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In this paper, we discussed the estimation of the index C,,, for a 3-Burr-XII distribution based on Progressive Type-II censoring.
The maximum likelihood and Bayes method have been used to obtain the estimating of the index C,,,. The Fisher information
matrix has been used to construct approximate confidence intervals. Also, bootstrap confidence intervals (Cls) of the estimators
have been obtained. The Bayesian estimates for the index C,, have been obtained by the Markov Chain Monte Carlo method. Also,
the credible intervals are constructed by using MCMC samples. Two real-datasets have been discussed using the proposed index.

1. Introduction

Statistician and quality control engineers in manufacturing
industries often employ varied statistical process techniques
to measure the capability of a manufacturing process and
quantify the process behavior to identify contradictions
between the actual process performance and the desired
specifications. These techniques include the process capa-
bility index (PCI), and the PCI compares the output of the
process to customer’s specification. The objective of the PCI
is to provide a numerical indicator of whether or not a
production process is able to produce products within the
specification limits. These specifications are determined
through the lower specification limit (L), the upper speci-
fication limit (U), and the target value (t) The most com-
monly used PCIs C,, Ci, Cpio and C,,,,, are based on the
assumption that a given process may be described by a
normal probability model with process mean and process
standard deviation. For more information, see Juran [1],
Kane [2], Chan et al. [3], and Pearn et al. [4] are based on the
assumption that a given process may be described by a
normal probability model with process mean y and process
standard deviation 0. However, the assumption of normality
is largely a simplifying assumption in different
manufacturing and service processes, and often invalid. For

more details, see Gunter [5]. In fact, there are several PCIs
and their study for different conditions is valid for both
typical and nonnormal output characteristics of processes in
the literature for more information, see Clements [6],
Rodriguez [7], Polansky [8], Yeh and Bhattarchya [9], and
Perakis and Xekalaki [10]. In the recent past, Maiti et al. [11]
have established a generalized PCI C,,, which is directly or
indirectly connected to most of the PCIs described in the
literature. Furthermore, it includes both normal and non-
normal and continuous as well as discrete random variables
and is defined as follows:

__ _FU-FU@L) _p
PY " F(UDL) - F(LDL) p,

(1)

where F(t) = P[X <t] is the CDF of X, U is the upper
specification limit, L is the lower specification limit, LDL is
the lower desirable limit, UDL is the upper desirable limit, p
is the process yield, and p, is the desirable yield. If the
process distribution is normal with LDL =y -3¢ and
UDL = p + 30, then the generalized PCI C, y can be written
as (p/0.9973). Huiming et al. [12] proposed Bayesian ap-
proach for the problem of estimation and testing PCI
depending on subsamples obtained over time from an in-
control process. Miao et al. [13] discussed Bayesian approach
under SE loss function for computing PCIs. Wu and Lin [14]
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suggested one-sided lower Bayesian estimation of C,.
Recently, Kargar et al. [15] studied the Bayesian approach
with normal prior depending on subsamples to check
process capability via capability index Cy;. Maiti and Saha
[16] obtained the Bayesian estimation of the index Cpy based
on SE loss function for normal, exponential, and Poisson
process distributions. Mahmoud et al.[17] studied the in-
ferences of the lifetime performance index with Lomax
distribution based on progressive type-Ilcensored data. Ali
and Riaz [18] discussed the generalized PCIs from the
Bayesian view point under symmetric and asymmetric loss
functions for the simple and mixture of generalized lifetime
models. Saha et al. [19] studied the classical and Bayesian
inference of the index C,,, for generalized Lindley distributed
quality characteristic. The rest of this paper is organized as
follows. In Section 2, we developed C,, for 3-Burr-XII
distribution (TPBXIID). In Section 3, the maximum like-
lihood estimators (MLEs) of the unknown parameters of
TPBXIID as well as C,,, are studied. In Section 4, deals with
approximate confidence intervals (ACIs) based on the
MLEs. Bootstrap confidence intervals are discussed in
Section 5. In Section 6, the MCMC techniques have been
used to get the Bayes estimates and construct credible in-
tervals (CRIs) of the index C,, based on squared error (SE)
loss functions for the TPBXIID. Two real-datasets are an-
alyzed to illustrative purposes in Section 7. In Section 8,
Monte Carlo simulation is performed to compare the effi-
ciency of the proposed classical estimators and Bayes esti-
mators of the index C,, in terms of their MSEs. Finally,
Section 9 contains conclusions.

2. The Index pr for 3-Burr-XII Distribution

Burr [20] introduced the Burr XII distribution, and this
distribution is popularly used in reliability analysis as a more
flexible alternative to Weibull distribution, see Wingo
[21, 22] and Zimmer et al. [23], and its 3-Burr XII distri-
bution (TPBXIID) form is a generalisation of the log-logistic
distribution, see Shao [24]. The TPBXIID has the following
CDEF:

F(x;a,0,9)=1- [1 +(§)0]y,

The PDF

x>0,0,0,y>0. (2)

-(y+1)
x>0,a,0,9>0.

Oya~ O 1[1 +<z>9] >
(3)

Here, y and 0 are the shape parameters and « is a scale
parameter. It is important to note that when 6 = 1, TPBXIID
reduces to the Lomax distribution, when 6> 1, the density
function is upside-down bathtub shaped with mode at x =

al(0-1)/(8y + D]V9 and is L-shaped when 6 = 1.

