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Recently, the World Health Organization has declared the outbreak of a severe acute respiratory syndrome coronavirus 2 (SARS-
Cov-2) as a pandemic and declared it as Public Health Emergency of International Concern. As on 29 March 2020, the novel
corona virus 2019 (COVID-19) has affected 199 countries and territories, causing 683,536 positive cases and 32,139 deaths. 'is
pandemic can transform into an extremely destructive form if we still do not take it seriously. In the present study, we propose a
generalized SEIR model of COVID-19 to study the behaviour of its transmission under different control strategies. In the model,
all possible cases of human-to-human transmission are taken care and its reproduction number is formulated to analyse the
accurate transmission dynamics of the coronavirus outbreak. Optimal control theory is applied in the model to pretend the impact
of various intervention strategies, including voluntary quarantine, isolation of infected individuals, improving an individual’s
immunity, and hospitalisation. Also, the effect of control strategies on the model is analysed graphically by simulatin`g the
model numerically.

1. Introduction

In December 2019, the pandemic outbreak of a novel
coronavirus disease named “COVID-19” raised intense at-
tention not only within China but internationally[1]. Doc-
tors and scientists tested the previously developed drugs to
treat the infected people, but those failed to succeed.'en, in
February 2020, the World Health Organization (WHO)
declared the outbreak of this highly contagious COVID-19
as a pandemic globally [2]. To control the human-to-human
virus transmission, the central government of China as well
as all local governments had tightened preventive measures.
However, the virus had spread rapidly across most of the
regions in China and in other countries and territories
around the world. One major cause of the quick spread of
COVID-19 is the lack of information and awareness about
the virus during its early stages of infection. As on March 29,
2020, 13:29 GMT, COVID-19 has affected 199 countries and
territories around the world with 683,536 confirmed cases,
of which 32,139 have passed away and 25,422 are serious or
critical (worldometers.info). Still, there is a possibility that
the spread of this virus could be more intense and cause high
mortality. New year celebration accelarated the outbreak of

COVID-19, as most of the people were on their way to
hometown or else travelling to different places for relaxation.

Symptoms of COVID-19 take at least 2 to 10 days to
develop, which makes it tough to isolate infected indi-
viduals during the initial stage of the infection. 'e major
symptoms of COVID-19 include dry coughing and high
fever with difficulties in breathing [3].'e virus may spread
in the environment through respiratory droplets of infected
individuals when they cough or sneeze. An unaffected
population further becomes infected when they are ex-
posed by touching the infected surface or while breathing
in an infected environment [4]. During the initial stages of
COVID-19 outbreak, such human transmissions were
taking place because a wide range of public was unaware of
these risk factors, and the infected individuals were also not
isolated and were spreading the virus unknowingly to other
individuals. Moreover, the risk factor of contamination is
very high since the virus can remain viable in the envi-
ronment for several days in favourable conditions [5, 6].
Several studies reveal that old-aged people, children, and
those with major diseases have low immunity and tend to
be seriously affected once they become infected [7, 8]. Still,
we lack any proper treatment or vaccines as a cure for this
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disease. Hence, to control its transmission further, isolating
the infected individuals in special quarantine cells has been
implemented in most of the countries. Despite these
prevention strategies, we are in danger as the transmission
is still ongoing and the mortality due to the virus maintains
a high level.

