎝ ⎞⎠, (16)

Z
(k+1)

� Z
k

+ μ Moτ
k+1

+ JΔτ − S − Uβ􏼐 􏼑. (17)

Input: data matrix M ∈ Rm×n, β0 ∈ Rm×n, S0 ∈ Rm×n, Δτ0 ∈ Rp×n, λ1, λ2, ρ
While not converged Do
(1) Update: 􏽢β

(k+1)
by (9)

(2) Update: S(k+1) by (14)
(3) Update: Δτ(k+1) by (15)
(4) Update: Z

(k+1)
1 by (16)

(5) Update: Z
(k+1)
2 by (17)

End while
Outputs: β, S, Δτ, μk+1�ρμk

ALGORITHM 1: *e summary of the new proposed shrinkage regression ADMM algorithm.

Figure 1: 1st column, corrupted video face image; 2nd column, the low-rank component by [31]; 3rd column, the low-rank component by
[30]; 4th column, the low-rank component by [38]; 5th column, the low-rank component by [39]; 6th column, the low-rank component by the
proposed method.

Figure 2: 1st column, corrupted video face image; 2nd column, the low-rank component by [31]; 3rd column, the low-rank component by
[30]; 4th column, the low-rank component by [38]; 5th column, the low-rank component by [39]; 6th column, the low-rank component by the
proposed method.

International Journal of Mathematics and Mathematical Sciences 5



*ese updating equations proceed in a round-robin
manner until convergence. For easy reference, the updating
equations of the proposed algorithm are summarized in
Algorithm 1.

4. Simulations and Discussion

In this section, we need to see the effectiveness of the new
algorithm for image alignment and recovery based on public
datasets. Four different state-of-the-art works, including
[30, 31, 38, 39], and the proposed method are considered for
comparisons to examine the robustness of the proposed
method. For image alignment and recovery, three public
datasets such as Labeled Faces [55] databases, Algore talking

video taken from [53], and complicated windows taken from
[53] are taken into consideration. *e protocols and pro-
cedures are directly related to related works
[30, 31, 38, 53, 56, 57]. In these simulations, the effectiveness
of the proposed method is compared with the aforemen-
tioned methods based on natural face images, video face
images, and windows. Secondly, we furthermore evaluated
checking the effectiveness of the algorithm through using the
mean square error [11–13, 58].

4.1. Recovery of Natural Face Images. In this section, the
effectiveness of the new proposed robust algorithm on
natural face images for solving the problem of image
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100
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E
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10–1
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Iteration number
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10–1

100
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E

(d)

Figure 3: Root mean square error: (a) video face images; (b) complicated windows; (c) dummy face images; (d) handwritten images.

Table 1: Mean square error.

Methods Natural face Video face Window face
TRPCA [30] 4.9750∗ 10− 2 2.8530∗ 10− 1 3.203∗ 10− 1

ELTRT [31] 5.223∗ 10− 2 3.045∗ 10− 1 3.248∗ 10− 1

NRPP [38] 4.6097∗ 10− 4 6.000∗ 10− 3 1.59090∗ 101
RIVZ [39] 9.3270∗ 10− 1 0.1∗ 101 3.7430∗ 10− 1

Ours 1.3249∗ 10− 5 1.4818∗ 10− 5 8.8554∗ 10− 6
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alignment and recovery based on different types of images is
evaluated. In this case, first we consider corrupted face
images upon which we employ an algorithm to align and
recover the corrupted images. *ereby, the simulations on
corrupted natural face images are illustrated in Figures 1 and
2 under column 1. We employed the proposed method on
these distorted data to see the effectiveness of the proposed
method as compared with the aforementioned approaches.
*e result of the recovered one by the proposed method has
improved the natural face images as compared with
[30, 31, 38, 39]. *is improvement is due to incorporation of
an affine transformation and Tikhonov regularization term.
*is finding is also justified based on the root mean square
error result shown in Table 1, entailing the new algorithm is
more robust and resilient to outliers and heavy sparse noises
in high-dimensional natural face images.

4.2. Recovery of Video Face Images. Next, the effectiveness of
the newmethod is evaluated further based on distorted video
face images with 81 × 107 size to judge the effectiveness of
the proposed method in recovering the corrupted high-
dimensional images. Following this, the proposed method is
employed on distorted video images as shown in Figures 3
and 4 under column 1. *ereby, the proposed method has
improved the performance of the developed algorithm by
pruning out the potential impact of outliers and heavy sparse
noises as shown in Figures 3 and 4 (column 6).*e proposed
method is more superior to the others [30, 31, 38, 39]. *is
entails inclusion of an affine transformation and Tikhonov
regularization has boosted the performance of the new
method. As it can be seen from Figures 3 and 4, on the last
column, the result obtained by our method has improved the

visual quality based on the complicated videos as compared
with the baselines.