Substituting from (2) and (3) into (1), the index C,y can

be written as

fxa0,y) =

3. ML Inference

Let lem ”’,X2mm e X be a progressive type-II
censored scheme from TPBXIID. To obtain the maximum
likelihood estimators of the unknown location and scale

parameters, the likelihood function is written as

L(x6,y) = A~ "0"y" erlﬁ[ (Z)]

i=1

—(y+1)

(5)

where A=n(n-1-R;)(n-2-R,-R))... (n—zgl(R1
+1)). The log-likelihood function for the 3-Burr-XII
distribution

2(a,0,y) =In(A) + mInO -mblna +mlny

+(0- l)iln(x ~(y+ l)zln[”( )0]

i=1 i=1

—yZRln[l+< )0]

i=1
(6)

Taking the first derivatives of equation (6) with reference
to a, 0, and y and setting each of them equal to zero, we
obtain

A 3 \O-1 m A B-1
T6+(?+ D Ox; (x;/a) . +?z R;x; (x;/@) -0,

i 1a2[1 + (x;/@) ] i=1 ocz[l + (x;/@) ]

(7)
0 -
m m ) 1 )

Z—mln&+2]nxi—(?+ I)ZM

0 i=1 1+ (@)’ ®)

Ai x; /(x) ln(x /a) _

-y
=1 1+(x; /oc)

%—gln[H(%ﬂ [1+<%ﬂ =0. (9

From (6), we obtain the MLE y as

7= [iln[l +<%)§ +§Ri ln[l +<%>5H_1. (10)

—iRiln

i=1
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Since it is difficult to express equations (7) and (8) in
closed forms, the Newton-Raphson iteration process was
used to generate the estimates. For more information, see
EL-Sagheer [25]. In addition, after replacing «, 6, and y by
their MLEs @, 6, and y, we can get the estimator of C,,, as
follows:

However, the exact mathematical expressions for the
above expectations are very hard to obtain. Hence, the as-
ymptotic variance-covariance matrix is obtained as follows:

e o't o
da®> 0060 Odady

-1

~ NI N 2 2 2
Coy = — [1+(:)] —|:1+(—>:| (11) by o] Ot P ¢
Po « « 00oa 06> 069y
o'c e de
3.1. Approximate Confidence Interval. The asymptotic var- dyda 0y  9y* /| (ay)~@By)
iance-covariance of the MLEs for parameters «, 0, and y are
given by elements of the negative of the Fisher information var(@) cov(a, 9) cov (&, 7)
matrix are defined as follows: ~ ~ R
3¢ =| cov(6,@) var(6) cov(6,7p) |
) A
! a‘//iallfj (12) cov (P, @) cov(p,0) var(p)
wherei, j = 1,2,3and (v, ¥,,¥3) = (o, 0, 7). (13)
with
4 mG n 0(x;/a) [ o’ (6~ 1)[1 + (x;/at) ] 2ax; (x;/a)” [1 + (xi/(x)e] + 0] (xi/oc)e_z]
527 2 +1) Z
o’ o [oc [1 + (x;/) ”
i,’Rﬁ(xi/oc)e[—oc2 (0- 1)[1 + (x;/at) ] 2ax; (x;/a)” [1 +(x;/at) ] +0x2 (x;/e)" 2]
ty
i=1 [ [1+(x/oc ”
ﬂ Z (xi/a)’ (In[x;/a]) iR (/)" (In[x; /cx])
36° i=1 [1+(x/0c) ] i=1 [1+(x/oc) ]
¢ -m
AN (14)
GRS
e o )Z (1/a) (x;/)’ [In[x;/a] + (x; /a)° ] i :(1/a) (xi/oc)g[ln[xi/oc] +(x;/a)? + 1]
9000 000 « [1+ (ele)’] & [1+(x/0)]
N4 m6x (xla) 8 Rbx; (xi/a) !
-5 Dulela -
oy da - aocay i=1 0(2[1 + (x;/a) ] i=1 a2[1 + (x;/) ]
o’ o _Z (xi/e)’ In (x; /oc) iR (/) In (x; /oc)
0yo0 000y & 1+ (x/a) 5 1+ (x/a)



4 International Journal of Mathematics and Mathematical Sciences

Then, (1-17)100% ClIs for parameters «, 0, and y are,
respectively, given as

(56 + Z(q/Z) \/\Ta\r(a <

( £ ZY (g2 | Var (y) )

where Z, 5 is the percentile of the standard normal dis-
tribution with right-tail probability (#/2). Furthermore, to
construct the asymptotic confidence interval of the C,,
which is function of the parameters «, 6, and y, we need to
find the variances of it. In order to find the approximate
estimates of the variance of Cp , we use the delta method
referred to in Green [26] to compute ACIs for C,,- Based on
thls method, the variance of C,,, can be approximated by
Gc [VC ] V] [VC ] where VC 1s the gradient of C by
Wltil respect to a, 0, and yand V = I '(a,0,y). Thus, the
(1-#)100% ACIs for C can be given by

py
(pr * Z g2 GA )

Zy Var(0) ) and
(15)

4. Bootstrap Confidence Intervals

In this section, we propose two confidence intervals’ de-
pendent bootstrapping. The two methods of bootstrap which
are commonly used in practice are as follows:

(1) The percentile bootstrap (Boot-p) proposed by Efron
(27]

(2) The bootstrap-t method (Boot-t) proposed by Hall
(28]

4.1. Boot-p Method

(1) Depending on the original sample
x = (xy,%,,...,x,), compute the MLEs of the pa-
rameters «, 0, and y from equations (7)-(8) and (10).

(2) Using the values of & 6and J to generate a bootstrap
sample X* with the same values of R;,i = 1,2,...,7,
using algorithm presented in Balakrishnan and
Sandhu [29].

(3) Get a bootstrap sample x* = (x;",x;,...,
resampling with replacement.
(4) As in Step 1, based on x* , compute the bootstrap
sample estlmates of 9, where ?=[a06,7, Cpyl, say
- [@,6,7.C,, ).
(5) Repeat Steps 3 and 4N Boot times, and obtain

~ % o~ %

919

x, ) by

© goNBoot

(6) Arrange ¢, i=1,2,...,NBoot in an ascending

order to obtain the Dbootstrap  sample
(l(/\)’fl (7)?2 . ’@?NBoot))'
(7) Let Gy (2) —p( <z) be the cdf of ¢;. Define

Pinoor = G (2) for given z. The approximate Boot-p
100(1 - 11)% CI of @ is given by
[¢iE00t—p (’7/2)’ (pigoot—p (1 - (’7/2))]

4.2. Boot-t Method

(1) From (1) to (4) is the same steps in Boot-p.
(2) Compute  the T*¢  statistic  defined as
T*? = (VN (§* - ¢)/+/var (§°) ), where var (¢*) are

obtained by using Fisher information matrix.