To combat this situation, studies such as mathe-
matical modelling play a crucial role to understand the
pandemic behaviour of the infectious disease. Bi et al.
worked on stability and bifurcation of a mathematics
model in the Zika virus. Also, they established an optimal
control problem including several popular disease in-
tervention strategies which helped to mitigate the Zika
epidemics [9]. Zhao et al. modeled a vector-born visceral
leishmaniasis disease transmission system, and in ad-
dition, they have performed bifurcation analysis to
support control conditions and analyse optimal control
strategies to control zoonotic disease transmission [10].
Several studies have already been undertaken to analyse
the COVID-19 transmission dynamics. Based on the
database studies of COVID-19 outbreak from 31 De-
cember 2019 to 28 January 2020, Wu et al. introduced a
SEIR model to estimate the spread of the disease na-
tionally as well as globally [11]. Tang et al. proposed a
compartmental model by dividing each group into two
subpopulations, the quarantined and unquarantined.
Moreover, they redesigned their previous model by using
diagnosis and time-dependent contact rates and reesti-
mated the reproduction ratio to quantify the evolution in
a better way [12, 13]. Peng et al. planned a generalized
SEIR model that suitably incorporates the intrinsic
impact of hidden exposed and infectious cases of
COVID-19 [14]. Chen et al. presented the incubation
period behaviour of local outbreak of COVID-19 by
constructing a dynamic system [15]. Khan and Atangana
described brief details of interaction among the bats,
unknown hosts, humans, and infection reservoirs by
formulating the mathematical results of the mathemat-
ical fractional model [16]. Chen et al. have also developed
a Bats-Hosts-Reservoir-People transmission network
model for simulating the potential transmission of
COVID-19 [17]. Zhao et al. divided susceptible people
from Wuhan City into different age groups and devel-
oped a SEIARW model based on market-to-person and
person-to-person transmission routes [18]. Zhong et al.
constructed a mathematical model using epidemiological
data and examined characteristics of the historical epi-
demic to make an early prediction of the 2019-nCoV
outbreak in China [19]. Yang and Wang have studied the
multiple transmission pathways in the infection dy-
namics and formed a mathematical model that describes
the role of the environmental reservoir in the trans-
mission and spread of COVID-19 [20].

In this work, a COVID-19 model is constructed to study
human-to-human transmission of the virus in Section 2.
Optimal control theory is introduced and applied to the
model for development in Section 3, and in Section 4, the
model is simulated numerically to observe the effect of
control strategies on the model.

2. COVID-19 Model Formulation

To analyse the human-to-human transmission dynamics of
COVID-2019, a compartmental model is constructed. 'e
model consists of all possible human-to-human transmis-
sion dynamics of the virus. COVID-2019 is highly conta-
gious in nature, and infected cases are seen in most of the
countries around the world; hence, in the model, the sus-
ceptible population class is ignored and whole population is
divided into five compartments: class of exposed individuals
E(t) (individuals surrounded by infection but not yet in-
fected), class of infected individuals by COVID-19 I(t), class
of critically infected individuals by COVID-19 C(t), class of
hospitalised individuals H(t), and class of dead individuals
due to COVID-19 D(t). Human-to-human transmission
dynamics of COVID-19 are described graphically in
Figure 1. Parameters used in the model are described in
Table 1.

Using the above depiction, a dynamical system of set of
nonlinear differential equations for the model is formulated
as follows:

dE

dt
� B − β1EI + β7ED + β9H + β10EI − μE,

dI

dt
� β1EI − β2I − β6I − β8I − β10EI − μI,

dC

dt
� β2I − β5C − β3C + β4H − μC,

dH

dt
� β3C − β4H + β8I − β9H − μH,

dD

dt
� β5C + β6I − β7DE.

(1)

Note that all the parameters used in this COVID-19
model are nonnegative. Consider the feasible region as
follows:

Λ � (E, I, C, H, D) ∈ R
5
+: E + I + C + H + D≤

B

μ
 . (2)

'e region Λ is positively invariant; all the solutions of
system (1) remain in feasible region (2).

2.1. Equilibrium Points. By solving system (1), we get two
equilibrium points:

(i) Disease-free equilibrium point:

E0 �
B

μ
, 0, 0, 0, 0 . (3)

(ii) Endemic equilibrium point:

E
∗

�
β2 + β6 + β8 + μ

β1 − β10
,

i

μq1
,

c

μq1
,

h

μq1
,

d

μβ7q2
 , (4)

where
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i � β5 + μ(  Bβ4 β1 − β10(  − β4μ β2 + β6( (  − β8 + μ(  β5 + μ( β4μ + β9 + μ(  β3 + β5(  Bβ1 − Bβ10 − β2μ( (

− μ β6 + β8(  β3 + β5 + μ(  − Bμ β1 + β10(  + μ2 β2 + β3 + β5 + μ( ,

c � β4 + β9 + μ(  Bβ2 β1 − β10( β22μ  − μβ4 β8 + μ(  β2 + β8(  − β4β8 Bβ1 − Bβ10 − β6μ(  − μβ2 β9 + μ(  1 + β6 + β8( ,

h � β8 β5 + μ(  Bβ1 − Bβ10 − β2μ(  − β8μ
2 β6 + μ(  − μβ8 β8 + μ(  β3 + β5(  − μβ6β8 β3 + β5(  − Bβ1β2 β3 + β8( 

