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*is paper considers a deterministic model for the dynamics of measles transmission in a population divided into six classes with
respect to the disease states: susceptible, vaccinated, exposed, infected, treated, and recovered. First, we investigate the dynamical
properties of the SVEITR model such as its equilibrium points, their stability, and parameter sensitivity by applying constant
controls. Criteria for determining the stability of disease-free and endemic equilibrium points are provided in terms of basic
reproduction number. *e model is then extended by incorporating vaccination, therapy, and treatment rates as time-dependent
control variables representing the level of coverages. Application of Pontryagin’s maximum principle provides the necessary
conditions that must be satisfied for the existence of optimal controls aiming at minimization of the number of exposed and
infected individuals simultaneously with the control effort. Numerical simulations that were carried out using the backward sweep
method and Runge–Kutta scheme suggest that optimal controls under moderate and high scenarios can effectively reduce the
cases of measles. In particular, the moderate scenario that utilizes the existing coverage level of 86% forMCV1 and 69% for MCV2
can degrade the cost functional by 47% of the low scenario. Meanwhile, high scenario that takes the 2020 target of 96% as coverage
only makes a slight difference in reducing the number of exposed and infected individuals.

1. Introduction

Measles as a highly contagious and serious viral disease has
been known for centuries. *e formal story of measles has
begun when the first written accounts of this disease were
published by a Persian physician in the ninth century. But
until now, measles is still a scourge in many countries.
Although it was declared eradicated in the US in 2000, i.e.,
there is an absence of continuous disease spread for more
than 12 months, and it appears to have reemerged due to a
decreased level of inoculation. It was reported that measles
cases that occurred in 2019 were the highest in the last 25
years. Major outbreaks were also notified by other countries
in the globe such as Madagascar, Congo, Angola, Sudan,
South Sudan, Cameroon, Chad, and Nigeria in Africa,
Ukraine in Eastern Europe, Kazakhstan in Central Asia, and
Philippines and *ailand in Southeast Asia, making 2019 a
record-setting year [1]. A report by the World Health Or-
ganization (WHO) states that during the first semester of

2019, a total of 182 countries reported 364,811 cases of
measles: about the same number of countries but with al-
most threefold increase in the number of cases compared to
the same period in the previous year. Significant increase in
measles cases occurred in African, the European, and the
Western Pacific regions [2].

Measles is caused by paramyxovirus, an RNA virus
classified under the Morbillivirus genus of the Para-
myxoviridae family. Initially beginning with flu-like
symptoms which appear 7 to 14 days after contact with the
virus, measles presents with Koplik spots inside the mouth
and rashes which appear 2 to 5 days after the first
symptoms, starting on the head and face and spreading
through the body. Measles can be dangerous, especially for
babies, young children under five, and adults older than 20
years of age. Measles is also infectious for a few days after
rash onset, commonly accompanyed by high fever, red and
watery eyes, cough, and runny nose. About one-third of
reported measles cases have one or more complications,
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ranging from common complications such as ear infec-
tions (otitis media) and diarrhea to serious complications
such as pneumonia and acute encephalitis [3, 4]. Measles
virus is transmitted primarily person to person via large
respiratory droplets by coughing and sneezing, close
personal contact or via direct contact with infected nasal or
throat secretions. Before a measles vaccine was available,
infection caused by measles virus was nearly universal
during childhood, and more than ninety percent of per-
sons were self-immune by the age of fifteen. Due to the
availability of a safe, effective, and inexpensive vaccine as
well as accelerated immunization activities, measles-in-
duced fatalities have declined by 80% globally in latest
years, from 545,000 deaths in 2000 to 111,000 deaths in
2017 [2]. However, in many developing countries, par-
ticularly in parts of Africa and Asia, measles is still
commonly found and is a leading cause of death.

Tremendous efforts have globally been conducted by
various institutions and regionally by many countries in
combating measles. *e Measles & Rubella Initiative (M&R
Initiative) was launched in 2001 as a global partnership led
by the American Red Cross, United Nations Foundation,
Centers for Disease Control and Prevention (CDC), UNI-
CEF, and WHO to ascertain that no child dies from measles
or is born with congenital rubella syndrome (CRS). *e
objective is achieved by providing people in all communities
more equitable access to existing vaccines such that coverage
of vaccination even further to 95% by 2020. In 2012, the
World Health Assembly (WHA) endorsed the Global
Vaccine Action Plan (GVAP), aiming at eliminating measles
in four WHO regions by 2015 and in five regions by 2020.
*e Global Measles and Rubella Strategic Plan 2012–2020
outlines the strategy that needs to be fully implemented by
countries, the M&R Initiative and its partners, in achieving a
world without measles, rubella, and CRS endorsed by the
WHA [5]. For the future action plan, an initial draft of
Immunization Agenda 2030 has already been disseminated
broadly for public consultation.

Africa has made vast advancement in its effort to
protect children from diseases and to control the disease,
intensifying its regional measles vaccination coverage
from 56% in 2001, 73% in 2008, and 85% in 2010, even
though in recent years, however, the Africa region has
experienced stagnation in vaccination coverage [6]. In
particular, the Republic of Kenya is one of countries in the
continent that implements remarkable approaches in their
fight against measles. Kenya, as a supporter of the WHA
and Measles Elimination 2020 resolutions, has adopted
several innovations to eliminate measles such as Supple-
mentary Immunization Activities (SIAs). *is effort in-
cludes the application of auto-disable (AD) syringes,
implementation of injection safety support (INS) to scale
up safe injection, introduction of measles-rubella (MR)
combined vaccine, case-based surveillance using real-time
polymerase chain reaction (PCR), serological tests for
immunoglobulin class M (IgM) detection, and epidemi-
ological link as well as the use of SMS reminder system for
routine immunization [7]. After ten years without out-
breaks, a measles epidemic was reported by Madagascar on

October 2018 with more than 117,000 cases causing more
than 1,000 deaths. Madagascar, with support from the
WHO, GAVI *e Vaccine Alliance, M&R Initiative,
UNICEF, and the USAID, then conducted emergency
vaccination campaigns ultimately targeting all 7 million
children in the country aged 6 months to 9 years. Now, the
number of measles and fatalities in Madagascar relatively
declines [2].

Considerable efforts have also been undertaken by
countries in other regions. Member countries of the WHO
South-East Asia region has adopted measles elimination and
rubella control as one of the eight regional flagship priority
programs since 2014 and has resolved to eliminate measles
and rubella by 2023. All countries agreed to strengthening
the immunization systems, establishing a highly sensitive
laboratory supported case-based surveillance system, and
deploying political, societal, and financial support to control
the virus transmission. During the 2014–2017 period, there
has been a 23% decline in mortality due to measles in the
region [8]. In the European region, the coverage of im-
munization for the second dose of measles vaccine in 2018
was 91%, meaning that the level of coverage has reached a
record high in the region. However, based on a risk as-
sessment and dramatic increase on measles cases, i.e.,
160,000 cases and over 100 measles-related deaths during
2018-2019 period, the WHO activated a Grade 2 emergency
response to measles spreading in the region. It means that
WHO/Europe will continue to work with all 53 member
states in the region to improve immunization and disease
surveillance technologies and to respond to measles out-
breaks [9]. However, in the Americas region, the total
number of confirmed cases of measles in 2019 increase by
70% compared to 2018 with United States and Brazil pro-
viding the most cases. Given the situation, the Pan American
Health Organization (PAHO) and WHO reinforce the
recommendations to all member states to focus on achieving
the shared goal of measles elimination. *is effort includes
maintaining immunization coverage of 95% as well as
maintaining vaccine stock, identifying migratory flows,
implementing immunization for migrant populations, and
strengthening epidemiological surveillance including that in
border areas [10].

