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Many large-scale natural and human-created disasters have drawn the attention of researchers towards the solutions of evacuation
planning problems and their applications. )e main focus of these solution strategies is to protect the life, property, and their
surroundings during the disasters. With limited resources, it is not an easy task to develop a universally accepted model to handle
such issues. Among them, the budget-constrained network flow improvement approach plays significant role to evacuate the
maximum number of people within the given time horizon. In this paper, we consider an evacuation planning problem that aims
to shift a maximum number of evacuees from a danger area to a safe zone in limited time under the budget constraints for network
modification. Different flow improvement strategies with respect to fixed switching cost will be investigated, namely, integral,
rational, and either to increase the full capacity of an arc or not at all. A solution technique on static network is extended to the
dynamic one. Moreover, we introduce the static and dynamic maximum flow problems with lane reversal strategy and also
propose efficient algorithms for their solutions. Here, the contraflow approach reverses the direction of arcs with respect to the
lane reversal costs to increase the flow value. As an implementation of an evacuation plan may demand a large cost, the solutions
proposed here with budget constrained problems play important role in practice.

1. Introduction

People are living under the threats of different natural and
human-created disasters, such as hurricanes, floods, wild-
fires, or chemical spills. Many disasters are uncertain and
unavoidable, but their effects can beminimized with efficient
evacuation planning. But, the development of efficient
models and algorithms for these planning problems is always
challenging. To find efficient transportation routes during
the evacuation, network flow models have been widely used.
An evacuation network is interpreted by using a directed
graph where the intersections of roads are represented by
nodes, road segments between nodes are represented by arcs,
and routes between two nodes are taken as directed paths.
)e places where evacuees are gathered and start to move at
risk are considered as source nodes, and the safe destinations
where they are supposed to arrive are sink nodes. Each node
has a nonnegative integer capacity which bounds the

maximum possible flow amount through it. Every arc has a
cost or a transit time assigned to it. A flow in the network is
considered as the evacuees or the vehicles carrying evacuees.

)e network flow problems are to findmaximum flow or
minimum cost flow in a given network. )e maximum
dynamic flow problem (MDF) in two-terminal networks is
solved polynomially using a static minimum cost flow so-
lution [1]. A flow maximization seeks to send as much flow
amount as possible within a time bound. A large number of
researchers have studied different flow models for various
objectives such as the earliest arrival flow to maximize the
flow at every possible time; quickest flow to shift given
amount of flow in minimum time; lexicographically maxi-
mum flow to maximize the flow in given priority order; and
quickest transshipment problem to satisfy given demand
and supply in minimum time. )ese dynamic flow models
have widely been used in solving several evacuation planning
problems. Static flow solutions are the building blocks for
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dynamic flow solutions. Usually, the evacuation plans
should respect the given time bound that may be continuous
or discrete. )e authors in [2] show that approximate
continuous time solution can be obtained by applying the
natural transformation to a discretized time solution. Most
of these models, except that of cost minimization problems
themselves, consider the travel time on an arc as only the
cost on it and do not take care of any additional costs oc-
curred during the evacuation plans. )ey aim to fulfill the
respective objectives on fixed network topology. For details,
we refer to [3] and [4] and the references therein.

Different types of network modification problems
exist in the literature. Generally, the original network is
assumed to be not modifiable in the sense that capabilities
or costs remain fixed as in the given network. However,
this assumption is not valid in many real evacuation
scenarios. For example, the capacity of an arc can also be
increased up to some limit subject to some capacity in-
cremental cost. For this, a fixed budget can be distributed
to increase capacities in the network such that the network
topology is modified and an objective, for instance, the
flow, with respect to new capacities is maximized. )ere
are three variants of this improvement strategy that deal
with rational, integral, and either of the all possible or not
at all capacity values in [5]. )e first two variants are
polynomial time solvable, while the last one is NP-hard
even in the cases of bipartite and series-parallel graphs.
)is third variant called the 0/1 maximum flow im-
provement strategy is equivalent to the maximum flow-
fixed cost problem which is a bicriteria optimization
problem where the flow has to be maximized under the
budget constraint. A fully polynomial time approximation
scheme for series-parallel graphs is presented. )e net-
work modification problems that relate to arc-based
improvement and node-based upgrading models are also
investigated.

Contraflow increases the outbound road capacities by
reversing the direction of arcs towards the safe destinations.
It increases the flow value and decreases the evacuation time
by reducing the congestion in an emergency or rush-hour
traffic management. )e arc reversals are performed on the
existing networks with permissible lane reversals without
any additional costs. )e authors in [6, 7] prove that the
contraflow problems for general networks are NP-hard.
)e former have presented different heuristics for multi-
terminal network, and the latter have polynomially solved
maximum dynamic contraflow (MDCF) and quickest
contraflow problems in the case of two-terminal networks,
respectively. By introducing the contraflow approach, dif-
ferent evacuation planning problems are efficiently solved in
[8, 9]. )e earliest arrival transshipment contraflow in
multisource networks and with zero transit time inmultisink
networks has been polynomially solved. )e authors in [10]
investigate the quickest contraflow problem with constant-
and load-dependent transit times. )e authors in [11] have
developed a class of contraflow algorithms and performed
computational experiments. )e technique of lane reversals
is beneficial for other purposes, for example, crossing
eliminations, logistic supports, and use of emergency

vehicles and facility locations. )e contraflow approach with
crossing elimination, facility location-allocation, and partial
lane reversal strategies are introduced in [12–14], respec-
tively. )e third approach makes use of nonreversed arcs in
contraflow for supporting facilities and emergency logistics.
Multimodel integrated contraflow for uncertain arrivals of
evacuees in an evacuation region with a low mobility
population is presented in [15]. Considering the influence of
intersections, an improved critical-road model has been
investigated to find the optimal contraflow links [16].