− Bβ10β3 β2 + β8(  − μβ2β3 β2 + β6(  − μβ8 β2β3 + μ( ,

d � β9 + μ(  Bβ6 β1 − β10(  − μβ26  − β8 + μ(  β2β5μ + β6μ β3 + β5 + β6 + μ( (  − β2β5μ β2 + β6(  − β6μ β2 β3 + μ(  + β3β6( 

+ B β1 − β10(  β3β6 + β2β5(  + β4β6 β5 + μ(  B β1 − β10(  − μ β2 + β8( (  − μβ4 β6 + μ(  β2β5 + β5β6 + β6μ( 

− β8 + μ( β4β5β8μ − β4β5 β2 + β6(  μ β8 + β2(  + B β10 + β1( ( ,

q1 � β1 − β10(  β2 β4 + β9 + μ(  + β8 + β9 + μ(  β3 + β5(  + β4 β5 + β8 + μ(  + μ β9 + μ(  + β2β3 + β8μ( ,

q2 � μβ7 β2 + β6 + β8(  β2β3 + β2 β4 + β8 + μ(  + β4 β5 + β8 + μ(  + β8 + β9 + μ(  β3 + β5 + μ( ( .

(5)

2.2. Basic Reproduction Number. 'e basic reproduction
number (R0) for the model can be established using the
next-generation matrix method [21, 22]. 'e basic

reproduction number (R0) is obtained as the spectral radius
of matrix (FV−1) at the disease-free equilibrium point,
where F and V are as follows:

Table 1: Parameters used in the model.

Parameters
B Birth rate of class of exposed individuals 0.80 Calculated
μ Natural death rate 0.01 Assumed
β1 Transmission rate of individuals moving from exposed to infected class 0.55 Calculated
β2 Rate at which infected individuals go into severe condition or in critical condition 0.40 Calculated
β3 Rate at which critically infected individuals get hospitalised 0.60 Calculated
β4 Rate at which hospitalised individuals are not recovered and remain in critical condition 0.80 Calculated
β5 Mortality rate of critically infected individuals 0.34 Calculated
β6 Mortality rate of infected individuals 0.30 Calculated
β7 Rate at which infected dead body spreads infection 0.35 Assumed
β8 Rate at which infected individuals get hospitalised 0.30 Calculated
β9 Rate at which hospitalised individuals get recovered and become exposed again 0.35 Assumed
β10 Rate at which infected individuals recovered themselves due to strong immunity and again become exposed 0.32 Assumed

β7ED
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β10EI
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β2I

β8I
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Figure 1: Transmission dynamics of COVID-19.
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F �

0
Bβ10
μ

0 0
Bβ7
μ

0
Bβ1
μ

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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,

V �

μ
Bβ1
μ

0 −β9 0

0
Bβ10
μ

+ β8 + β6 + β2 + μ 0 0 0

0 −β2 β3 + β5 + μ −β4 0

0 −β8 −β3 β9 + β4 + μ 0

0 −β6 −β5 0
Bβ7
μ
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.

(6)

'e defined effective basic reproduction number is

R0 �
Bβ1

Bβ10 + μ β2 + β6 + β8 + μ( 
. (7)

3. Optimal Control Theory

Control measures have a significant role to control the
epidemic of COVID-19 at a certain level. In this control
theory, five control variables are used as five possible
control strategies. Since the virus is highly contagious, it
quickly infects any people who come in contact with an
infected individual. To avoid this situation, we have
taken u1 control variable to self-quarantine exposed
individuals and u2 control variable as an isolation of
infected individuals. Moreover, to minimise the mor-
tality rate of COVID-19, u3 control variable is taken
which helps to reduce critically infected cases by taking
extra medical care of infected individuals. u4 and u5
control variables are taken to improve hospitalisation
facility for infected and critically infected individuals,
respectively. 'e purpose of this study of control theory
is to protect people from the outbreak by applying
control or treatment in each stage. Objective function for
the required scenario is

J ci,Ω(  � 
T

0
A1E

2
+ A2I

2
+ A3C

2
+ A4H

2
+ A5D

2


+ w1u
2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5dt,

(8)

where Ω denotes the feasible region for the set of com-
partmental variables, A1, A2, A3, A4, andA5 denote the
nonnegative weight constants for compartments
E, I, C, H, andD, respectively. w1, w2, w3, w4, and w5 are
the weight constants for each control ui, where
i � 1, 2, . . . , 5, respectively. 'e modified model is given in
Figure 2.