(3) Repeat Step 1 and 2 N Boot times and obtain
T, % 1,7 T
1 »>42 >~

**> < NBoot*
(4) Arrange T, %, T, %, ..., Txhoor in an ascending or-
ders and obtain the ordered sequences
*9 *‘P *9
(T 1T T ooty

(5) Let G2 (z) = p(T* <z)be the cdf of T*. For a given z,
define  Ppoors (2) = 9+ N~ V2 \Far (99)G; ! (2).
Then, the approximate Boot-t 100 (1 — #)% CI of § is
giVCl’l by [¢B00t—t (7]/2)’ @Boot—t (1 - (]7/2))]

5. Bayes Estimation

In this section, we present the posterior densities of the
parameters a, 0, and y based on progressive type-1I censored
data and then obtain the corresponding Bayes estimates of
these parameters. In order to obtain the joint posterior
density of «, 0, and y, we suppose that «, 6, and y are in-
dependently distributed as gamma (a,,b,), gamma (a,,b,),
and gamma (a5, b;) priors, respectively. Consequently, the
prior density functions of «, 6, and y becomes

1 -ba

m (@) oca™ e, a>0,
m(0) 8 e’ >0, (16)
5 (y) ocy“rle*bﬂ, y>0,

where all the hyperparameters a; and b;, where i = 1,2, 3, are
chosen to reflect prior knowledge about «, 6, and y. The joint
prior distribution for «, 6, and y is

7'[(0(, 9’ )/)OC(Xal_leaz_l)/a3_1€_bla_b29_b3y. (17)

The posterior distribution of the parameters «, 6, and y
up to proportionality can be obtained by combining the
likelihood function (5) with the joint prior (17) via Bayes’
theorem, and it can be written as
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L(at, 6,y | x)m (a0, 7)

m(a0,yx) =

0

X

From equation (18), it may be observed that explicit
forms for the marginal posterior distributions for each
parameter are difficult to obtain. For this reason, we assume
to use MCMC approximation method to produce samples
from the joint posterior density function in (18) and to use
these samples to calculate the Bayes estimate of «, 0, and y
and any function of them such as C, as well as to construct
associated credible intervals. We consider the Gibbs within

JO JOO J:O L(a,0,y|x)7(a, 6, yp)dadody

a,—mb- 16u2+m— lya3+m— le— B{bz— Zlen (xi)}e—

(18)

y{b3+z:21R, In [1+(xi/a)9]} xe bia-(y+D)Y " In [1+(xi/a)6]

Metropolis sampler to implement the MCMC technique,
which requires derivation of the complete set of conditional
posterior distribution. A lot of papers dealt with MCMC
technique such as Chen and Shao [30] and EL-Sagheer [25].
It can be shown that the conditional posterior density
function of «, 6, and y can be written, up to proportionality,
as follows:

w7 (@] 6,y x) oca® e b Yiin[1+(xra)’] (19)
2 (8l po)oc g0 gm0l S o)) Sl 0
7_[3* (y | o, 6, &) o ya3+m— le—y{b3+zth,-ln [1+(xi/0¢)9] zzlln [1+(x,/oc)g]}. (21)

In this representation, the full conditional forms given in
(21) is gamma density with parameter of shape (a; +m)and
parameter of scale {b + i Rin[l+ (x; Ja)?] + 7 In[1+
(x; /oc) 1}. So, samples of y can be easily generated using any
gamma-generating routine. In addition, since the condi-
tional posteriors of @ and 6 in (19) and (20), respectively, do
not give standard forms, and therefore Gibbs sampling is not
a straightforward choice, and it is appropriate to use the
Metropolis-Hastings sampler to implement MCMC tech-
nique, see Metropolis et al. [31]. Because of these conditional
distributions in (19) and (20), the following is a hybrid
algorithm with Gibbs sampling steps to update parameter y
and Metropolis—-Hastings sampler steps to update a and 6.

5.1. Metropolis-Hastings Algorithm
(1) Start with initial guess of «, 6, and y, say a0, 0(0),
and y©, respectively, M =burn-in.
(2) Set j=1.
(3) Generate y) from Gamma {m + a5, b5 + Y", R In[1
+ (o0 al=D)0U= D] £ $7 In[1 4 (/@ D)007 ),

(4) Using Metropohs Hastrngs generate a) and o9
from 7" (aU=D | U= ,¥,x) and 7 (91 | a,y, x)

with normal proposal distribution, N (aU~Y
var(a)) and N (0Y™Y,var(0)), where var(a) and
var (0) are obtained from the variance-covariance
matrix.

(i) Calculate the acceptance probability:
w (x| nG=1) ()
7, (oc NN 5)
m, (cx(j*l) ' 9(j71),)/(j),£>

r; =min|1

(22)

75 (07 [a,y ", %)

; <9<j—1) | a(j),y(j),£>

r, =min|1

(ii) Generate u,
distribution.

and u, from a uniform (0,1)

(iii) If u; <r,, accept the proposal and set a® = a*, else
set a@ = (=1,

(iv) If u, <r,, acce})t the proposal and set 8% = 6%, else
set 0 =

(5) Calculate Cpy as



Py

(23)

(6) Set j=j+1.