For provided limited resources, it is not possible to select
all arc reversals as demanded by the optimal contraflows. In
this paper, we investigate contraflow problems with fixed
budget constraint distributed to the arc reversals. )e total
given budget allows us to reverse only a certain percentage of
arcs in a given network. We introduce the maximum dy-
namic flow improvement problem (MDFIP) and also the
maximum contraflow improvement problems in both static
and dynamic networks. )en, we propose polynomial time
algorithms to solve these problems. To the best of our
knowledge, this is the first attempt to incorporate the issues
of arc reversal costs on contraflow problems subject to the
given total budget constraint. As arc reversals require a lot of
costs at emergency period, this approach is more practicable
in implementing the contraflow algorithms.

)e paper is organized as follows. )e network flow
models are given in Section 2. )e solutions on static and
dynamic flow improvement problems are presented in
Sections 3.1 and 3.2, respectively.)e contraflowmodels and
their solution procedures with unit switching costs on arcs
for the flow improvements are proposed in Section 4. Section
5 concludes the paper.

2. Preliminaries

Consider a directed dynamic network N � (V, A, ue(t),

θe, T), with V � V+ ∪V− ∪V0, where V+, V− , and V0 rep-
resent sets of sources, sinks, and intermediate nodes, re-
spectively. In particular, V+ � s{ } and V− � t{ }, for any two-
terminal network. )e egress time T is denoted by T �

0, 1, . . . , T{ } and Tc � [0, 1), . . . , [T, T + 1){ } in discrete and
continuous time models, respectively. )e functions
θ: A⟶ R≥0 and u: A × T⟶ R≥0 are arc transit time and
capacity functions, respectively. )e capacity function
bounds the amount of flow on arcs. Suppose
f: A × T⟶ R≥0 is a dynamic flow function, where the
value fe(t) entering the arc e � (v, w) at time t also arrives at
node w at t + θe. )e flow excesses at the node induced by a
flow on arcs is denoted by h: V × T⟶ R≥0. A directed
static network N � (V, A, ue) is obtained by omitting the
time components. For the sake of simplicity, the same
functions f and h will be used for static and dynamic flows.

2.1. Network Flow Models

2.1.1. Maximum Static Flow Model. )e maximum static
flow model is to maximize Objective (1) satisfying Con-
straints (2)–(4):
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max 􏽘
v∈V+

hv, (1)

􏽘
e∈A+

v

fe − 􏽘
e∈A−

v

fe �

hv, if v ∈ V+,

0, if v ∈ V0,

−hv, if v ∈ V− ,

⎧⎪⎪⎨

⎪⎪⎩
(2)

hv ≥ 0, ∀v ∈ V, (3)

ue ≥fe ≥ 0, ∀e ∈ A, (4)

where A+
v � (v, w) ∈ A | w ∈ V{ } for v ∈ V and

A−
v � (u, v) ∈ A | u ∈ V{ }. Outgoing flow from the sources,

conservation of flow in intermediate nodes, and entering
flow to the sinks are, respectively, shown in Constraint (2).
Constraint (4) represents bounds of flows on arcs.

2.1.2. Maximum Dynamic Flow Model. )e dynamic net-
work flow model with discrete time setting satisfies Con-
straints (5)–(8):

􏽘
e∈A+

v ,t≥0
fe(t) − 􏽘

e∈A−
v ,t−θe≥0

fe t − θe( 􏼁 �

hv(t), if v ∈ V+,

0, if v ∈ V0, ∀t ∈ T,

−hv(t), if v ∈ V− ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

hv(t)≥ 0, ∀v ∈ V, ∀t ∈ T, (6)

ue(t)≥fe(t)≥ 0, ∀e ∈ A, ∀t ∈ T, (7)

fe(t) � 0, ∀e ∈ A, t � T − te + 1, T. (8)

Constraint (8) ensures that the flow does not enter arc e

at time t if it will have to leave the arc after the given time
horizon.)emaximum dynamic flow that can enter the arc e

within each integral time step t is bounded by the time
varying capacity ue(t); this is ensured by Constraint (7).
Flow conservation conditions are ensured in Constraint (5).
Flow value at T is defined in (9) and is to be maximized for
the MDF:

􏽘
T

t�0
􏽘

v∈V+

hv(t). (9)

Multiterminal network for single commodity flow
can be reduced to the standard two-terminal network by
introducing one virtual source node and one virtual sink
node. Virtual arcs connect the new source to true
sources and true sinks to the new sink. )e transit times
of these virtual arcs are zero. )e capacities of arcs
connecting to the virtual source with all other sources
are bounded by the capacities of these sources. )e
capacities of arcs connecting to virtual sink from true
sinks are bounded by the capacities of these sinks. If θe �

0 for all e ∈ A and T � 0, then the formulated problem
reduces to the classical maximum flow problem on a
static network.