A substantial number of initiatives have been carried
out by policy and health decision-makers to eradicate
measles. For continuous improvement in the future,
quantitative methods are required to examine the impact
and cost-effectiveness of these efforts [11]. As a vigorous
language that compels us to be logically consistent and
explicit about assumptions, in recent years, mathematical
models have been increasingly utilized to assist policy
makers in predicting the effect of various factors and
intervention. Mathematical modeling is an invaluable tool
for decision-making, particularly when direct assessment
of interventions is not an option. Modeling can also be
used to estimate future outcomes that are otherwise dif-
ficult to evaluate [12]. Mathematical modeling is formu-
lated by a set of rules, mostly by means of differential or
difference equations, to describe the real-life dynamic of
the process. *e model is developed based on key
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assumptions about the relationship between input and
output. *e more realistic the assumptions applied, the
more the variables and parameters involved so that the
model considered is also more complex [13]. In the epi-
demiology of measles, the mathematical model has become
a viable approach to understand the biological process of
the disease [14, 15]. It can also be harnessed to assess the
effect of public health intervention strategies [16–19] and
recommend the best course of measure in combating
measles including suggesting the optimal schedule of
vaccination ([20–22]).

*is present paper discusses the modeling and control of
measles transmission dynamics. We develop a compart-
mental model of measles based on a set of quite general
assumptions. *e model includes the existence of exposed
and treated subpopulations as well as a class of vaccinated
individuals accommodating two-dose routine policy. *is
setting, however, enables us to comprehensively assess the
nature of the disease from the dynamical behavior and
control perspectives. *e first part of this paper concerns
with the dynamical properties of the measles model such as
equilibrium points, basic reproduction number, and analysis
of stability. However, the second part deals with the optimal
control model of measles dynamic, a framework that allows
us to study the effect of intervention strategies in controlling
the spread of measles. Particularly, we evaluate a series of
scenarios regarding the coverage of vaccination, the rate of
measles therapy, and the rate of treatment.

*is paper is organized into six sections. After intro-
ductory part and research background in Section 1, we
present in Section 2 a brief literature review of related
works in the topic. In Sections 3 and 4, we introduce the
development of the model and assumptions. *e first part
deals with the so-called dynamical model with constant
control. We analyze the dynamic behavior and stability of
disease-free and endemic equilibrium points and provide
two stability theorems. However, the second part discusses
the measles transmission model with optimal control.
Section 5 is devoted to the results and discussion. Con-
cluding remarks and direction for future research are
provided in Section 6.

2. Related Works

*e number of research studies that employ mathematical
modeling to study the dynamics of infectious disease has
rapidly increased over the last two decades.*e research foci
in this area are ranging from the study of respiratory diseases
such as measles, influenza, and tuberculosis; vector-borne
diseases such as malaria, Ebola, zikav, and dengue; to sex-
ually transmitted diseases such as HIV/AIDS (see for in-
stance the works of Beay [23], Reynolds et al. [24], Mitchell
and Ross [25], Egonmwan and Okuonghae [26], Nkamba
et al. [27], Bakary et al. [28], Irwan et al. [29], Akgül et al.
[30], Ainisa et al. [31], Carvalho et al. [32], Omondi et al.
[33], and Chong et al. [34]). Mathematical modeling is
usually used to characterize the epidemiological parameters
of disease during outbreaks and to evaluate the effectiveness
and schedule of various prevention and control strategies,

considering limited resource availability [35]. In general, the
primary objective of mathematical study in epidemiology is
to reinforce understanding of the interplay between vari-
ables that govern the course of infection within an individual
and those that control the behavior of infection within
population as a whole.

*ere are abundant references on modeling of measles.
Existing studies generally relate to modeling the dynamic
behavior of measles and its stability characteristics, sensi-
tivity analysis to model parameters, and evaluation and
prediction of the effectiveness of control strategies in the
form of optimal control models. Roberts and Tobias [36]
conducted modeling to predict and prevent the spread of
measles in New Zealand. In their study, a deterministic SIR
model was utilized to describe the spread of measles. *is
model successfully predicted an epidemic in 1997 and, at
that time, the decision to carry out the MMR immunization
campaign was very important in New Zealand. Ochoche and
Gweryina [37] used a mathematical model of measles
transmission that involves two phases of infection. *ey
divided the population into suspected, infected, and re-
covered compartments. *eir study revealed that the disease
would definitely be eliminated if all suspected populations
were vaccinated. But this is not efficient since measles is
mostly found in children aged five years or younger. *en, it
was suggested that the measles vaccine should be given in
such a way that no child can enter school without evidence of
at least a two doses of measles vaccination. Momoh et al. [16]
developed a mathematical model describing the effect of
control effort to the spread of measles. An SEIR (suspected,
exposed, infected, and recovered) model was exploited to
determine individuals exposed to latent periods based on
numerical simulations. *is model was later developed by
Momoh et al. [17] to study the effect of vaccination on the
dynamics of the spread of measles. In their study, the total
population was categorized into five classes, namely, sus-
pected, exposed, infected, recovered, and immune infants.
*ey estimated the optimal vaccine coverage needed to
control the spread of measles. MacIntyre et al. [38] intro-
duced a mathematical model involving Measles Control
Campaign (MCC) regarding the potential of measles
transmission in Australia. In this study, the population was
divided into five age groups.*ey used the survey results and
estimated the vaccine coverage to calculate basic repro-
duction number after the measles control campaign. *e
results showed that MCC had a significant influence on the
dynamics of the spread of measles in Australia. In addition,
ongoing efforts are needed to improve the MMR (measles,
mumps, rubella) vaccine so that measles transmission can be
eliminated. Bakare et al. [14] also propose the use of SEIR
model to portray the dynamics of the spread of measles
without discussing the effects of the vaccination control
variables. Bolarian [15] modified the SEIR model by adding
vaccinated compartments. *e research was aiming at de-
termination of vaccination coverage and dosage for re-
moving measles in a population. Mossong and Muller [39]
used a mathematical model featuring individuals who ex-
perienced decreased immunity in the vaccinated population
were suspected. In this model, waning immunity can bring
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back measles. *is event is certainly realistic. Fred et al. [18]
made use of an SEIR model with the presence of control
variables in the form of vaccination. *ey recommended the
introduction of a mass vaccination program and an increase
in early detection of measles cases to minimize the chance of
an outbreak.