(7) Repeat Steps 3 — 6 N times and obtain «®,8?,y(,
and CIS;',), i=1,...,N. In order to guarantee the con-
vergence and to remove the affection of selecting of
initial values, the first M simulated varieties are dis-
carded. Then, the chosen samples are a), 87, y (), and
Cé{,), j=M+1,...,N, for sufficiently large N forms
an approximate posterior samples which can be used to
develop the Bayesian inferences. The approximate Bayes
estimate of C,,, under SE loss function is given by

SMeMC E[ ' 7] _ 1 ol 0 4
Cpy Col 2| =N i:%:n Coy (24)
2619 2665 268 2889 2921 2923
3295 3301 3311 338 3383 3508
377 3811 3842 3845 3954 3982
4312 4333 4336 4366 4381 4413
4803 489 4891 4891 4892 4899
5492 5508 5591 5696 5722 575
6417 6419 6489 6494 6495 6542
7896 7954 8123 8221 8229 8549

Data set II. In this set of data, the first failure times (in
months) of 20 electric carts are used in a large manufacturing
facility for internal transport and distribution. Here, we have

0.9
19.3

1.5 23
22,6 248

3.2
31.1

39
38.1

5.0
53.0

6.2

We used Kolmogorov-Smirnov (K-S) test to fit whether
the data distribution as TPBXIID or not. The calculated value
of the K-S test of dataset I and dataset II are 0.0517172 and
0.0527746, respectively, for the TPBXIID and these values are
smaller than their corresponding values expected at 5%
significance level which is 0.13403 and P value equal 0.939171
atn = 100 and 0.29408 and P value equal 1.0 at n = 20. So, it
can be observed that the TPBXIID fits these data very well
and also we have just plotted the empirical S(¢) and the

2.619 2.665 2.68
4.582 4.752 4.788

3.301
4.891

3.311
5.334
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(8) To calculate the CRIs of Cpys order C[(,;), i=1,...,N,
as (C}g;) < ... <CI§ZYV’M)). Then, the 100(1-#n)%

CRIs of pr become

(pr(N—M)(n/Z)’
Coy(N-M) (1= (n12)))-

6. Applications to Real Life Data

In this section, we present two examples to illustrate the
computations of the methods proposed in this article using
two different real-datasets.

Dataset I. We chose the real-dataset from Leiva et al. [32],
and we added (2) to this data, the quality characteristic in
this dataset is ball size (in millimeters) and the process has
been monitored with USL and LSL for this quality char-
acteristic  is L=0.80 mil and U=10.0 mil
(1-mil = (1/1000) in = 0.00254 mm), respectively. The data
are given as follows:

2.94 3.05 3.066 3.083 3.102 3.131 3.175

3.516 3.59 3.6 3.618 3.636 3.694 3.694
3.992 4.093 4.111 4.207 4.227 4.26 4.26
4.472 4.495 4.573 4.582 4.752 4.788 4.797
5.055 5.158 5.177 5222 5.234 5.334 5.36
5.782 5.842 5.982 6.035 6.061 6.101 6.281
6.62 6.805 6.882 7.228 7.48 7.639 7.706
8.644 8.659 11.725

7.5

3.38

5.508

set the hypothetical LSL and the hypothetical USL, respec-
tively, are L = 0.60 and U = 5.00 and the details are given in
Zimmer et al. [33]. The data are as follows:

83 104 11.1 126 150 163

fitted S(¢) for dataset I and dataset II in Figures 1 and 2,
respectively. Note that the TPBXIID can be a good fitting
model for these data. According to the dataset I presented
by Leiva et al. [32], we can generate the progressive type-II
censored scheme sample of size r = 20 taken from sample
size n =100 with censoring scheme R = (0(),80). A
progressive type-II censored scheme sample generated
from the real-dataset I is given as follows.

3.516
5.591

3.59
5.75.

3.992 4.093 4207 4.381
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Survival function

Survival function
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FiGure 1: Empirical and fitted survival functions.
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FIGure 2: Empirical and fitted survival functions.

TaBLE 1: Descriptive statistics for the considered datasets.

Data n Minimum Q, Median Q; Maximum Mean SD Kurtosis Skewness
I 100 2.619 3.694 4.77 6.048 11.725 5.03589 1.71543 4.13006 0.99858
II 20 0.9 4.45 10.75 20.95 53.0 14.655 13.638 4.30858 1.35378
TasLe 2: Different point estimates of C,,.
Classical estimates of C i

Dataset Coy et by Bayes estimates of C,

Y MLE Boot-p Boot-t MCMC
I 0.4441 0.3755 0.4249 0.2966 0.3748
II 0.1820 0.1655 0.1803 0.1413 0.1615
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TABLE 3: 95% CIs/CRIs of Cpy-

Dataset MLE Boot-p Boot-t MCMC
atase

Lower Upper Length  Lower  Upper Length Lower Upper Length  Lower Upper Length
I 0.2053 0.5456 0.3403 0.3369 0.8527 0.5158 0.0336 0.4282 0.3946 0.2404 0.5115 0.2711
11 —0.0055 0.3365 0.342 0.0561 0.3391 0.2830 0.0041 0.3645 0.3604 0.0581 0.2890 0.2309

TABLE 4: MCMC results of pr for dataset I and dataset II.

Data n Mean Median Mode SD Skewness
I 100 0.3748 0.3698 0.3578 0.0664 0.1688
1I 20 0.1615 0.1470 0.1368 0.0625 0.7295

TasLE 5: True value of C,,, and its classical and the Bayes estimates using different methods of estimation along with their MSEs (in

parentheses) when « = 7.0,6 = 4.0, and y = 0.50.