2.1.3. Time-Expanded Flow Model. )e dynamic network
flow problem in N � (V, A, ue(t), θe, T) can be reduced to a
static network flow problem in the time-expanded network
NT � (VT, AT, uT), which is a static representation of the
dynamic network. Construction of time-expanded network
is as follows:

V
T ≔ v(t): v ∈ V, t ∈ T{ },

A
T ≔ v(t), w t + θe( 􏼁( 􏼁: e � (v, w) ∈ A, 0≤ t≤T − θe􏼈 􏼉,

(10)

with capacity function uT
e(t) ≔ ue(t), for e(t) ∈ AT. Let

(v(t), w(t + θe)) ∈ AT and let fe(t) be a flow in the dynamic
network N � (V, A, ue(t), θe, T). )e corresponding flow
function in the time-expanded network NT � (VT, AT, uT)

is defined by

f
T
e(t) � f v(t),w t+θe( )( ) � fe(t), ∀e(t) ∈ A

T
. (11)

Relation (11) is a bijection from the set of feasible flows
in the dynamic network N � (V, A, ue(t), θe, T) to the set of
feasible flows in the time-expanded network
NT � (VT, AT, uT) so that dynamic flows fe(t) with time
horizon T are equivalent to static flows fT

e(t) in the time-
expanded network [17].

2.1.4. Minimum Cost Flow Model. Let d: A⟶ Z be sup-
ply-demand function with supply dv > 0 and demand dv < 0
for v ∈ V, and let c: A⟶ Z be the cost function. )en, the
minimum cost flow formulated as in [1] is

min 􏽘
e∈A

cefe, (12)

􏽘
e∈A+

v

fe − 􏽘
e∈A−

v

fe � d(v), ∀v ∈ V,
(13)

ue ≥fe ≥ 0, ∀e ∈ A. (14)

)e conservation and capacity constraints are given by
(13) and (14), respectively. Equation (15) represents the
feasibility of supplies and demands. )is constraint implies
that the total supply is equal to the total demand:

􏽘
v∈V

dv � 0. (15)

)e feasibility of minimum cost flow problem can be
determined by solving a maximum flow problem [1, 18]. For
this, one introduces a supersource node s∗, a supersink node
t∗, source arcs (s∗, v) with capacities dv for v ∈ V+, and sink
arcs (v, t∗) with capacities −dv for v ∈ V− . Recall that
􏽐v∈V+ dv � 􏽐v∈V− dv holds. If the maximum flow saturates all
the source arcs, the minimum cost flow problem is feasible;
otherwise, it is infeasible.

3. Maximum Flow Improvement Problems

3.1. Static Flow Improvements. In the maximum static flow
improvement problem (MSFIP), an additional nonnegative
number Ue, for each e ∈ A, is given so that the capacity ue
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can be increased with some nonnegative cost up to the upper
bound Ue ≥ ue. )e improvement capacity function with
nonnegative unit cost be is defined as I: A⟶ Q≥0. )e
objective of the problem is to maximize the flow from the
sources to sinks by increasing the capacities of arcs within
the budget restriction where incremental cost is to be ac-
cepted to increase arc capacity. Flow improvement problems
(16)–(22) have been formulated as in [5]:

􏽘
e∈A+

v

fe − 􏽘
e∈A−

v

fe �

hv, if v ∈ V+,

0, if v ∈ V0,

−hv, if v ∈ V− ,

⎧⎪⎪⎨

⎪⎪⎩
(16)

hv ≥ 0, ∀v ∈ V, (17)

Ie ≥ 0, ∀e ∈ A, (18)

ue + Ie ≥fe ≥ 0, ∀e ∈ A, (19)

Ue ≥ ue + Ie ≥ 0, ∀e ∈ A, (20)

􏽘
e∈A

Iebe ≤B. (21)

Constraint (19) controls the arc flows, Constraint (20)
limits capacity increment, and Constraint (21) bounds the
total capacity incremental cost B with b as the unit cost. By
denoting Fst to be the sum of flow out from the source that
enter into the sink, the objective function equals

Fst � 􏽘
v∈V+

hv. (22)

Problem 1. )e MSFIP with capacity improvement cost is
maximum static flow problems (16)–(22), where capacity of
arcs with unit costs can be increased up to specified limit
bounded by the improvement cost.

)e MSFIP with continuous improvement strategy, in
which the improvement function I(e) takes any rational
values respecting the upper bound, can be solved optimally
in polynomial time. )e integral MSFIP that takes only
integral improvements can be transformed into a budget
constraint minimum cost flow problem in polynomial time.