Immunization is a highly effective healthcare interven-
tion of measles even though in high-burden settings, it
remains a challenge due primarily to low quality of
healthcare infrastructure and access. Pang et al. [22] de-
veloped a SEIR model with vaccination to investigate its
effect in controlling the transmission of measles among
people. Aldila and Asrianti [40] discussed a modified SVIQR
(susceptible, vaccinated, infected, quarantine, and recov-
ered) deterministic model for measles transmission,
equipped with two intervention strategy, namely, two times
vaccination and quarantine. Two compartments for the
vaccinated population were introduced to categorize human
population who get vaccinated once and twice. It is con-
firmed in this study that receiving two doses of measles
vaccine can reduce the disease transmission much better
rather than only with one dose of vaccination. Another study
by Beay [23] analyzed the effects of treatment and quar-
antine to reduce the spread of measles through a SIQR
(susceptible, infected, quarantine, and recovered) model.
*e study by Wallinga et al. [41] attempted to investigate
why measles outbreaks still occur in vaccinated populations.
In particular, the study wanted to identify the rates of
vaccination that affected the chances of an outbreak oc-
curring and what the effect of people being unvaccinated
was. *e dynamic of measles infection transmission in the
form of age-stratified compartmental model was developed
by Verguet et al. [42] aiming at exploration of the frequency
of SIAs in order to achieve measles control in selected
countries. Beyond the susceptible, infected, and recovered
compartments, the model contains three vaccinated classes,
namely, vaccinated susceptible, vaccinated infected, and
vaccinated recovered. It indicates that the measles trans-
mission in any of the countries with high measles burden
cannot be controlled by a single SIA. However, the measles
outbreaks can still be prevented by regular SIAs at high
coverage levels. *e optimal scheduling of SIAs is deter-
mined by population demographics and the coverage of
existing routine immunization.

Research relating to the interconnection between im-
munization coverage, vaccination schedules, and the dy-
namics of measles transmission has been carried out by
many researchers. It is reported in Portnoy et al. [43] that the
immunization coverage has been increased in the 21st
century and the global burden of measles mortality has been
substantially reduced, followed by the fact that the case-
fatality ratios for measles have seen considerable declines
since the 1990s. According to this research, the estimate for
the mean of case-fatality ratio is 2.2% and projected to be a
1.3% in 2016–2030. It had been recommended by *akkar
et al. [20] that the burden of measles can also be decreased by
optimizing campaign timing. In developed countries like
England, the measles vaccination is usually carried out in
children around age 1 and again before starting school at

around age 5 [44]. In low-income countries, current evi-
dence suggests an earlier timing of immunization. *e
optimal timing for a single dose of measles vaccine would
probably have been 6 or 7 months of age and at 12 months of
age in countries with limited measles transmission. An early
two-dose schedule at 4-5months and 9months of age should
have also been even better in terms of reducing child
mortality [45]. On the other side, a study byMcKee et al. [21]
concluded that the optimal timing for immunization of the
first dose of measles vaccine depends on the timing and
coverage of both doses, and vice versa.

In this work, we examine the dynamics and control of
measles transmission. We formulate the interaction between
subpopulations in community within a framework of the
SVEITR model, i.e., an SEIR model equipped with vacci-
nated and treated compartments. We investigate the course
of the model under constant and optimal controls. We use
the model to simulate the data of measles cases reported in
Indonesia. *e data of measles cases used are sourced from
Directorate General of Disease Prevention and Control,
Ministry of Health, Republic of Indonesia (2018). In par-
ticular, we explore the effect of the change in immunization
coverage on the control objective of minimization of the
number of exposed and infected individuals simultaneously
with the control effort.

3. Model with Constant Control

Measles can be prevented with vaccine. Despite the existence
of a safe, effective, and affordable vaccine since 1963, measles
cases continue to occur for a variety of reasons [7]. One of
the key strategies in eliminating measles is achieving and
maintaining the high levels of community immunity by
providing a wide range of vaccination coverage with two
doses of measles containing vaccines. It is recommended
that all children obtain two doses of measles vaccine, starting
with the first dose on or after the first birthday and the
second dose at 4–6 years of age or at least 28 days after the
first dose [3]. Measles is a severe disease that can lead to
complications and fatality. *e lack of adequate health care
for children with measles can increase the probability that
untreated complications will progress to high-risk compli-
cations and ultimately to death.

Motivated by the facts that vaccination and treatment are
among key strategies in the management and mitigation of
measles, we propose an extended compartmental model by
adding vaccinated and treated classes into the standard SEIR
model. *us, to describe the dynamics of the spread of
measles, we consider a population that consists of six
subpopulations, namely, susceptible (S), vaccinated (V),
exposed (E), infected (I), treated (T), and recovered (R).
*e compartmental diagram of our SVEITR model is given
in Figure 1, and all variables and parameters of the model are
described in Table 1.

3.1.ModelAssumptions. *e SVEITR compartmental model
depicted in Figure 1 is developed under the following
assumptions:
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(1) Population is divided into six compartments (sus-
ceptible, vaccinated, exposed, infected, treated, and
recovered), and it is possible to classify each member
of population into a compartment based on his/her
state towards disease. *e number of populations
in compartments at time t is given by S(t), V(t),
E(t), I(t), T(t), and R(t), respectively. *e total
population at time t is denoted by N(t) :�

S(t) + V(t) + E(t) + I(t) + T(t) + R(t).

(2) We consider an open population with vital dy-
namics, where new birth including immigrants can
provide more susceptible and vaccinated indi-
viduals to the population with constant rate Λ≥ 0.

It is assumed that some immigrants and newborns
with proportion p ∈ [0, 1] have been vaccinated or
have maternally been immunized. *e natural
mortality rate is also constant μ≥ 0 for all
compartments.

(3) Susceptible individuals receive the first dose of
measles containing vaccine with proportion
v1 ∈ [0, 1]. It is assumed that the rate of waning of
vaccine efficacy after a single dose is α and the
proportion of individuals who obtain the second
dose of vaccine is v2 ∈ [0, 1].

(4) *e force of infection λ≥ 0, which is defined as the
instantaneous per capita rate at which susceptible
individuals acquire infection, is assumed to be age-
independent and given by

λ �
β cII + cTT( 􏼁

N
, (1)

where β≥ 0 is the effective contact rate, i.e., a
composite parameter measuring the contact rate
and the probability of transmission upon contact.
*e term (cII + cTT)/N denotes the density or

(1 – p)Λ

(1 – v2)α

S E I T

RV

μ μ

μ μ μ μ

pΛ

v1

v3

v4

rI rT

λ σ

Figure 1: Compartmental model of measles transmission.

Table 1: Description parameters of the model.

Variable Description Unit

S(t) *e number of susceptible individuals at time t People
V(t) *e number of vaccinated individuals at time t People
E(t) *e number of exposed individuals at time t People
I(t) *e number of infected individuals at time t People
T(t) *e number of treated individuals at time t People
R(t) *e number of recovered individuals at time t People
N(t) Total population at time t People
Parameter Description Unit
Λ *e rate at which new individuals enter the population People/day
p A fraction of ∧ which is vaccinated or having maternal immunity —
μ Natural death rate 1/day
α *e rate of waning of vaccine efficacy after a single dose 1/day
λ *e force of infection day/people
σ *e rate of exposed individuals become infective 1/day
v1 Proportion of susceptible individuals who receive the first dose of measles containing vaccine 1/day
v2 Proportion of vaccinated individuals who obtain the second dose of vaccine —
v3 *e rate of measles therapy 1/day
v4 *e treatment rate for infected individuals 1/day
rI *e natural recovery rate 1/day
rT *e recovery rate for treated individuals 1/day
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prevalence of infected and treated individuals in
the population, where cI ∈ [0, 1] and cT ∈ [0, 1] are,
respectively, the reduction in transmissibility of
infected and treated individuals who fail treatment
relative to infectious individuals [46]. *us, the
incidence (the number of new cases per unit time)
is given by λS.