Hence, the modified system for Figure 2 is stated as
follows:
dE

dt
� B − β1EI + β7ED + β9H + β10EI − u1E + u2I − μE,

dI

dt
� β1EI − β2I − β6I − β8I − β10EI + u1E − u2I − u5I − u3I − μI,

dC

dt
� β2I − β5C − β3C + β4H + u3I − u4C − μC,

dH

dt
� β3C − β4H + β8I − β9H + u5I + u4C − μH,

dD

dt
� β5C + β6I − β7DE.

(9)

'e weight parameters wi, i � 1, 2, . . . , 5, are constants
applied on the control variable, respectively, from which the
optimal condition is normalized. Now, every value of control
variables is calculated from t � 0 to t � T such that

J ui(t)(  � min J ui
∗
,Ω( / ui(  ∈ ϕ , i � 1, 2, . . . , 5,

(10)

where ϕ is a smooth function on the interval [0, 1]. 'e
optimal effect is found by using the results of Fleming and
Lions [23]. We use Pontryagin’s Maximum Principle to
derive the optimal amount of control [24]. 'e associated
Lagrangian function with adjoint variables
λ1, λ2, λ3, λ4, and λ5 is given by

L(Ω, A) � A1E
2

+ A2I
2

+ A3C
2

+ A4H
2

+ A5D
2

+ w1u
2
1

+ w2u
2
2 + w3u

2
3 + w4u

2
4 + w5u

2
5

+ λ1 B − β1EI + β7ED + β9H + β10EI − μE( 

+ λ2 β1EI − β2I − β6I − β8I − β10EI − μI( 

+ λ3 β2I − β5C − β3C + β4H − μC( 

+ λ4 β3C − β4H + β8I − β9H − μH( 

+ λ5 β5C + β6I − β7DE( .

(11)

'e partial derivatives of the Lagrangian function with
respect to each variable of the compartment give the adjoint
equation variables Ai � (λ1, λ2, λ3, λ4, λ5) corresponding to
the system which are as follows:
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λ1
•

� −
zL

zE
� −2A1E + λ1 − λ2( β1I − λ1 − λ2( β10I

− λ1β7D − λ1μ + λ5β7D + λ1 − λ2( u1,

λ2
•

� −
zL

zI
� −2A2I + λ1 − λ2(  β1E − β10E − u2( 

+ λ2 − λ3(  β2 + u3(  + λ2 − λ4(  β8 + u5(  + λ2 − λ5( β6 + λ2μ,

λ3
•

� −
zL

zC
� −2A3C + λ3 − λ4(  β3 + u4(  + λ3 − λ5( β5 + λ3μ,

λ4
•

� −
zL

zH
� −2A4H − λ1 − λ4( β9 − λ3 − λ4( β4 + λ4μ,

λ5
•

� −
zL

zD
� −2A5D − λ1 − λ5( β7E.

(12)

Hence, the optimal controls are given by

u1 �
λ1 − λ2( E

2w1
,

u2 �
λ2 − λ1( I

2w2
,

u3 �
λ2 − λ3( I

2w3
,

u4 �
λ3 − λ4( C

2w4
,

u5 �
λ2 − λ4( I

2w5
.

(13)

Also, optimal conditions are given as follows:

u1
∗

� max a1, min b1,
λ1 − λ2( E

2w1
  ,

u2
∗

� max a2, min b2,
λ2 − λ1( I

2w2
  ,

u3
∗

� max a3, min b3,
λ2 − λ3( I

2w3
  ,

u4
∗

� max a4, min b4,
λ3 − λ4( C

2w4
  ,

u5
∗

� max a5, min b5,
λ2 − λ4( I

2w5
  .

(14)

'is calculation gives analytical behaviour of optimal
control on the system. Numerical interpretation of optimal
control theory is simulated in the next section.

4. Numerical Simulation

In this section, the COVID-19 model is simulated numer-
ically, wherein the parametric values for simulation are
taken from the recent pandemic outbreak of coronavirus
(https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports). 'e initial condition taken to plot
variations in all the compartments is y0(E, I, C, H, D) �

(8, 4, 0.12, 1, 5).
Figure 3 represents the variations in all the compart-

ments of the COVID-19 model with respect to time. Also,
the pandemic behaviour of the COVID-19 outbreak can be
clearly seen here. We can say that a large population of
exposed individuals becomes infected before a week.
Moreover, the critically infected cases and hospitalisation
cases also increase with time. Furthermore, it clearly shows
that after one week, the mortality rate is also increased.