Assume that the unit cost be of increasing the capacity of
arc e is a nonnegative number and also assume that the
optimal flow improvement corresponding to the arc e is
I∗e � max 0, f∗e − ue􏼈 􏼉, where f∗ is the optimal improved
maximum flow. Otherwise, the strategy would waste the
cost. Such a behavior can be modeled by a flow cost ce

defined as

ce(f) �
0, for 0≤f≤ ue,

be · f − ue( 􏼁, for ue <f≤Ue,
􏼨 ∀e ∈ A.

(23)

By definition, ce is a piecewise-linear convex function. In
this case, each e ∈ A is replaced by two parallel arcs e0 and e1
to make it linear.)e capacities ue and linear costs ce of these
arcs are set as

ue0
≔ ue,

ue1
≔ Ue − ue,

ce0
≔ 0,

ce1
≔ be.

(24)

)is construction is valid from the convexity of cost
function. )us, the improved maximum flow value F∗st can
be obtained by solving minimum cost flow with cost at most
B by the method of binary search in [0, nUmax].

Theorem 1 (see [5]). The integral MSFIP can be solved
optimally in polynomial time by O(log(nUmax)) minimum
cost flow computations in a directed network with 2m arcs,
where Umax � max Ue: e ∈ A􏼈 􏼉 is the maximum capacity.

Instead of performing a binary search on the interval
[0, nUmax], the interval can be searched only in multipli-
cative steps of 1 + ϵ, where ϵ> 0 is a fixed accuracy pa-
rameter. )e value Fst

′ found by this modified binary search
satisfies Fst

′ ≥ (F∗st/(1 + ϵ)).

Theorem 2 (see [5]). Let ϵ> 0 be fixed. 1en, a
(1 + ϵ)-approximation for MSFIP can be obtained in
O(log log1+ϵ(nUmax)) minimum cost flow computations in
the directed graph with 2m arcs.

Each of the minimum cost flow computations have to be
carried out in a graph with O(gm) arcs, where g is the
maximum number of breakpoints occurring in the piece-
wise-linear cost functions. Furthermore, one can solve the
problem in strongly polynomial time applying Megiddo’s
parametric search [19]. )e same search can be applied to
solve the rational MSFIP, too.

)e flow improvement strategy, either to increase the
capacity of each arc to its maximum capacity or leave the
capacity of arc unchanged, is NP-hard. )is 0/1 MSFIP is
equivalent to the maximum flow problem with fixed cost on
arcs. For given nonnegative capacity ue and cost ce on each
e ∈ A, the latter problem asks to find a subset A∗ of A such
that 􏽐e∈A∗ce ≤B and the source-sink flow is maximized. But,
the decision variant of this problem is NP-complete. We
state the following.

Theorem 3 (see [5]). The maximum flow problem with fixed
cost on arcs isNP-hard even on series-parallel and bipartite
graphs.

)e pseudo-polynomial time algorithm for the maxi-
mum fixed cost flow problem on series-parallel graphs is
presented. )ey are converted into a fully polynomial time
approximation scheme by the scaling technique.

Theorem 4 (see [5]). When the problems are restricted to
series-parallel graphs, the maximum flow problem with fixed
cost on arcs and 0/1 MSFIP can be solved with fully poly-
nomial time approximation scheme.
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3.2. Dynamic Flow Improvements. )is section extends the
MSFIP to maximum dynamic flow improvement problem
(MDFIP) considering the time factor. Let I(t) and b(t) be

capacity improvement and improvement unit cost functions
in dynamic network, respectively. )e proposed MDFIP can
be formulated as follows:

max􏽘
T

t�0
􏽘

v∈V+

hv(t), (25)

subject to 􏽘
e∈A+

v

fe(t) − 􏽘
e∈A−

v ,t−θe≥0
fe t − θe( 􏼁 �

hv(t), if v ∈ V+,

0, if v ∈ V0, ∀t ∈ T,

−hv(t), if v ∈ V− ,

⎧⎪⎪⎨

⎪⎪⎩
(26)

hv(t)≥ 0, ∀v ∈ V, ∀t ∈ T, (27)

Ie(t)≥ 0, ∀e ∈ A, ∀t ∈ T, (28)

fe(t) � 0, ∀e ∈ A, t � T − te + 1, T, (29)

ue(t) + Ie(t)≥fe(t)≥ 0, ∀e ∈ A, ∀t ∈ T, (30)

Ue(t)≥ ue(t) + Ie(t)≥ 0, ∀e ∈ A, ∀t ∈ T, (31)

􏽘

T

t�0
􏽘
e∈A

Ie(t)be(t)≤B. (32)

)is is an extension of MDF where Budget Constraint
(32) has been imposed to bound the capacity improvement
cost, Constraint (31) deals with the maximum possible
improvement, and Constraint (30) deals with the feasibility
of flow with improved capacity.

Let (v(t), w(t + θe)) ∈ AT and let Ie(t) be the capacity
improvement on arc e ∈ A; then, the capacity improvement
function could be defined as IT

e(t) � I(v(t),w(t+θe)) �

Ie(t), for all e(t) ∈ AT. Each dynamic network can be
transformed into the corresponding time-expanded network
for a given time horizon.)e maximum dynamic flow in the
given network is equal to the maximum flow in time-ex-
panded network [1].