(5) When latent period ends, exposed individuals
may either progress to the infected class at rate
σ ≥ 0 or get healing due to measles therapy at rate
v3 ≥ 0.

(6) *e treatment rate for infected individuals is
v4 ≥ 0. Part of the infective population can be
recovered without treatment with natural recov-
ery rate rI ≥ 0. Treated individuals can get recovery
at rate rT ≥ 0.

Implementation of abovementioned assumptions al-
lows us to extend the work of Onyejekwe and Kebede [19],
Verguet et al. [42], Pang et al. [22], Simons et al. [47], and
Edward et al. [48] by introducing vaccinated or treated
classes. To some extent, our model offers an option in
applying vaccination policy, compared to that of Aldila
and Asrianti [40], which arrange vaccination compart-
ments in series. In this issue, our model shares similarities
with models developed by Obumneke et al. [49] and
Viriyapong and Ridbamroong [50].

3.2. Model Formulation. From the schematic diagram in
Figure 1, we derive the equations of motion of the model,
which capture the dynamics of the measles transmission.
*e SVEITR model can then be represented by the fol-
lowing set of ordinary nonlinear differential equations as
follows:

dS

dt
� (1 − p)Λ + 1 − v2( 􏼁αV − v1 + μ + λ( 􏼁S, (2)

dV

dt
� pΛ − μ + 1 − v2( 􏼁α( 􏼁V + v1S, (3)

dE

dt
� λS − v3 + μ + σ( 􏼁E, (4)

dI

dt
� σE − v4 + μ + rI( 􏼁I, (5)

dT

dt
� v4I − μ + rT( 􏼁 T, (6)

dR

dt
� v3E + rII + rT T − μR, (7)

with initial densities

S(0) � S0 ≥ 0,

V(0) � V0 ≥ 0,

E(0) � E0 ≥ 0,

I(0) � I0 ≥ 0,

T(0) � T0 ≥ 0,

R(0) � R0 ≥ 0.

(8)

Let us denote by X the vector of state variables, i.e., X �

(S, V, E, I, T, R)T with X1 � S, X2 � V, X3 � E, X4 � I,
X5 � T, and X6 � R. Each equation in models (2)–(7) can be
expressed as

dXi

dt
� gi X − Xi􏼈 􏼉( 􏼁 − kiXi, (9)

where gi are the functions and ki are the scalars for
i ∈ 1, 2, . . . , 6{ }. Without loss of generality, from (9), we may
have the following inequality:

dXi

dt
≥ − kiXi⟺Xi(t)≥X0e

− kit. (10)

By the fact that X0 ≥ 0 and X0e
− kit tend to zero as t tends

to infinity, all state variables remain nonnegative for t≥ 0,

i.e., X(t) ≥ 0. Furthermore, since N(t) � S(t) + V(t) +

E(t) + I(t) + T(t) + R(t), we can obtain
dN

dt
� Λ − μN. (11)

Ordinary differential equation (11) has the following
explicit solution:

N(t) �
Λ
μ

+ N0 −
Λ
μ

􏼠 􏼡e
− μt

, (12)

which tends to the steady-state solution N(t) � a/μ as t

tends to infinity. It means that the SVEITRmodels (2)–(7) is
considered to be mathematically and epidemiologically well
posed with bounded state variables. *us, with respect to
biological consideration, this system will be studied in the
following positively invariant region:

X � (S, V, E, I, T, R)
T ∈ R6

+ | S + V + E + I + T + R≤
a

μ
􏼨 􏼩.

(13)

3.3. Dynamical Properties. In this section, we discuss the
dynamical properties of the SVEITR measles transmission
model. We identify the existence of equilibrium points of the
system and investigate their stability. We also provide the
basic reproduction number of the model for analyzing the
stability.

*e point X∗ ∈ Rn is an equilibrium point for the dif-
ferential equation _X � f(X) if f(X∗) � 0 for all t. *us, the
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equilibrium point refers to certain points in phase space with
the property that if the system is placed in such a point, it
stays there forever, because the derivatives of all the coor-
dinates with respect to time are zero. All equilibrium points
of systems (2)–(7) can be found by simultaneously solving
the following nonlinear equations system:

dS

dt
� 0,

dV

dt
� 0,

dE

dt
� 0,

dI

dt
� 0,

dT

dt
� 0,

dR

dt
� 0.

(14)

In particular, a disease-free equilibrium point of the
model is discovered by applying E � I � T � R � 0. *e
disease-free equilibrium (DFE) of systems (2)–(7) is given by
P0(S0, V0, 0, 0, 0, 0), where

S
0

�
Λ α 1 − v2( 􏼁 + μ(1 − p)( 􏼁

μ α 1 − v2( 􏼁 + v1 + μ( 􏼁( 􏼁
,

V
0

�
Λ v1 + μp( 􏼁

μ α 1 − v2( 􏼁 + v1 + μ( 􏼁( 􏼁
.

(15)

In the presence of infection, systems (2)–(7) also have a
nontrivial equilibrium point, known as an endemic equi-
librium point (EEP). *e endemic equilibrium of the
SVEITR system is given by P∗(Se, Ve, Ee, Ie, Te, Re), where

Se �
Ne (1 − p)Λ − α 1 − v2( 􏼁Ve( 􏼁

βcIIe + βcTTe + Ne v1 + μ( 􏼁
,

Ve �
Sev1 + pΛ

α 1 − v2( 􏼁 + μ
,

Ee �
cIIe + cTTe( 􏼁βSe

v3 + μ + σ( 􏼁Ne

,

Ie �
σEe

rI + μ + v4
,

Te �
v4Ie

rT + μ
,

Re �
v3Ee + rIIe + rTTe

μ
.

(16)

*e basic reproduction number is an important measure
of transmissibility of the disease. It represents the expected
number of secondary cases generated in a completely sus-
ceptible population, by a typical infected individual during
its whole period of infectiousness. *e stability of the dis-
ease-free equilibrium and the endemic equilibrium points
can be analyzed using the basic reproduction number. *e
basic reproduction number can be calculated by using the
next-generation operator approach of van denDriessche and
Watmough [51]. *e Jacobian matrices F of new infection
terms and V of remaining transition terms evaluated using
the variables E, I, T, and R (in that order) are given, re-
spectively, by

F �

0
βcIS

0

N

βcTS0

N

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

v3 + μ + σ 0 0

−σ v4 + μ + rI 0

0 −v4 μ + rT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(17)

*e basic reproduction number R0 is the spectral radius
of FV− 1, i.e., R0 � ρ(FV− 1). *us, after a lengthy calcula-
tion, we may get

R0 �
σβm1 cIm2 + cTv4( 􏼁

m2m3m4
, (18)

where

m1 �
α 1 − v2( 􏼁 + μ(1 − p)

α 1 − v2( 􏼁 + v1 + μ
,

m2 � rT + μ,

m3 � rI + μ + v4,

m4 � v3 + μ + σ.

(19)

*e stability analyses of equilibrium points P0 and P∗ are
presented in the following theorems. *e first theorem is
proved by Routh–Hurwitz criterion, while the second the-
orem is proved based on bifurcation theory.