Classical estimates of pr

Bayes estimates of C,,,

n m R,,---,R C

Ry 2 Py MLE Boot-p Boot-t Prior-0 Prior-1

(0(g), 10) 0.2043 0.2942 0.5139 0.2854 0.2871 0.1548

20 10 (0.0081) (0.0066) (0.0959) (0.0065) (0.0024)
(10,0() 0.2043 0.1241 0.1598 0.1269 0.1233 0.1851

(0.0064) (0.0060) (0.0020) (0.0016) (0.0004)

(014, 5) 0.2043 0.2781 0.2881 0.2581 0.2737 0.1770

20 15 (0.0054) (0.0127) (0.0117) (0.0048) (0.0007)
(5,0(14)) 0.2043 0.1319 0.1390 0.1290 0.1283 0.2177

(0.0052) (0.0054) (0.0052) (0.0050) (0.0002)

(014, 25) 0.2043 0.1967 0.1955 0.1920 0.1953 0.2376

40 15 (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
(25,0(14)) 0.2043 0.2804 0.2469 0.2678 0.2769 0.1705

(0.0058) (0.0056) (0.0055) (0.0054) (0.0011)

(029, 10) 0.2043 0.2059 0.2141 0.2140 0.2044 0.2975

40 30 (0.0003) (0.0002) (0.0001) (0.0001) (0.0001)
(10,059)) 0.2043 0.2984 0.2136 0.2993 0.2962 0.2184

(0.0089) (0.0087) (0.0080) (0.0084) (0.0002)

(029> 30) 0.2043 0.1785 0.1780 0.1770 0.1782 0.1920

60 30 (0.0007) (0.0006) (0.0005) (0.0004) (0.0002)
(30,09)) 0.2043 0.1609 0.1663 0.1661 0.1608 0.2234

(0.0009) (0.0007) (0.0006) (0.0004) (0.0002)
(039, 20) 0.2043 0.2377 0.2322 0.2327 0.2373 0.1821

60 40 (0.0006) (0.0005) (0.0004) (0.0003) (0.0002)
(20,054)) 0.2043 0.2239 0.1704 0.2228 0.2237 0.2465

(0.0002) (0.0002) (0.0002) (0.0001) (0.0001)

(039, 40) 0.2043 0.1645 0.1635 0.1597 0.1638 0.1772

30 40 (0.0008) (0.0007) (0.0005) (0.0004) (0.0002)
(40,0 3)) 0.2043 0.2000 0.1990 0.1989 0.1983 0.2800

(0.0038) (0.0030) (0.0028) (0.0018) (0.0015)

(049> 30) 0.2043 0.2331 0.2311 0.2312 0.2324 0.2606

30 50 (0.0004) (0.0004) (0.0003) (0.0002) (0.0001)
(30,049)) 0.2043 0.1938 0.1924 0.1880 0.1935 0.2257

(0.0003) (0.0002) (0.0001) (0.0001) (0.0001)

(059, 40) 0.2043 0.2304 0.2335 0.2346 0.2297 0.1756

100 60 (0.0007) (0.0005) (0.0004) (0.0002) (0.0001)
(40,0sg)) 0.2043 0.2653 0.1915 0.2687 0.2649 0.2370

(0.0037) (0.0035) (0.0033) (0.0031) (0.0011)

(079, 20) 0.2043 0.1700 0.1695 0.1739 0.1694 0.1898

100 30 (0.0012) (0.0011) (0.0010) (0.0009) (0.0002)
(20,09)) 0.2043 0.2147 0.2080 0.2173 0.2141 0.2523

(0.0006) (0.0005) (0.0004) (0.0003) (0.0001)
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TaBLE 6: True value of C,, and its classical and the Bayes estimates using different methods of estimation along with their MSEs (in

parentheses) when a = 4.40,0 = 5.79, andy = 0.77.

Classical estimates of C Bayes estimates of C
n m (Ry>--+,R,,) C Py Py
Py MLE Boot-p Boot-t Prior-0 Prior-1
(09, 10) 0.8180 0.9869 0.9920 0.9922 0.9602 0.8216
- 10 (0.0285) (0.0275) (0.0265) (0.0202) (0.0200)
(10,0(9)) 0.8180 0.9028 0.8365 0.8365 0.8784 0.8418
(0.0072) (0.0065) (0.0060) (0.0036) (0.0006)
(0(14),5) 0.8180 0.9806 0.9554 0.9905 0.9644 0.7805
20 15 (0.0264) (0.0250) (0.0241) (0.0214) (0.0014)
(5,0(14)) 0.8180 0.9368 0.9262 0.9262 0.9200 0.9306
(0.0141) (0.0117) (0.0112) (0.0104) (0.0101)
(0(14)>25) 0.8180 0.8236 0.8365 0.8382 0.8110 0.8348
40 15 (0.0009) (0.0007) (0.0006) (0.0003) (0.0001)
(25,0(14)) 0.8180 0.8208 0.8030 0.8035 0.8022 0.7999
(0.0007) (0.0006) (0.0004) (0.0002) (0.0001)
(029 10) 0.8180 0.9870 0.9812 0.9795 0.9575 0.8167
10 20 (0.0228) (0.0222) (0.0218) (0.0195) 0.0002
(10,059)) 0.8180 0.8870 0.8750 0.8751 0.8791 0.9731
(0.0048) (0.0043) (0.0040) (0.0037) (0.0027)
(029, 30) 0.8180 0.8922 0.9100 0.9129 0.8813 0.7453
P 30 (0.0055) (0.0045) (0.0042) (0.0040) (0.0053)
(30,0,9)) 0.8180 0.8873 0.8860 0.8862 0.8794 0.8321
(0.0024) (0.0023) (0.0020) (0.0019) (0.0002)
(039, 20) 0.8180 0.8161 0.8255 0.8252 0.8102 0.8248
(39)
60 40 (0.0006) (0.0005) (0.0003) (0.0002) (0.0001)
(20,039)) 0.8180 0.7428 0.7360 0.7358 0.7359 0.8374
(0.0028) (0.0024) (0.0021) (0.0018) (0.0002)
(039> 40) 0.8180 0.9559 0.9599 0.9598 0.9500 0.8430
%0 40 (0.0095) (0.0092) (0.0089) (0.0087) (0.0003)
(40,0 39)) 0.8180 0.7865 0.7768 0.7760 0.7829 0.7459
(0.0005) (0.0004) (0.0003) (0.0002) (0.0001)
(049, 30) 0.8180 0.8543 0.8744 0.8733 0.8469 0.8165
80 50 (0.0013) (0.0011) (0.0010) (0.0008) (0.0005)
(30,049)) 0.8180 0.8848 0.8788 0.8784 0.8803 0.8433
(0.0022) (0.0020) (0.0017) (0.0014) (0.0006)
(059> 40) 0.8180 0.8094 0.8189 0.8185 0.8053 0.7262
(59)
100 60 (0.0009) (0.0007) (0.0006) (0.0004) (0.0002)
(40,05)) 0.8180 0.8789 0.8771 0.8763 0.8745 0.8107
(0.0037) (0.0034) (0.0033) (0.0032) (0.0001)
(079)> 20) 0.8180 0.8815 0.8820 0.8817 0.8778 0.7649
100 %0 (0.0041) (0.0038) (0.0035) (0.0031) (0.0028)
(20,079)) 0.8180 0.8103 0.7284 0.8042 0.8081 0.8103
(0.0016) (0.0012) (0.0010) (0.0008) (0.0001)