Problem 2. )e MDFIP with capacity improvement cost is
the MDF, where capacities of arcs can be increased up to a
specified limit accepting the improvement cost.

Theorem 5. 1e integral and continuous flow improvement
problems in dynamic network can be solved optimally in
pseudo-polynomial time.

Proof. Let us transform the given integral MDFIP in the
dynamic network into theMSFIP in the corresponding static
network assuming VT ≔ v(t): v ∈ V, t ∈ T{ }, AT ≔ (v(t),{

w(t + θe)): e � (v, w) ∈ A, 0≤ t≤T − θe}, uT
e(t) ≔ ue(t),

IT
e(t) ≔ I(v(t),w(t+θe)) � Ie(t), and bT

e(t) ≔ be(t) ∀e(t) ∈ AT. Let
(v(t), w(t + θe)) ∈ AT and let fe(t) be a flow in the dynamic

network N � (V, A, ue(t), θe, T); then, the corresponding
flow function in NT � (VT, AT, uT) can be related by

f
T
e(t) ≔ f v(t),w t+θe( )( ) � fe(t) for all e(t) ∈ A

T
. (33)

Relation (33) is a bijection from the set of feasible flows
in the dynamic network N � (V, A, ue(t), θe, T) to the set of
feasible flows in NT � (VT, AT, uT) so that dynamic flows
fe(t) with time horizon T are equivalent to static flows fT

e(t)

in NT � (VT, AT, uT). )us, the flow improvement problem
in dynamic network N � (V, A, ue(t), θe, T) with time ho-
rizon T, capacity improvement Ie(t), and improvement cost
be(t) is equivalent to the flow improvement problem in static
network NT � (VT, AT, uT) with capacity improvement IT

e(t)

and improvement cost bT
e(t). As the integral maximum flow

improvement problem in static network can also be solved
optimally (cf. )eorem 1), the integral MDFIP can also be
solved optimally.

With similar arguments, the continuous MDFIP can be
solved optimally in pseudo-polynomial time. □

)e dynamic improvement and dynamic improvement
cost have been considered in (25)–(32). While constructing
time-expanded network in the proof of )eorem 5, they are
transformed into static improvement and static improvement
cost by applying the transformations IT

e(t) ≔ I(v(t),w(t+θe)) �

Ie(t)and bT
e(t) ≔ be(t)∀ e(t) ∈ AT, respectively. If one con-

sider improvement and its cost both static in (25)–(32), the
time-expanded network copies the arc with the same improved
capacity for every arc of the dynamic network. )ese modi-
fications ensure that each copy of the same arc is improved by
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the same amount of capacity and the improvement cost of an
arc is counted only once for all of its copies. □
4. Flow ImprovementswithArc SwitchingCosts

Contraflow approach increases the flow value by reversing
the directions of arcs towards the sinks as a flow towards the
sources is neither preferred nor expected in emergencies.
)is concept without any reversal cost is first incorporated in
[20] and analytically studied in [7], where the arc is reversed
with its full capacity or left as it is. However, a reversal may
require some switching costs. Different contraflow models
and solution procedures with switching costs are considered
throughout this section.

Figure 1 explains how contraflowworks in time invariant
network, where there is no arc reversal cost. Given network
N � (V, A, ue, θe, T), the contraflow uses an auxiliary net-
work 􏽥N � (V, 􏽥A, 􏽥u, 􏽥θ, T), where the set of arcs 􏽥A contains 􏽥e if
e � (v, w) ∈ A or er � (w, v) ∈ A. )e capacity and sym-
metric transit time functions are considered as 􏽥u􏽥e ≔ ue + uer

and 􏽥θ􏽥e ≔
θe for e ∈ A

θer else􏼨 ∀􏽥e ∈ 􏽥A, respectively. Other pa-

rameters of the given network remain the same.

4.1. Maximum Static Flow Problem. )e maximum static
contraflow problem (MSCFP) introduced in [7] maximizes
the source-sink flow value, where directions of arcs have
been reversed without considering the reversal costs. In this
section, we introduce budget constraintMSCFP and propose
its solution procedure for a two-terminal network.

)e switching cost contraflow (SCCF) finds a feasible
flow in N � (V, A, ue), where the arc directions can be
reversed accepting switching costs whenever flow can be
improved. )e static SCCF problem has a similar structure
as the minimum concave-cost network flow problem [21].
)ese problems ask to find a feasible flow while minimizing
the total cost. )e total cost is the sum of concave-costs due
to the use of arcs by feasible flow. It can be assumed that the
concave-cost per arc consists of a fixed cost, whenever this
particular arc is used, and a variable cost depends on the
amount of flow. Fixing the variable cost to zero leads to a
special problem called minimum cost fixed flow (MCFF)
problem. )e improvement strategy function I is a 0/1
decision if additional capacity is used or not, independent of
how much additional capacity is used. An integral flow
improvement strategy is considered throughout this section.

Problem 3. )eMSCFP with switching cost is the maximum
flow problem in the static network where arcs can be re-
versed accepting some switching costs and total cost is re-
stricted by a given budget. )is problem is denoted by
MSCFPWSC (Algorithm 1).