Theorem 1. If R0 < 1, then the disease-free equilibrium P0 is
locally asymptotically stable, and if R0 > 1, then it is unstable.

Proof. *e Jacobianmatrix at P0 for systems (2)–(7) is given
by
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J
0

�

−v1 − μ α 1 − v2( 􏼁 0 −m1βcI −m1βcT 0

v1 −α 1 − v2( 􏼁 − μ 0 0 0 0

0 0 −m4 m1βcI m1βcT 0

0 0 σ −m3 0 0

0 0 0 τ −m2 0

0 0 v3 rI rT −μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

*e characteristic equation of the matrix J0, i.e.,
|J0 − ωI| � 0 for scalar ω, is given by

(ω + μ)
2 ω + a1( 􏼁 ω3

+ b1ω
2

+ b2ω + b3􏼐 􏼑 � 0, (21)

where

a1 � α 1 − v2( 􏼁 + v1 + μ,

b1 � m2 + m3 + m4,

b2 � m2m3 + m2m4 + 1 − R0( 􏼁m3m4 +
m1σβcTv4

m2
,

b3 � 1 − R0( 􏼁m2m3m4.

(22)

From equation (21), we may have at most six eigenvalues
with three of them negative, which are ω1 � ω2 � −μ< 0 and
ω3 � −a1 < 0. However, ω4, ω5, and ω6 can be obtained by
solving the following cubic equation:

ω3
+ b1ω

2
+ b2ω + b3 � 0. (23)

Based on the Routh–Hurwitz criteria and by recalling
that ω1, ω2, and ω3 are all negative, the equilibrium point P0

is stable, if the following conditions are satisfied:

b1 > 0, b3 > 0, b1b2 > b3. (24)

Because the values of all parameters are positive and
v2, p ∈ [0, 1], then b1 > 0 and b3 > 0 providedR0 < 1. Next, we
may obtain

b1b2 � m2 + m3 + m4( 􏼁 m2m3 + m2m4 + 1 − R0( 􏼁m3m4􏼠

+
m1σβcTv4

m2
􏼡 � 1 − R0( 􏼁m2m3m4

+ positive terms � b3 + positive terms.
(25)

*en, b1b2 > b3, provided by R0 < 1. *ese prove (24). As a
result, the disease-free equilibrium P0 for systems (2)–(7) is
locally asymptotically stable ifR0 < 1 and unstable ifR0 > 1. □

Theorem 2. If R0 > 1, then the equilibrium P∗ is locally
asymptotically stable and unstable if R0 < 1.

Proof. Let us denote the right sides of systems (2)–(7) by the
following functions:

f1(X) ≔ (1 − p)Λ + 1 − v2( 􏼁αX2 − v1 + λ + μ( 􏼁X1, (26)

f2(X) ≔ pΛ − μ + 1 − v2( 􏼁α( 􏼁X2 − v1X1, (27)

f3(X) ≔ λX1 − v3 + μ + σ( 􏼁X3, (28)

f4(X) ≔ σX3 − v4 + μ + rI( 􏼁X4, (29)

f5(X) :� v4X4 − μ + rT( 􏼁X5, (30)

f6(X) :� v3X3 + rIX4 + rTX5 − μX6. (31)

In a large variety of models, the dynamics of the models
are influenced by the basic reproduction number R0. It
means that the models behave differently when R0 < 1 and
R0 > 1. From (18), we can identify that the condition R0 � 1
may be satisfied by

β∗ �
m2m3m4

σm1 cIm2 + cTv4( 􏼁
. (32)

*us, a sudden qualitative change of the system occurs
when there is smooth change made to the value of β, from
which we choose β as the bifurcation parameter. Jacobian
matrix (20) evaluated at the disease-free equilibrium P0 with
β � β∗ in (32), denoted by J0(β∗), has a simple zero ei-
genvalue with all other eigenvalues having a negative real
part. By employing technique in Castillo-Chaves and Song
[52], it can be shown that, for R0 � 1, Jacobian matrix J0(β∗)
has a right eigenvector which corresponds to the zero ei-
genvalue, given by (u1, u2, u3, u4, u5, u6)

T, where

u1 � −
m3m4 α 1 − v2( 􏼁 + μ( 􏼁u4

σμ α 1 − v2( 􏼁 + v1 + μ( 􏼁
,

u2 � −
m3m4v1u4

σμ α 1 − v2( 􏼁 + v1 + μ( 􏼁
,

u3 �
m3u4

σ
,

u4 � μ> 0,

u5 �
v4u4

m2
,

u6 � rI +
m3v3
σ

+
rTv4
m2

􏼠 􏼡
u4

μ
.

(33)
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In the similar manner, the left eigenvector of J0(β∗),
which corresponds to the zero eigenvalue, is given by
(w1, w2, w3, w4, w5, w6)

T, where

w1 � 0,

w2 � 0,

w3 � σ > 0,

w4 �
m4w3

σ
,

w5 �
cTm3m4w3

σ cIm2 + cTv4( 􏼁
,

w6 � 0.

(34)

Let us define the following quantities:

a � 􏽘
6

i,j,k�1
wkuiuj

z2fk P0, β∗( 􏼁

zXizXj

, (35)

b � 􏽘
6

i,j,k�1
wkui

z2fk P0, β∗( 􏼁

zXizβ
, (36)

where fk are given in (26)–(31). Calculation of all second
partial derivatives of fk evaluated at (P0, β∗) provides

a �
u2u4w3β

∗μ α 1 − v2( 􏼁 + μ( 􏼁

av1
cI +

v4

m2
􏼠 􏼡< 0, (37)

b � u4w4m1 cI + cTv4( 􏼁> 0. (38)

Note that (37) holds because u2 < 0. Since a< 0 and b> 0,
then based on Castillo-Chaves-Song *eorem, we have the
following conclusion regarding the stability of endemic
equilibrium point P∗. *e endemic equilibrium point P∗ is
stable if β> β∗, otherwise unstable. By the fact that condition
β> β∗ is equal to R0 > 1, it is proved. □

4. Model with Optimal Control

In an optimal control framework, it is assumed that the
dynamics of state variable X(t) can be controlled, at least
partially, by a control variable v(t). It means that the rate of
change of X(t) depends on time t, X(t) itself, and control
v(t); i.e., the process is given by _X � f(X, v, t). *e problem
addressed in an optimal control model is to characterize a
control law for a given process within a period of time such
that a certain performance criterion is achieved. In this
section, the optimal control version of models (2)–(7) is
studied, in which equipping the model with a set of control
variables is imperative.

4.1. Optimal Control Model. Our primary objective of
reformulating the SVEITR model into an optimal control
setting is to examine the effect of immunization coverage
and measles treatment in reducing the number of exposed
and infected individuals as well as the cost implementation.

*erefore, for achieving this goal, we relax assumptions for
several variables related to vaccination and treatment in the
model with constant control. Instead of assigning the value
to be constant, we represent proportion of susceptible in-
dividuals who receive the first dose of vaccine v1, proportion
of vaccinated individuals who obtain the second dose of
vaccine v2, the rate of measles therapy v3, and the treatment
rate for infected individuals v4 as dynamic variables, i.e., vi �

vi(t) for i � 1, 2, 3, 4. Control policies v1(t) and v2(t) are
applied by administering measles vaccine by itself and in
combinations such as the MMR (measles, mumps, rubella)
vaccine to susceptible individuals in two doses, i.e., MCV1
and MCV2. Measles therapy v3(t) may be carried out by
vitamin A supplementation to exposed individuals. Al-
though there is no specific antiviral treatment for measles,
we can consider policy v4(t) as supportive cares such as
replacement fluids lost due to diarrhea and emesis, giving
paracetamol or ibuprofen for the fever and prescribing an
antibiotic for bacterial infection.