TaBLE 7: True value of pr and 95% CIs of MLE, Boot-p and Boot-t when a = 7.0, 6 = 4.0, and y = 0.50.

MLE Boot-p Boot-t
Lower Upper  Length Lower Upper  Length  Lower  Upper  Length

(09, 10) 0.2043 0.1190 0.4694 0.3504 0.1335 1.0526 0.9192 0.1391 0.4191 0.2799

n m (Ry,-++»R,,) pr

20 10 (10,0)) 0.2043 -0.0173  0.2654 0.2828 0.0198 0.7191 0.6993 0.0168 0.2903 0.2735
20 15 (014, 5) 0.2043 0.1023 0.4539 0.3516 0.0656 0.7463 0.6807 0.0508 0.4914 0.4406
(5,0(14)) 0.2043 —-0.0108  0.2746 0.2854 0.0168 0.3044 0.2876 0.0015 0.3347 0.3332
40 15 (0(14),25) 0.2043 0.0887 0.3046 0.2159 0.1032 0.2565 0.1533 0.1041 0.2475 0.1434
(25,0(14)) 0.2043 0.0664 0.4943 0.4279 0.0765 0.6025 0.5260 0.0814  0.5007 0.4193
40 30 (029, 10) 0.2043 0.0946 0.3171 0.2226 0.1253 0.4068 0.2815 0.1025 0.3746 0.2721
(10,0,9)) 0.2043 0.1527 0.4441 0.2914 —-0.3530  0.4342 0.7872 0.1462 0.4911 0.3449
60 30 (029, 30) 0.2043 0.0932 0.2639 0.1707 -0.0132 0.4681 0.4813 0.0976  0.2538 0.1563