Theorem 6. Algorithm 1 solves Problem 3 optimally in
polynomial time for integral reversed capacity.

Proof. Step 1 constructs an auxiliary network from the given
network which is feasible. Step 2 defines the cost function for
the improved capacity which is convex and nonlinear,
whereas Step 3 is to linearize the cost function defined in Step

2. )us, both these steps are feasible. Step 4 finds the optimal
flow F∗st in 􏽥N � (V, 􏽥A, 􏽥u􏽥e) using the binary search method in
[0, n 􏽥Umax], and Step 5 reverses the direction of arcs according
to the direction of the flow obtained in Step 4. So, Step 4 and
Step 5 are also feasible. Hence, the algorithm is feasible.

To restrict on budget, this algorithm only reverses the
required capacity of the arc so that Ie � max 0, f􏽥e − u

e
→􏽮 􏽯,

where f􏽥e represents the flow through the arc 􏽥e. Cost for the
reversed capacity is defined in Step 2 which is not linear but
convex and is linearized in Step 3, as in [5, 22]. )en, MSCFP
with switching cost is equivalent to the budget constraint
maximum flow improvement problem with integral im-
provement which is equivalent to the budget constraint min-
imum cost flow problem. )us, Problem 3 is equivalent to the
budget constraint minimum cost flow problem. Suppose F∗st be
the optimal integral flow achievable on budget B which can be
obtained by the method of binary search in [0, n 􏽥Umax] [5].

Step 1 constructs an auxiliary network in linear time and
is similar for Step 2 and Step 3. Step 5 reverses the arc
directions in linear time according to the flow obtained in
Step 4 since not both of the arcs e

→ and e
←
have to be switched

at a time. )us, running time of the algorithm depends on
Step 4. Hence, Algorithm 1 solves Problem 3 in
O(log(n 􏽥Umax)) minimum cost flow computations. □

Algorithm 1 reverses the direction of arcs with integral
capacity; thus, the improvement is integral. )is implies that
the optimal flow of the problem is integral. For this, the
binary search algorithm can test only for the integral flow
values of the interval. Instead of applying binary search in
the interval, one can apply Megiddo’s parametric search [19]
to extract the solution in Step 4 of Algorithm 1.

)e maximum value Fst
′ satisfying the budget constraint

lies in 1, 1 + ϵ, . . . , (1 + ϵ)k
􏽮 􏽯, where k � 􏽬log1+ϵ(n 􏽥Umax)􏽭 and

ϵ> 0 is a fixed accuracy parameter.)ismodified binary search
finds new value such that Fst

′ ≥ (F∗st/(1 + ϵ)). If such modi-
fication is applied in Step 4 of Algorithm 1, a (1 + ϵ) ap-
proximation for budget constrained maximum contraflow can
be obtained in O(log log1+ϵ(n 􏽥Umax)) minimum cost flow
computations, where ϵ> 0 is a fixed accuracy parameter.

Example 1. Let B � 20 be the total reversal budget for the
evacuation network as shown in Figure 2. Before contraflow
configuration, 10 units of flow could be reached in the sink
from the source through the paths s − x − t and s − y − t.
Likewise, 19 units of flow could be sent through paths
s − x − t, s − y − t, and s − y − x − t (cf. Figure 2(b)) ap-
plying the contraflow approach for which B � 37 is required
for the complete arc reversals which is more than the given
budget. )is means that the upper bound of the budget
constraint contraflow is 37. )e budget constraint contra-
flow can be found applying Algorithm 1.

)e optimal budget constraint flow in the auxiliary network
in Figure 1(b) corresponding to Figure 2(a) can be obtained
using Step 4. In this network, 􏽥Umax � max 􏽥u􏽥e|􏽥e ∈ 􏽥A􏽮 􏽯

� max 10, 9, 3, 10, 9{ } � 10. )us, the flow can be obtained in
[0, 4 × 10] � [0, 40] as n ≔ |V|. Here, the midpoint of the
interval is 20 but it is infeasible so that the flow should be
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searched in the lower interval [0, 19]. Again, a middle value of
the interval is 10 and its minimum cost is zero as 5 units of flow
can be sent through both paths s − x − t and s − y − t without
reversing any arcs. )e objective of the problem is to maximize
the flow under the given budget so that flow should be searched
in the upper interval [11, 19]. )e middle value is 15. Its
minimum cost is 17 as the reversed arcs are
(x, s), (t, x), and (x, y) with capacities 4, 4, and 1, respectively.
Here, we reverse the arc (x, y) onlywith capacity 1 as the budget
should not be wasted. )e resulting network flow is shown in
Figure 2(c). Next, the possible upper value should be searched in

[16, 19]. Let us check the cost for 17. For this, theminimum cost
is 27 which exceeds the given budget, and thus, it is infeasible.
Similarly, the minimum cost is checked for 16 units of flow
which is 22. Again, this exceeds the budget. Hence, the budget
constraint contraflow is 15 which is shown in Figure 2(c) for
which 17 units of budget have been used. Still, 3 units of budget
remain unused but they are insufficient.