We make all control variables bounded, i.e.,
vi ≤ vi(t)≤ vi, (39)

for i � 1, 2, 3, 4 and for all t ∈ [0, T] with T as the control
period. In (39), vi and vi constitute as the lower and upper
bounds of the control effort. In most cases, we set vi � 0 and
vi � 1 since vi(t) usually represents either a percentage or a
proportion. If we set vi � vi, then it refers to the model with
constant control discussed in the previous section. Let v �

(v1, v2, v3, v4)
T. *e set of admissible control is therefore

defined as

V � v | vi(t) is Lebesquemeasurable in [0, T], vi(t) ∈ vi, vi􏼂 􏼃, t ∈ [0, T]􏼈 􏼉,

(40)

for i � 1, 2, 3, 4. *e optimal control problem is a problem of
finding a control law vi(t) among all admissible controls in V
which brings systems (2)–(7) from the initial state (8) to a
final state satisfying the terminal conditions such that it
optimizes a cost functional. Note that for bounded Lebesgue
measurable controls in (40) and nonnegative initial con-
ditions (8), non-negative bounded solutions to systems
(2)–(7) exist. We formulate the optimal control by con-
sidering a performance criterion given by

J(v) :� 􏽚
T

0
A1E(t) + A2I(t) +

1
2
B1v

2
1(t) + +

1
2
B2v

2
2(t)􏼒

+
1
2
B3v

2
3(t) +

1
2
B4v

2
4(t)􏼓dt,

(41)

subject to the state system given by (2)–(7), initial conditions
(8), bounded controls (39), and terminal time conditions

S(T), V(T), E(T), I(T), T(T), andR(T) are all free.
(42)

Criterion (41) adds up the number of exposed and in-
fected individuals jointly with the control effort or the cost of
implementing the control during the control period. In (41),
the coefficients Ai and Bi are positive weights showing the
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relative importance among the terms. *erefore, the control
objective is seeking the optimal control pair v ∈ V that
minimizes the desired cost functional (41); i.e., we want to
find v∗ such that

J v
∗

( 􏼁 � min
v∈V

J(v). (43)

Since the integrand of (41) is convex on the convex and
closed admissible control set V in (40) and systems (2)–(7)
are linear in the control variables vi as well as the state
variables are bounded as in (13), then the existence of op-
timal control v∗ is guaranteed.

4.2. Optimality Conditions. We are now using Pontryagin’s
maximum principle [53] to derive the necessary conditions
that a pair of optimal controls and corresponding state
variables must satisfy.We begin by defining the Hamiltonian
function that relates to system (2)–(7) as follows:

H(X, v,ω) :� A1E + A2I +
1
2
B1v

2
1 +

1
2
B2v

2
2 +

1
2
B3v

2
3 +

1
2
B4v

2
4

+ ω1f1 + ω2f2 + ω3f3 + ω4f4 + ω5f5 + ω6f6,

(44)

where ωi � ωi(t) for i ∈ 1, 2, . . . , 6{ } are the adjoin functions
and fi are the right-hand side of the equations system given
in (26)–(31). Pontryagin’s maximum principle consists of
three blocks, namely, the dynamical systems obtained from
_Xi � Hωi

for i ∈ 1, 2, . . . , 6{ }, optimal controls derived from
Hvi

� 0 for i ∈ 1, 2, . . . , 6{ }, and the adjoin systems obtained
from _ωi � −HXi

for i ∈ 1, 2, . . . , 6{ }. *e first block is ob-
viously systems (2)–(7) itself, which will produce the optimal
state solutions S∗, V∗, E∗, I∗, T∗, and R∗. Other two blocks
are stated in the following theorems.

Theorem 3. 6e optimal controls v∗ � (v∗1 , v∗2 , v∗3 , v∗4 )T are
given by

v
∗
1 � min v1, max v1,

ω1 − ω2( 􏼁S

B1
􏼨 􏼩􏼨 􏼩, (45)

v
∗
2 � min v2, max v2,

ω1 − ω2( 􏼁αV

B2
􏼨 􏼩􏼨 􏼩, (46)

v
∗
3 � min v3, max v3,

ω3 − ω6( 􏼁E

B3
􏼨 􏼩􏼨 􏼩,

v
∗
4 � min v4, max v4,

ω4 − ω5( 􏼁I

B4
􏼨 􏼩􏼨 􏼩.

(47)

Proof. By applying Hvi
� 0 for i ∈ 1, 2, . . . , 6{ }, we have the

following conditions:

B1v1 − ω1 − ω2( 􏼁S � 0⟺ v
∗
1 �

ω1 − ω2( 􏼁S

B1
, (48)

B2v2 − ω1 − ω2( 􏼁αV � 0⟺ v
∗
2 �

ω1 − ω2( 􏼁αV

B2
, (49)

B3v3 − ω3 − ω6( 􏼁E � 0⟺ v
∗
3 �

ω3 − ω6( 􏼁E

B3
, (50)

B4v4 − ω4 − ω5( 􏼁I � 0⟺ v
∗
4 �

ω4 − ω5( 􏼁I

B4
. (51)

By considering bounded controls (39), we may express
the above optimal controls as in (45)–(47). □

Theorem 4. Given the optimal state solutions S∗, V∗, E∗, I∗,
T∗, and R∗ associated with the optimal control pair v∗ given
in (45)–(47), the adjoin variables ωi(t) for i ∈ 1, 2, . . . , 6{ }

satisfy the following differential equation system:

_ω1 � ω1 − ω3( 􏼁λ 1 −
S

N
􏼒 􏼓 + ω1 − ω2( 􏼁v1 + μω1, (52)

_ω2 � ω3 − ω1( 􏼁λ
S

N
+ ω2 − ω1( 􏼁 1 − v2( 􏼁α + μω2, (53)

_ω3 � −A1 + ω3 − ω1( 􏼁λ
S

N
+ ω3 − ω4( 􏼁σ + ω3 − ω6( 􏼁v3 + μω3,

(54)

_ω4 � −A2 + ω1 − ω3( 􏼁 βcI − λ( 􏼁
S

N
+ ω4 − ω5( 􏼁v4

+ ω4 − ω6( 􏼁rI + μω4,

(55)

_ω5 � ω1 − ω3( 􏼁 βcT − λ( 􏼁
S

N
+ ω5 − ω6( 􏼁rT + μω5, (56)

_ω6 � ω3 − ω1( 􏼁λ
S

N
+ μω6, (57)

with transversality conditions

ω1(T) � 0,

ω2(T) � 0,

ω3(T) � 0,

ω4(T) � 0,

ω5(T) � 0,

ω6(T) � 0.