(30,0,9)) 0.2043 0.0521 0.2696 0.2174 0.0438 0.3277 0.2839 0.0611 0.3039 0.2427
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TasLE 7: Continued.
MLE Boot-p Boot-t
n m  (R,,---,R,,) Cpy L
ower Upper  Length Lower Upper  Length  Lower  Upper  Length
60 40 (O<39), 20) 0.2043 0.1306 0.3448 0.2142 -0.5665 0.2945 0.8610 0.1390 0.3554 0.2164
(20, 0(39)) 0.2043 0.1080 0.3398 0.2318 -0.2273 0.3294 0.5567 0.1144 0.3811 0.2667
30 40 (0(39),40) 0.2043 0.0864 0.2426 0.1562 —0.5435 0.2003 0.7438 0.0814 0.2337 0.1523
(40, 0(39)) 0.2043 0.0860 0.3141 0.2281 —0.4838 0.3025 0.7863 0.0973 0.3739 0.2766
30 50 (0(49),30) 0.2043 0.1489 0.3172 0.1683 0.0442 0.3163 0.2721 0.1577 0.3154 0.1576
(30, 0(49)) 0.2043 0.0987 0.2888 0.1901 0.0114 0.3254 0.3140 0.0920 0.3269 0.2349
100 60 (0(59),40) 0.2043 0.1473 0.3134 0.1661 0.0221 0.2847 0.2626 0.1605 0.3389 0.1784
(40, 0(59)) 0.2043 0.1551 0.3755 0.2204 -0.3582 0.3424 0.7006 0.1566 0.3766 0.2200
100 30 (0(79),20) 0.2043 0.1033 0.2367 0.1333 0.1004 0.2354 0.1350 0.1093 0.3034 0.1941
(20, 0(79)) 0.2043 0.1365 0.2928 0.1563 0.0934 0.2970 0.2036 0.1378 0.2989 0.1611
TaBLE 8: True value of pr and 95% CIs of MLE, Boot-p and Boot-t when a = 4.40,0 = 5.79, andy = 0.77.
MLE Boot-p Boot-t
n m (Ry,++»R,,) pr L
ower  Upper  Length  Lower  Upper  Length Lower Upper  Length
20 10 (0(9), 10) 0.8180 0.7741 1.1998 0.4258 0.5354 1.0526 0.5172 0.7693 1.0526 0.2833
(10,0(9)) 0.8180 0.7131 1.0925 0.3793 0.1354 1.0107 0.8753 -0.0778 1.0344 1.1122
20 15 (0(14), 5) 0.8180 0.8467 1.1145 0.2679 0.6988 1.0520 0.3532 0.9158 1.0458 0.1301
(5, 0(14)) 0.8180 0.8006 1.0729 0.2723 0.4764 1.0418 0.5653 0.7925 1.0391 0.2465
40 15 (0(14), 25) 0.8180 0.5041 1.1430 0.6389 0.3706 1.0526 0.6820 0.5780 1.0332 0.4552
(25, 0(14)) 0.8180 0.6395 1.0021 0.3626 0.1145 0.9203 0.8049 0.4262 1.0229 0.5967
40 30 0 (29)> 10) 0.8180 0.8677 1.0702 0.2026 0.8195 1.0526 0.2331 0.9280 1.0301 0.1021
(10, 0(29>) 0.8180 0.7740 1.0001 0.2260 0.4504 0.9534 0.5030 0.7252 0.9873 0.2621
60 30 (0(29), 30) 0.8180 0.7302 1.0541 0.3239 0.5126 1.0512 0.5386 0.7901 1.0289 0.2388
(30, 0(29)) 0.8180 0.7735 1.001 0.2275 0.6012 0.9419 0.3407 0.6192 1.0244 0.4052
60 40 (0(39), 20) 0.8180 0.6483 0.9839 0.3356 0.5042 0.8365 0.3323 0.7648 0.8921 0.1272
(20, 0(39>) 0.8180 0.6129 0.8726 0.2597 0.5210 0.8358 0.3148 0.5437 0.8632 0.3195
30 40 (0(39), 40) 0.8180 0.7932 1.1186 0.3254 0.7126 1.0445 0.3319 0.8904 1.0159 0.1255
(40, 0(39)) 0.8180 0.6681 0.9048 0.2366 0.5686 0.8883 0.3197 0.5432 0.9168 0.3736
30 50 (0(49), 30) 0.8180 0.7086 1.0000 0.2913 0.5234 0.8712 0.3478 0.7975 1.0158 0.2183
(30, 0(49)) 0.8180 0.7961 0.9735 0.1774 0.6135 0.9505 0.3370 0.7063 0.9696 0.2633
100 60 (0(59),40) 0.8180 0.6906 0.9281 0.2375 0.6531 0.9581 0.3050 0.7599 0.8958 0.1359
(40, 0(59)) 0.8180 0.7974 0.9605 0.1631 0.1135 0.9295 0.8160 0.6962 0.9741 0.2779
100 30 (0(79), 20) 0.8180 0.8008 0.9623 0.1615 0.6036 0.8926 0.2890 0.7572 0.9099 0.1527
(20, 0(79)) 0.8180 0.7284 0.8922 0.1637 0.7428 0.8929 0.1501 0.7436 0.8892 0.1456
TABLE 9: True value of CPy and its 95% CRIs when «a = 7.0,6 = 4.0, and y = 0.50.
Prior-0 Prior-1
n m (Ry>+++>R,,) pr L
ower Upper Length Lower Upper Length
20 10 (0(9), 10) 0.2043 0.1501 0.4475 0.2974 0.0747 0.2501 0.1754
(10, 0(9)) 0.2043 0.0597 0.2022 0.1525 0.0952 0.2850 0.1899
20 15 (0(14), 5) 0.2043 0.1663 0.4001 0.2337 0.1061 0.2681 0.1620
(5, 0(14)) 0.2043 0.0715 0.2098 0.1383 0.1236 0.3243 0.2006
40 15 (0(14),25) 0.2043 0.1153 0.2933 0.1780 0.1401 0.3474 0.2073
(25, 0(14)) 0.2043 0.1665 0.4062 0.2396 0.0982 0.2536 0.1554
40 30 (0(29), 10) 0.2043 0.1434 0.2753 0.1318 0.2080 0.3878 0.1798
(10,0(29)) 0.2043 0.2106 0.3906 0.1801 0.1518 0.2902 0.1384
60 30 (0(29), 30) 0.2043 0.1246 0.2382 0.1136 0.1309 0.2603 0.1294
(30,0(29)) 0.2043 0.1136 0.2173 0.1036 0.1611 0.2938 0.1326
60 40 (0(39), 20) 0.2043 0.1748 0.3033 0.1285 0.1335 0.2348 0.1013
(20, 0(39)) 0.2043 0.1648 0.2886 0.1239 0.1828 0.3164 0.1336
30 40 (0(39),40) 0.2043 0.1211 0.2127 0.0916 0.1290 0.2289 0.0999
(40,0 (39)) 0.2043 0.1478 0.2562 0.1084 0.2026 0.3600 0.1574
30 50 (0(49), 30) 0.2043 0.1790 0.2882 0.1092 0.2010 0.3229 0.1220
(30,0 (49)) 0.2043 0.1469 0.2463 0.0994 0.1704 0.2868 0.1164
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TaBLE 9: Continued.

Prior-0 Prior-1
n m (Ry>+++>R,,) Cpy L
ower Upper Length Lower Upper Length
100 60 (0(5040) 0.2043 0.1813 0.2848 0.1035 0.1373 0.2196 0.0823
(40,0 s)) 0.2043 0.2097 0.3212 0.1115 0.1868 0.2949 0.1081
100 30 (079, 20) 0.2043 0.1378 0.2041 0.0664 0.1528 0.2288 0.076
(20,059)) 0.2043 0.1750 0.2554 0.0804 0.2040 0.3008 0.0967
TaLe 10: True value of C,, and its 95% CRIs when o = 4.40,0 = 5.79, andy = 0.77.
Prior-0 Prior-1
n m (Ry,---»R,) Cpy L
ower Upper Length Lower Upper Length
20 10 (09, 10) 0.8180 0.7691 1.0438 0.2747 0.5618 0.9786 0.4168
(10,09)) 0.8180 0.6363 1.0184 0.3821 0.5888 0.9965 0.4077
20 15 (0(14),5) 0.8180 0.8125 1.0336 0.2211 0.5742 0.9386 0.3645
(5,0(14)) 0.8180 0.7516 1.0189 0.2673 0.7455 1.0266 0.2812
40 15 (0(14),25) 0.8180 0.6105 0.9495 0.3390 0.6226 0.9758 0.3531
(25,014)) 0.8180 0.5923 0.9498 0.3575 0.5964 0.9509 0.3545
40 30 (029, 10) 0.8180 0.8602 1.0218 0.1615 0.6672 0.9304 0.2632
(10,049)) 0.8180 0.7540 0.9739 0.2199 0.8814 1.0291 0.1476
60 30 (029> 30) 0.8180 0.7504 0.9770 0.2266 0.6036 0.8657 0.2621
(30,0,9)) 0.8180 0.7519 0.9742 0.2223 0.6978 0.9387 0.2409
60 40 (039 20) 0.8180 0.6979 0.9042 0.2063 0.7053 0.9238 0.2184
(20,039)) 0.8180 0.6086 0.8415 0.2329 0.7245 0.9306 0.2060
30 40 (0 39)>40) 0.8180 0.8670 1.0067 0.1397 0.7292 0.9301 0.2009
(40,0 39)) 0.8180 0.658 0.8842 0.2263 0.6186 0.8507 0.2320
30 50 (049, 30) 0.8180 0.7423 0.9275 0.1852 0.7084 0.9039 0.1955
(30,0 49)) 0.8180 0.7865 0.9557 0.1692 0.7469 0.9232 0.1763
100 60 (059, 40) 0.8180 0.7055 0.8875 0.1820 0.6287 0.8110 0.1823
(40,050)) 0.8180 0.7905 0.9412 0.1507 0.7062 0.8906 0.1844
100 80 (079, 20) 0.8180 0.8057 0.9423 0.1366 0.6786 0.8407 0.1621
(20,0 7)) 0.8180 0.7243 0.8818 0.1575 0.7245 0.8803 0.1558