Theorem 7. 1e fixed switching cost contraflow problem is
equivalent to 0/1-MSFIP where all data to be positive integral
[7].

s t

x

y

5, 1
4, 1

6, 3
4, 3

3, 1

6, 4
4, 4

5, 1
4, 1

(a)

s t

x

y

9, 1

10, 3

3, 1

10, 4

 9, 1

(b)

Figure 1: Network with capacities and transit times, respectively. (a) Evacuation network. (b) Auxiliary network.

Input: two-terminal arc reversible network N � (V, A, ue) with reversal budget B and reversal cost be

(1) Construct an auxiliary network, 􏽥N � (V, 􏽥A, 􏽥u􏽥e) with new capacity 􏽥u(􏽥e) � u( e
→

) + u(e
←

)

(2) Define the cost function by c􏽥e(f) �
0 for 0≤f􏽥e ≤ u

e
→

b
e
← · (f􏽥e − u

e
→) for u

e
→ <f􏽥e ≤ 􏽥u􏽥e

􏼨 for all 􏽥e ∈ 􏽥A

(3) Transform the cost and the capacity functions by
ue0
≔ u

e
→ ue1

≔ 􏽥u􏽥e − u
e

→

ce0
≔ 0 ce1

≔ b
e
←

(4) Find the optimal flow F∗st in the auxiliary network considering costs defined in Step 3 and the total budget B, by applying binary
search in [0, n 􏽥Umax], where 􏽥Umax � max 􏽥u􏽥e:

􏽥e ∈ 􏽥A􏽮 􏽯

(5) An arc e
←
∈ A is reversed with capacity f􏽥e − u

e
→ if and only if the flow along e

→ ∈ A is greater than u( e
→

) or there is a nonnegative
flow along the arc e

→ ∉ A

Output: maximum contraflow value in N � (V, A, ue) using arc reversal budget B

ALGORITHM 1: Maximum static contraflow with switching cost (MSCFAWSC).
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x

y

5, 3

6, 3

3, 1

4, 24, 2

4, 1

5, 6

6, 5

4, 4

(a)

s t

x

y

3, 1

9, 910, 10

9, 9 10, 10

(b)

s t

x

y

2, 01, 1

6, 6 5, 6, 5

4, 0 4, 0

9, 9 10, 10

(c)

Figure 2: Evacuation network, contraflow without budget constraint and contraflow with budget constraint, respectively. (a) Capacity, unit
cost. (b, c) Capacity, flow.
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Since the 0/1 maximum flow improvement is equivalent
to the maximum fixed cost flow problem, this implies that
the FSCCF isNP-hard to solve ()eorem 3). )e fixed cost
for arc reversals makes the problem NP-hard, even in the
static case. )e static contraflow algorithm is ’blind’ for the
arc reversal decisions. Adding a time component to FSCCF
makes it practically even more difficult to solve. Based on the
above results, the following theorems are proposed.

Theorem 8. 1e FSCCF problem isNP-hard even in series-
parallel graphs.

Proof. )e FSCCF problem is equivalent to 0/1-MSFIP
()eorem 7). As the maximum flow problem with fixed cost
on arcs is equivalent to 0/1-maximum flow improvement
[5], then by )eorem 3, it can be claimed that the FSCCF
problem is NP-hard even in series-parallel graphs. □

Theorem 9. 1ere is a fully polynomial time approximation
scheme for the FSCCF problems when the problems are re-
stricted to series-parallel graphs.

Proof. As in proof of )eorem 8, the FSCCF problem is
equivalent to 0/1-MSFIP and the maximum flow problem
with fixed costs on arcs. Since all hardness and approxi-
mation results of these problems will be carried over to the
FSCCF problem so that a fully polynomial time approxi-
mation scheme can be obtained for the FSCCF problems in
series-parallel graphs ()eorem 4). □

As the fixed switching cost contraflow problem is
equivalent to the 0/1 maximum flow improvement which is

equivalent to the minimum cost fixed flow problem, an
approximation solution can be found by using the cost-to-
time ratio approach [5, 18]. )is can be obtained by as-
suming the capacities ue and unit cost ce/ue.

4.2. Maximum Dynamic Flow Problem. )e notion of MDF
is introduced and solved in [7] by reversing the arcs at time
zero with zero cost. In this section, reversal cost is considered
to maximize the dynamic contraflow subject to budget
constraint which is an extension of MSCFP from static to
dynamic networks.

Problem 4. )e MDCF problem with switching cost is the
MDF where arcs can be reversed accepting switching cost
such that the total cost is subject to the budget constraint. It
is denoted by MDCFPWSC.

Theorem 10. Algorithm 2 solves Problem 4 optimally in
pseudo-polynomial time.

Proof. Step 1 is well defined as it transforms the given
dynamic network flow problem into the static network flow
problem. )e feasibility of other steps of the algorithm can
be shown as in )eorem 6. )us, the algorithm is feasible.