We can recognize that, by including an extra term both
an affine transformation and Tikhonov regularization, the
new approach has obtained a minimum mean square error
[30, 31, 38, 39], entailing more better image alignment and
recovery having a potential to prune out the errors and
outliers in high-dimensional video face images (Table 1).*e
new incorporation of the affine transformation and
Tikhonov regularization has boosted the performance of the
new approach as compared with the state-of-the-art
methods.

4.3. Recovery of Complicated Windows. *e effectiveness of
the proposed method is further assessed in recovering
complicated windows with size 1600 × 1200 as given in
Figure 5. As we can see from Figure 5 (column 6), the
proposed method perfectly recovers the windows and
removes the trees which are considered as occluded. *is
entails incorporating the affine transformation and Tikho-
nov regularization term has boosted the visual quality of very
complicated and corrupted windows as compared with
[30, 31, 38, 39].

Figure 5: 1st column, corrupted video face image; 2nd column, the low-rank component by [31]; 3rd column, the low-rank component by
[30]; 4th column, the low-rank component by [38]; 5th column, the low-rank component by [39]; 6th column, the low-rank component by the
proposed method.

Figure 4: 1st column, corrupted video face image; 2nd column, the low-rank component by [31]; 3rd column, the low-rank component by
[30]; 4th column, the low-rank component by [38]; 5th column, the low-rank component by [39]; 6th column, the low-rank component by the
proposed method.

Table 2: Time complexity of the proposed algorithm.

Methods Time (minutes)
TRPCA [30] 8
ELTRT [31] 7.56
NRPP [38] 5.67
RIVZ [39] 4
Ours 2.4

International Journal of Mathematics and Mathematical Sciences 7



Instead of recognizing that invoked by novel ideas of an
affine transformation and Tikhonov regularization, the new
approach has obtained a minimum mean square error
[30, 31, 38, 39], entailing more better image alignment and
recovery having a potential to prune out the errors and
outliers in high-dimensional and very complicated windows
(Table 1).

5. Time Complexity

*e time complexity of the proposedmethod as compared to
the state-of-the-art works is described in this section. On a
very standard desktop computer, RIVZ [39] has relatively
less time computation as compared to TRPCA [30], ELTRT
[31], and NRPP [38] as the RIVZ [39] has a less number of
parameters involved in updating the parameters. Addi-
tionally, our algorithm can handle batches of over one
hundred images in a few minutes on a standard PC as the
number of parameters involved is small as compared to the
state-of-the-art works. *e new algorithm is guaranteed
faster convergence compared to the state-of-the-art algo-
rithms as shown in Table 2.

6. Conclusion

In this paper, a new robust regularized shrinkage regression
method is proposed for high-dimensional image alignment
and recovery via considering the issue of an affine trans-
formation and Tikhonov regularization, to be more robust,
the dilemma of outliers, heavy sparse noises, and occlusions
and illuminations. *e newly formulated algorithm is casted
as convex optimization techniques. Afterward, the ADMM
approach is employed, and a new set of equations is estab-
lished to update the parameters involved in an iterative
manner. *e problem is formulated as convex optimization
programming, and a set of equations is established to iter-
atively update the parameters and the affine transformations.
*e result obtained from the mean square error also reveals
that the proposed method outperforms the main state-of-the-
art works. *is is obtained due to incorporating an affine
transformation and Tikhonov regularization term. *e pro-
posed method has less time complexity as compared to the
state-of-the-art methods. Moreover, the convergence of these
new updating equations is scrutinized as well and has less
time computation as compared to the state-of-the-art works.
*e experimental simulation has shown that the proposed
method is more superior to the state-of-the-art works.

Data Availability

*e data used in this article are freely available for the user.

Conflicts of Interest

*e authors declare that there are no conflicts of interest.

Acknowledgments

*is work was partially supported by Ambo University and
National Science Fund for Young Scholars (Grant no.

61806186), State Key Laboratory of Robotics and System
(HIT) (Grant no. SKLRS-2019-KF-15), and the program
“Fujian Intelligent Logistics Industry Technology Research
Institute” (Grant no. 2018H2001).

References

[1] S. Xia, W. Yang, J. Liu, and Z. Guo, “Dual recovery network
with online compensation for image super-resolution,” in
Proceedings of the 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), IEEE, Florence, Italy, pp. 1–5,
May 2018.

[2] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, and Y. Xu, “Nuclear
norm based matrix regression with applications to face rec-
ognition with occlusion and illumination changes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 1, pp. 156–171, 2017.

[3] X. Xiang and T. D. Tran, “Linear disentangled representation
learning for facial actions,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 28, no. 12, pp. 3539–3544,
2018.

[4] D. Huang, M. Storer, F. De la Torre, and H. Bischof, “Su-
pervised local subspace learning for continuous head pose
estimation,” in Proceedings of Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, IEEE,
Colorado Springs, CO, USA, pp. 2921–2928, June 2011.

[5] A. Makadia and K. Daniilidis, “Rotation recovery from
spherical images without correspondences,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 7, pp. 1170–1175, 2006.

[6] C. G. Nunes De Carvalho, D. Gonçalves Gomes, José Neuman
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