Figure 4(a) shows variation in each compartment with
and without control variables. It is observed that COVID-19

u1 u3

u2

u5

u4
E I C H

D

Figure 2: COVID-19 model with control variables.
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Figure 3: Variations in all compartments.
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outbreak can be controlled up to a certain level in seven
weeks after applying control strategies. Meanwhile,
Figures 4(b) and 4(c) represent the number of infected and
critically infected individuals decreasing; which is further
leading to a decrease in hospitalised class as shown in
Figure 4(d). 'us, reduction in the mortality rate under the
effect of control strategies can be clearly observed in
Figure 4(e).

Variation in the intensity of control strategies with time
is shown in Figure 5. Moreover, the figure also demonstrates
which control can be applied at how much intensity to
control COVID-19 outbreak in seven weeks. 'e range of all
the four controls u1, u2, u3, and u4 is [−0.7481, 0.4776],
[−1.733, 0.8913], [−7.409, 1.04], and [0.0158, 0.6338], re-
spectively. 'e high fluctuation in u3 control variable at an
initial stage suggests that it is very important to control
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Figure 4: Variation in compartments with and without optimal controls.
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Figure 6: Continued.
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infected individuals moving to the critical stage to reduce
mortality due to COVID-19. Also, this can be achieved easily
if an infected individual gets proper vaccination for this

disease. Since effective vaccination is not available for
coronavirus, one should take proper care of infected indi-
viduals to improve their immunity so that their body
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Figure 6: Variation in each compartment under individual effect of control variables.
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Figure 8: Scatter diagram for COVID-19 outbreak.
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becomes capable to fight against the virus and not reach a
critical stage. Moreover, fluctuation in u2 control variable
suggests that it is very important to isolate or quarantine
infected individuals to control this pandemic outbreak.

Separate effect of control variables on each compartment
can be observed in Figure 6. From this figure, we can in-
terpret that u2 control variable is highly effective to stabilise
this epidemic situation. Figure 6(b) depicts that the pop-
ulation class of infected individuals is lowest under the
influence of u5 control variable which suggests that rapid
hospitalisation of infected individuals is an effective step to
reduce infected cases of COVID-19. Figure 6(c) suggests that
to reduce critical cases of COVID-19, first, we should
provide control on infected individuals from becoming
critically infected and we should improve hospitalisation
and medical facility for critically infected individuals to save
their lives. Figure 6(e) shows that mortality rate due to
COVID-19 can be reduced effectively within three weeks of
outbreak by applying u1, u2, and u3 control strategies. 'is
means that self-quarantine for an exposed individual, iso-
lation of an infected individual, and reducing critical cases
by taking extra care of infected individuals are effective
strategies to control further transmission of COVID-19.

Figure 7 represents change in the objective function
under influence of all the controls. Combined effect of all the
controls gives fruitful effect on the model.

Figure 8 demonstrates the scatter diagram representing
chaotic situation created during COVID-19 outbreak.
Figures 8(a)–8(c) show periodic mortality from classes of
exposed individuals, infected individuals, and critically in-
fected individuals with respect to time (in week), respec-
tively, when under hospitalisation. By comparing
Figures 8(a) and 8(b), it can be interpreted that mortality
ratio in the class of infected individuals is higher and much
quicker than in the class of exposed individuals. 'e chaotic
Figure 8(c) represents a very high mortality rate of critically
infected individuals. Hence, in the absence of vaccination for
COVID-19, it becomes a challenging situation to cure
critically infected individuals.

5. Conclusion

In this study, a compartmental model is constructed to
examine transmission of COVID-19 in the human pop-
ulation class. Moreover, the basic reproduction number is
formulated to calculate threshold value of the disease. In
order to develop strategies to prevent the epidemic of
COVID-19, optimal control theory is applied to the model.
Further to advance control theory, five control variables are
introduced in the model in the form of control strategies.
'ese strategies include self-quarantine of exposed indi-
viduals, isolation of infected individuals, taking extra care of
infected individuals to reduce critical case of COVID-19,
and increased hospitalisation facility for infected and crit-
ically infected individuals. Distinctive and combined effects
of these control variables on all the compartments are ob-
served and examined graphically by simulating the COVID-
19 model. Numerical simulation of the model reflects that
quarantine and better medical treatment of infected

individuals reduce the critically infected cases, which will
further reduce the transmission risk and demises.
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