)e dynamic network can be transformed into static
network as in Step 1. Step 2 constructs the auxiliary network,
and Step 6 finds an optimal flow in auxiliary network with
respect to the cost defined in Step 5 and total budget B. Let
fe(t) be the budget constraint contraflow in the dynamic
network. )en, the corresponding budget constraint flow
function in the network 􏽥N

T
� (VT, 􏽥A

T
, 􏽥uT) can be related by

the following equation:

Input: two-terminal arc reversible network N � (V, A, ue(t), θe, T) with reversal budget B, reversal cost be(t), and symmetric arc
capacity

(1) Transform the given dynamic network into the time-expanded network by
VT ≔ v(t): v ∈ V, t ∈ T{ }

AT ≔ (v(t), w(t + θe)) | e � (v, w) ∈ A, 0≤ t≤T − θe􏼈 􏼉

uT
e(t) ≔ ue(t), for e(t) ∈ AT

bT
e(t) ≔ be(t), for e(t) ∈ AT

capacities and costs of holdover arcs are infinity and zero, respectively
(2) Construct an auxiliary 􏽥N

T
� (VT, 􏽥A

T
, 􏽥uT) as 􏽥e(t) ∈ 􏽥A if e

→
(t) � (v(t), w(t + θe)) ∈ AT or e

←
(t) � (w(t − θe), v(t)) ∈ AT with new

capacity 􏽥u T

􏽥e(t) � uT

e
→

(t)
+ uT

e
←

(t)
for all􏽥e(t) ∈ 􏽥A

T

(3) Define the cost function by cT

􏽥e(t)(fT

􏽥e(t)) �
0 for 0≤fT

􏽥e(t) ≤ uT

e
→

(t)

bT

e
→

(t)
· (fT

􏽥e(t) − uT

e
→

(t)
) for uT

e
→

(t)
<fT

􏽥e(t) ≤ 􏽥uT

􏽥e(t)

⎧⎪⎨

⎪⎩
for all 􏽥e(t) ∈ 􏽥A

T

(4) Transform the cost and the capacity functions by
uT

e0
≔ uT

e
→

(t)
uT

e1
≔ 􏽥uT

􏽥e(t) − uT

e
→

(t)

cT
e0
≔ 0 cT

e1
≔ bT

e
←

(t)

(5) Find the optimal flow in the auxiliary network considering budget B and the cost defined in Step 4 using binary search in
[0, nT 􏽥Umax], where 􏽥Umax � max 􏽥uT

􏽥e(t): 􏽥e(t) ∈ 􏽥A
T

􏼚 􏼛

(6) An arc e
←

(t) ∈ AT is reversed with capacity 􏽥f
T

􏽥e(t)
− uT

e
→

(t)
if and only if the flow along e

→
(t) ∈ AT is greater than uT

e
→

(t)
or there is a

nonnegative flow along the arc e
→

(t) ∉ AT

(7) Reconstruct the dynamic network flow from the static network flow according to the flow obtained in Step 5 and arc reversal in
Step 6
Output: Maximum dynamic contraflow in N � (V, A, ue(t), θe, T) with respect to budget B

ALGORITHM 2: Maximum dynamic contraflow with switching cost (MDCFAWSC).
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f
T

􏽥e(t)
� f

v(t),w t+θ􏽥e􏼐 􏼑􏼐 􏼑
� fe(t), ∀ 􏽥e(t) ∈ 􏽥A

T
. (34)

It is a bijection from the set of feasible budget constraint
contraflows in the dynamic network N � (V, A, ue(t), θe, T)

to the set of feasible budget constraint flows in
􏽥N

T
� (VT, 􏽥A

T
, 􏽥uT) so that the contraflows fe(t) with time

horizon T are equivalent to the flows fT

􏽥e(t)
in the time-ex-

panded network. Remaining proof of the theorem can be
shown as in )eorem 6. Suppose F∗dy be the optimal con-
traflow achievable on budget B. Hence, the optimal con-
traflow can be obtained in O(log(Tn 􏽥Umax)) minimum cost
flow computations. □

5. Conclusions

To find the minimum cost, a maximum flow and the quickest
time in static or dynamic networks are still emerging fields of
research in the literature. Moreover, the best reconfiguration
of an evacuation network is being more interesting both from
theoretical as well as application points of view. However, in
most of the cited publications, the arc reversal costs are
considered to be zero, given the highest priority for evacuees
rather than taking account of a fixed budget in emergency
periods. Many efficient algorithms are presented so far.

In this paper, we look at the above problems considering
the fixed budgetary costs in addition. Our focus is given on
the flow improvement problems with switching costs con-
strained by arc reversal costs on different static and dynamic
network flow models. Different variants of flow improve-
ment problems have been studied, and their complexities are
given. Here, the contraflow reconfiguration with arc
switching cost has been introduced for the first time. Based
on this approach, a polynomial time algorithm and a
pseudo-polynomial time algorithm are proposed for max-
imum static and maximum dynamic contraflow improve-
ment problems, respectively. )e arc capacities in these
dynamic flow models are subject to the time-dependent
capacity constraints with time invariant transit times.
)erefore, these solutions are equally applicable if both these
parameters are taken to be time invariant. If both parameters
are taken to be time- or flow-dependent, the hardness in-
creases, and it is our further interest. )e findings of these
investigations are of both theoretical and practical interest.
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