Also, we can generate the progressive type-II censored
sample of size r =5 taken from sample size n =20 with
censoring scheme R = (0(4),15) based on the dataset II
defined by Zimmer and Hubele [33]. A progressive type-II
censored sample produced from the real-dataset II is ob-
tained as follows:

09 15 32 75 111

The descriptive statistics for the considered datasets are
reported in Table 1. For the previous datasets considered,
based on a progressive type-II we have computed the point
estimates of C,,, using ML and Bootstrap method, the results
are shown in Table 2, and we also determined the 95% Cls
based on MLEs and the 95% bootstrap (Boot-p and Boot-t)
Cls of C,, and the results are displayed in Table 3. Now, we
want to calculate the Bayes estimates of C,,, against SE loss
functions. Since we do not have prior information about the
unknown parameters, we assume the noninformative
gamma priors for &, 0, and y. This prior distribution is the
case in which hyperparameters are identified as
a;=b;=0,i=1,2,3. We perform the MCMC algorithm
described in Section 5 to generate a sequence of 10,000
random vectors iteratively with different starting points for
the parameters «, 8, and y, and discard the first 1000 values
as “burn-in.” The results of Bayes estimates are reported in

Table 2 and also calculated the 95% CRIs, the results are
shown in Table 3. The MCMC results are shown in Table 4
for the posterior mean, median, mode, standard deviation
(SD), and skewness (Sk) of Cpy-

7. Simulations

In this section, the Monte Carlo simulation study has been
implemented to compare the performances of the classical
estimation methods and the Bayesian estimation approach
for prior-0 and prior-I distributions under SE loss function
of the index C,,, for TPBXIID. This simulation was carried
out considering different values of n and m and by choosing
(a,6,7) = (7.0,4.0,0.50) and (4.40,5.79,0.77) with L = 0.6,
U = 6.0, and p, = 0.95, respectively. Two different priors are
used for Bayesian computation in order to compare the
Bayes estimates: (a) noninformative gamma prior (prior-0),
the hyperparameter values as a; = b; = 0, and (b) informa-
tive gamma prior (prior-I), for this prior, we arbitrarily
selected the hyperparameter values as a; = 1.7 and b; = 2.2
for different parameter sets. We applied the MCMC method
with using 10000 MCMC samples and discard the first 1000
values as “burn-in” under SE loss function. We compare the
performances of MLEs and Bayes estimates in terms of the
MSE, which is calculated as follows:
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MSE = f (épy (1) _A/ICPYEXﬁCt)2.

i=1

(25)

We have used two different sampling schemes as follows:

(i) Scheme I: R, =n—-m,R; =0 for i+ L.

(ii) Scheme II: R, =n-m,R;=0 for i#m. Point
(classical in addition to the Bayesian) estimates of
C,y for TPBXIID are displayed in Tables 5 and 6.
Also, the 95% CIs based on MLEs and the 95%
bootstrap (Boot-p and Boot-t) Cls of C,,, were de-
termined, and the results are summarized in Tables 7
and 8. Also, the results of 95% CRIs are given in
Tables 9 and 10.

8. Conclusions

In this paper, we considered classical and Bayesian point
estimation methods of the index C,, and used two practical
examples to illustrate the methods proposed. Generally, we
considered the MLEs and bootstrap (Boot-p and Boot-t) for
classical estimation methods in order to get the estimates of
the unknown parameters and the C, index. Since theo-
retical comparison of these methods is not feasible, we have
carried out comprehensive simulation study to compare
these methods with different sample sizes and different
combinations of the unknown parameters. Therefore, we
considered Bayesian inference of the unknown parameters
of the TPBXIID and the index C,, using MCMC approach.
In addition, we have considered the 95% CIs based on MLEs
and the 95% bootstrap (Boot-p and Boot-t) CIs of the index
C,y- We note the following from the previous results:

(1) It can be seen that from all tables, for increasing
values of n and m, the MSEs decreasing.

(2) It is observed from Tables 5 and 6 that the Bayes
estimators perform better under prior-I than under
prior-0 in addition to it performs better than classical
methods of estimation in terms of MSEs.

(3) It is observed from Tables 7 and 8 that the Boot-t CIs
give more accurate results than the Boot-p and ACIs
since the lengths of the Boot-t CIs are less than the
lengths of Boot-p and ACISs, for different sample sizes.

(4) It is evident that, from Table 3, the Bayesian esti-
mation method gives smallest average widths from
the other estimation methods.
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