(58)

Proof. When applying conditions _ωi � −HXi
for

i ∈ 1, 2, . . . , 6{ }, recall that λ is a function of all state variables
as given in (1). Transversality conditions (58) emerge as we
set that all state variables at terminal time are all free as stated
in (42). □

5. Numerical Simulations

In this section, we perform a numerical simulation to
confirm dynamical properties of the system such as the
stability of the equilibrium points, parameter sensitivity and
bifurcation. For the model with optimal control, we in-
vestigate the effect of vaccination coverage, therapy, and
treatment to the reduction of the number of exposed and
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infected individuals and the minimization of control effort.
We consider a small community with a total population of
100.

5.1. Stability, Parameter Sensitivity, and Bifurcation.
Measles is a major public health problem in Indonesia. *e
government carried out additional measles immunization
in August 2016 and Measles-Rubella (MR) immunization
in Java from August to September 2017. *e immunization
campaign aims to provide additional immunity against
measles so as to reduce the case of measles. *is is evi-
denced by the decrease in cases and the absence of reports
of outbreaks of measles in October 2017 to March 2018 in
the immunization implementation area. We employ our
proposed SVEITR model to simulate the data of measles
cases reported in Indonesia. *e parameter values used are
sourced from the Directorate General of Disease Pre-
vention and Control, Ministry of Health Republic of
Indonesia, 2018.

Parameter values used in the simulation of model with
constant control are presented in Table 2. In order to have
the basic reproduction number R0 located in different
regions, we choose different values of the effective contact
rate β and the rate of exposed individuals become in-
fective σ. For β � 0.03739 and σ � 0.678, we have R0 �

0.1534< 1, and for β � 0.575 and σ � 0.885, we obtain
R0 � 2.4238> 1.

In the case of R0 < 1, it is discovered a disease-free
equilibrium given by P0(S0, V0, 0, 0, 0, 0), where
S0 � 53.0733 and V0 � 84.6078. However, in the case of
R0 > 1, an endemic equilibrium point is found and is given
by P∗(S∗, V∗, E∗, I∗, T∗, R∗), where S∗ � 21.8964,
V∗ � 36.3463, E∗ � 0.5640, I∗ � 4.7753, T∗ � 1.6709, and
R∗ � 72.4283. In accordance with *eorem 1, the disease-
free equilibrium is locally asymptotically stable. *e state
variable X � (S, V, E, I, T, R)T will tend to P0 as t tends to
infinity. In Figure 2(a), it is shown that E, I, and T are
approaching zero at t � 60 days. However, it needs longer
time horizon to display the convergence of S, V, and R to
their equilibria. However, according to *eorem 2, the
endemic equilibrium point is also locally asymptotically
stable as described in Figure 2(b). In the former case, the
measles disease could be extinct because the system is stable
at a disease-free equilibrium point, and in the latter case, the
disease could exist.

As a key threshold associates with the outbreaks, the
basic reproduction number R0 provides us with the estimate
of the amount of effort that is required either to prevent
epidemic or to remove infection from a population.
According to (18), the basic reproduction number R0 is
affected by all parameters of the model, except ≬. Sensitivity
analysis can then be applied to explore the impacts of
fluctuations in parameters of the model on R0 of greatest
interest. In particular, sensitivity analysis can be used to
determine parameters that exert the most influence to the
value of R0 when the disease spreads. In Hamby [54], the
sensitivity index of R0 with respect to parameter q, denoted
by cq, can be calculated using the following formula:

cq �
zR0

zq

q

R0
. (59)

In economics, formula (59) is known as elasticity, a
measure of the proportional change of an economic variable
in response to a change in the economic indicator. A positive
sensitivity index indicates that an increase in the value of the
parameter q results in an increase in the basic reproduction
number R0. However, negative values of index indicate a
decrease in the value of R0 when the parameters increase.
Table 3 provides the sensitivity index of parameters, cal-
culated when R0 < 0 and R0 > 1. It is revealed that the ef-
fective contact rate β contributes to the most influence on
the basic reproductive number. If β increases one unit, then
R0 also increases one unit.

5.2. Optimal Strategies. Numerical solutions of the optimal
control problem presented in Section 4.1 are obtained by
forwardly solving the dynamical systems (2)–(7) with initial
conditions (8) and backwardly the adjoin system s(52)–(57)
with terminal time conditions (58) using controls (45)–(47).
*e so-called forward-backward sweep method [55] and the
well-known fourth-order Runge–Kutta algorithms were
implemented to achieve the optimal solutions:

(i) Set an initial guess for the control variables
v0i (i � 1, 2, 3, 4)

(ii) Solve forwardly-in-time state systems (2)–(7) with
initial conditions (8) using the fourth-order Run-
ge–Kutta scheme

(iii) Solve backwardly-in-time adjoin systems (52)–(57)
with terminal conditions (58) using the fourth-or-
der Runge–Kutta scheme

(iv) Calculate new controls (45)–(47) using the new
values of the state and adjoin solutions and then

Table 2: Parameter values for the model with constant control.

Parameter Value
S(0) 45
V(0) 15
E(0) 10
I(0) 20
T(0) 5
R(0) 5
∧ 0.950
p 0.250
μ 0.0069
α 0.100
β 0.03739; 0.575
cI 0.913
cT 0.978
σ 0.678; 0.885
rI 0.04762
rT 0.136
v1 0.150
v2 0.100
v3 0.080
v4 0.050
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update the controls by averaging old and new
controls

(v) Iterate the process until the solutions converge
within sufficiently small level of tolerance

Values of parameters in Table 4 were used in the sim-
ulation of the model with optimal control. Most of the
parameters in Table 1 remain unchanged in values. We only
change the value of α, β, and σ and treat vi as now bounded
dynamic variables rather than constants. We also introduce
parameters Ai and Bj as weights of performance criterion
(41). We set more priority to the minimization of the
number of exposed and infected individuals and assign less
priority to the treatment cost.

In the first simulation, we compare the dynamic of
measles transmission under constant and optimal controls.
*e model with constant control was run by setting all
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Figure 2: *e dynamics of human population when (a) R0 < 1 and (b) R0 > 1.

Table 3: Parameter sensitivity index.

Parameter
Sensitivity index

R0 < 1 R0 > 1

∧ 0.0000 0.0000
p −0.0181 −0.0181
μ −0.1223 −0.1204
α 0.5811 0.5811
β 1.0000 1.0000
cI 0.7274 0.7274
cT 0.2726 0.2726
σ 0.1136 0.0894
rI −0.6075 −0.6075
rT −0.0646 −0.0646
v1 −0.1046 −0.0823
v2 0.2726 0.2726
v3 −0.8734 −0.8734
v4 −0.2595 −0.2595

Table 4: Parameter values for the model with optimal control.

Parameter Value
S(0) 45
V(0) 15
E(0) 10
I(0) 20
T(0) 5
R(0) 5
∧ 0.950
p 0.250
μ 0.0069
α 0.221
β 0.678
cI 0.913
cT 0.978
σ 0.265
rI 0.143
rT 0.136
A1 0.200
A2 0.200
B1 0.150
B2 0.150
B3 0.150
B4 0.050
Variable Range
v1(t) [0, 0.86]

v2(t) [0, 0.69]

v3(t) [0, 0.40]

v4(t) [0, 0.50]
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Figure 3: *e state variables with constant and optimal controls.
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control variables constant for all time, i.e., v1 � 0.15,
v2 � 0.10, v3 � 0.08 and v4 � 0.05. However, the model with
optimal control was executed by letting optimization
mechanism select the best control variables among admis-
sible controls in V (40). We specified the bounded controls
as follows: v1(t) ∈ [0, 0.86], v2(t) ∈ [0, 0.69],
v3(t) ∈ [0, 0.40], and v4(t) � [0, 0.50]. *e upper bounds for
v1(t) and v2(t) were defined based onWHO estimation that
only 86% children have received the first dose of measles
vaccine and 69% the second in 2019.

Figure 3 illustrates the dynamic of state variables under
constant control (blue line) and optimal controls (red line).
Figure 3(b) depicts the dynamics of population in vaccinated
class. In the early period of control, the number of vacci-
nated individuals grows quickly due to the vaccine appli-
cation. *is transfers most of the susceptible individuals to
vaccinated compartment (Figure 3(a)). *e number of
vaccinated individuals began to decrease on day 20, which
increases the number of susceptibles. Figures 3(c) and 3(d)
show the effect of measles therapy on exposed individuals
and the effect of treatment on infected individuals. It seems
that therapy and treatment effectively reduce the number of
exposed and infected people. Figure 3(e) informs that the
treatment for measles was mostly provided in the first five
days of control period. Even though the constant control

policy successfully decreased the number of exposed and
infected individuals, the optimal control policy completed
the same task even better. *ese facts, however, confirm that
vaccine is very effective at preventing measles.

Figure 4(a) describes how the optimal policies vi (i �

1, 2, 3, 4) should be implemented. It is suggested that the
first-dose vaccine should be administered in full capacity,
i.e., with 86% of coverage, during the first five days. *e
coverage was then decreased rather quickly until the end of
control period. We should apply the second dose vaccine in
full capacity a bit longer, i.e., with 69% of coverage for the
first twenty days and then rapidly reduce the intensity. At the
same time, full capacity of measles therapy and treatment
should be performed during the first fifteen and eight days,
respectively. In contrast, constant control policies must
maintain the level of coverage constant all the time. How-
ever, in optimal control policies, we optimally adjust the
level of coverage such that it minimizes the performance
criterion. Figure 4(b) presents the dynamic of adjoin vari-
ables ωi (i � 1, 2, . . . , 6). It is confirmed that the terminal
time conditions ωi(T) � 0 (i � 1, 2, . . . , 6) in (58) were
satisfied.

To assess in more detail the effect of coverage of vac-
cination, measles therapy, and treatment, we develop three
scenarios based on their levels of intensity: low, moderate,
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Figure 4: (a) Optimal controls and (b) adjoin variables.

Table 5: Control scenarios.

Policy Variable
Coverage

Low (%) Moderate (%) High (%)
First dose vaccine v1 60 86 95
Second dose vaccine v2 30 69 75
*erapy v3 20 40 50
Treatment v4 15 50 60

14 International Journal of Mathematics and Mathematical Sciences



Time (days)
0 10 20 30 40 50 60 70 80 90 100

In
di

vi
du

al
s

0

10

20

30

40

50

60

70

80
Susceptible population

Low
Moderate
High

(a)

Time (days)
0 10 20 30 40 50 60 70 80 90 100

In
di

vi
du

al
s

0

10

20

30

40

50

60
Vaccinated population

Low
Moderate
High

(b)

Time (days)
0 10 20 30 40 50 60 70 80 90 100

In
di

vi
du

al
s

0

1

2

3

4

5

6

7

8

9

10
Exposed population

Low
Moderate
High

(c)

Time (days)
0 10 20 30 40 50 60 70 80 90 100

In
di

vi
du

al
s

0

2

4

6

8

10

12

14

16

18

20
Infected population

Low
Moderate
High

(d)

Figure 5: Continued.
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and high as described in Table 5. We consider the existing
vaccination coverage of 86% for MCV1 and 69% for MCV2
as the baseline (moderate scenario) and set the 2020 target
coverage of 95% for MCV1 and 75% for MCI2 as the high
scenario. We also take into consideration a situation where
only small coverages were realized, i.e., the low scenario.

Figure 5 illustrates the population dynamics in each class
under three different scenarios. It is shown that all scenarios
produce similar shape of curves. By expanding the coverage
of vaccination, therapy, and treatment, the number of
vaccinated individuals increases and those of exposed and
infected individuals decrease. It is also confirmed that
moderate and high scenarios show better performance in
reducing the number of exposed and infected individuals
than low scenario, despite only a few differences on the

results betweenmoderate and high scenarios. From Figure 6,
it can be calculated that moderate and high scenarios, re-
spectively, reduce the cost functional (41) up to 47% and 52%
of that achieved by low scenario. Meanwhile, there was only
a cost reduction of no more than 10% by high scenario
against moderate scenario.

*e optimal controls under low, moderate, and high
scenarios are depicted in Figure 7. All control policies share
similarities in implementation, i.e., control policies under
moderate and high scenarios were accomplished at the
maximum rate during the first few days of control period.
However, policies under low scenario need longer time. In
the second half of the control period, i.e., after day fifty,
controls under all scenarios were approximately applied at
the same rate.
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Figure 5: *e effect of vaccination coverage, therapy and treatment under low, moderate and high scenarios.
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6. Concluding Remarks

An autonomous nonlinear differential equation system for
measles dynamics, which incorporates constant vaccination,
therapy, and treatment rates, is considered first of all. *e
SVEITR model consists of six compartments (susceptible,
vaccinated, exposed, infected, treated, and recovered) to
categorize individuals according to their disease state. *e
stability analysis of the model is carried out towards disease-
free and endemic equilibrium points using Routh–Hurwitz
criteria and bifurcation theory. It is shown that the stability
of the equilibrium points depends on the basic reproduction

number (R0). If R0 < 1, the disease-free equilibrium point
will be stable, otherwise unstable. *e endemic equilibrium
point is in an asymptotically stable condition if R0 > 1,
otherwise unstable. Sensitivity analysis of the model reveals
that the effective contact rate is the most influencing pa-
rameter to the model.

*e model with constant controls is then extended to
include time-dependent vaccination, therapy, and treatment
rates, resulting in the model with optimal controls. *e
Pontryagin maximum principle is employed to derive the
necessary conditions for existence of an optimal control pair
that minimizes the number of exposed and infected
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Figure 7: *e optimal controls using different scenarios.
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individuals jointly with the control effort. Numerical simu-
lations constructed from the forward-backward sweepmethod
and the fourth-order Runge–Kutta algorithm are performed to
evaluate three scenarios based on vaccination, therapy, and
treatment coverages. It is demonstrated that moderate and
high levels of coverage can effectively reduce themeasles cases.

In reality, infections caused bymore than one disease can
circulate within the same period. Changes in dynamics that
develop in one disease affect the transmission dynamics of
other diseases. Cases that frequently occur are HIV/AIDS
infection coinciding with TB infection or between malaria
and cholera. Study on interconnection between two diseases
as a coinfection offers many advantages ([56, 57]). In sit-
uation of acute complications, measles infection can also
arise simultaneously with pneumonia infection [58]. *us,
development of a measles-associated pneumonia model is
very sensible in understanding the parasite interaction,
disease transmission and progression, and establishment of
prevention and control strategies. Measles is a contagious
disease that can spread rapidly to several areas [59]. In this
direction, development of a multiregional measles trans-
mission model is a necessity in understanding the diffusion
of measles disease across a landscape, as did by Athina et al.
[60] for two regional cases of malaria.
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