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+e multicommodity flow problem arises when several different commodities are transshipped from specific supply nodes to the
corresponding demand nodes through the arcs of an underlying capacity network. +e maximum flow over time problem
concerns to maximize the sum of commodity flows in a given time horizon. It becomes the earliest arrival flow problem if it
maximizes the flow at each time step. +e earliest arrival transshipment problem is the one that satisfies specified supplies and
demands. +ese flow over time problems are computationally hard. By reverting the orientation of lanes towards the demand
nodes, the outbound lane capacities can be increased. We introduce a partial lane reversal approach in the class of multi-
commodity flow problems. Moreover, a polynomial-time algorithm for the maximum static flow problem and pseudopolynomial
algorithms for the earliest arrival transshipment and maximum dynamic flow problems are presented. Also, an approximation
solution to the latter problem is obtained in polynomial-time.

1. Introduction

+e multicommodity flow problems concern with the routing
of various commodities through a network to the specific
source-sink pairs. For instance, message routing in telecom-
munications, railway and vehicle routine in transportation, and
production planning and logistics support in general and in an
emergency can be modeled as a multicommodity flow prob-
lem. For details and implementations, we refer to [1–4].

+e transportation network is considered as a network
associated with the transshipment of distinct commodities
where the supply points (origins), the demand points
(destinations), and the junction of road segments constitute
the nodes. +e connections between the two nodes signify
the arcs. On each arc, the capacity that limits the flow
amount (i.e., transported commodities) and the travel time
are allocated.

+e multicommodity flow problem can be classified into
static and dynamic flow problems. +e former one has been
categorized as maximum, maximum concurrent, and
minimum cost flow problems. +e latter one has been
categorized as maximum, maximum concurrent, quickest,
and the earliest arrival multicommodity flow problems
[5, 6].

If we do not distinguish the flow in the multicommodity
flow problem, then it becomes a single-commodity flow
problem. +e dynamic flow (also known as flow over time)
problem is introduced by Ford and Fulkerson [7]. In con-
nection to this problem, Gale [8] proposed a more general
problem known as the earliest arrival flow problem. +e
earliest arrival flow problem having multiple sources and
sinks with given supplies and demands is the earliest arrival
transshipment problem. Generally, a solution to this
problem does not exist in the case of multiple sinks.
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However, it does always exists for multiple sources and a
single-sink [9].

+e multicommodity flow problem is more complex
than their single-commodity part. Hall et al. [10] have shown
that multicommodity flow over time is NP-hard even for
series-parallel graphs or have only two commodities.
Kappmeier [11] provided solutions of maximum multi-
commodity flow over time and multisource single-sink
multicommodity earliest arrival transshipment problems
using a time-expanded network within pseudopolynomial-
time complexity.

Lane reversal implies flipping of arc orientations to
amplify the flow and reduce the travel time by increasing its
capacity. Flow models and strongly polynomial-time algo-
rithms for two-terminal maximum and quickest flow
problems were developed by Rebennack et al. [12]. +e lane
reversals are made at time zero and kept fixed afterward.+e
budget constraint problem with lane reversals is investigated
in [13]. +e optimal solutions of the earliest arrival flow in
the two-terminal general network for both discrete and
continuous-time settings can be found in [14–16]. Nath et al.
[17] investigated the quickest contra-flowloc problem. By
reversing the directions of arcs whenever necessary, a
polynomial-time algorithm is presented by Pyakurel and
Dhamala [18] for multisource single-sink earliest arrival
transshipment. +e major concern of partial lane reversals is
to make use of the capacities of unused arcs in a network for
other purposes. Pyakurel et al. [19] introduced the partial
lane reversal strategy in which only essential arc capacities
are used to extend the flow value. Dhamala et al. [20] in-
vestigated the quickest multicommodity flow problem with
partial lane reversals.+e saved capacities of unused arcs can
be used for the logistic supports and facility location in
emergency periods.

In this paper, we introduce the maximum static multi-
commodity flow (MSMCF), the maximum dynamic multi-
commodity flow (MDMCF), and the earliest arrival
multicommodity transshipment (EAMCT) problems with
partial lane reversals. We present efficient algorithms to solve
these problems by reducing them into single-commodity flow
problems and decomposing the flow along the paths.

+e paper is organized as follows. In Section 2, we
provide some basic notations and models used in the article.
+e MSMCF problem with partial lane reversals is intro-
duced and an algorithm to solve the problem is presented in
Section 3.+eMDMCF problemwith partial lane reversals is
introduced in Section 4. In this section, we present algo-
rithms to find a solution to this problem. +e EAMCT
problem and an algorithm to solve this problem is presented
in Section 5. +e paper is concluded in Section 6.

2. Preliminaries

+e multicommodity flow problem consists of the shipping
of distinct commodities from their respective origin nodes to
corresponding destination nodes through a given network.
Basic notations and mathematical formulations are given
below.

2.1. Flow Models and Notations. Let a dynamic network
topology be given by N � (V, A, K, u, τ, di, S+, S−, T) with
finite sets of nodes V, arcs A, and commodities
K � 1, 2, . . . , k{ }, where |V| � n and |A| � m. Each com-
modity i ∈ K with demand di is routed through a unique
source-sink pair (si, ti).+e sets S+ and S− ⊂ V denote source
and sink sets of all commodities, respectively. On each arc
e � (v, w), the capacity function u: A⟶Z≥0 restricts the
flow of commodities and a nonnegative transit time function
τ: A⟶ Z≥0 measures the time to transship the flow from
the entry point v to the exit point w of arc e � (v, w). +e
time period T is given in advance which is denoted by T �

0, 1, . . . , T − 1{ } in discrete and T � [0, T) in continuous-
time settings. A static network is a network besides the
temporal dimension denoted by N � (V, A, K, u, di, S+, S−).
Many nice properties developed primarily based on static
network topology are building blocks for most of the real-
world dynamic flow problems.

2.1.1. Static Multicommodity Flow. A multicommodity flow
ψ for the given static network N is the sum of all non-
negative static flows ψi defined by the functions
ψi: A⟶R+ for each commodity i satisfying

excessi
ψ(v) �

−di, if v � si,

0, if v ∉ si, ti􏼈 􏼉,

di, if v � ti,

⎧⎪⎪⎨

⎪⎪⎩
∀i ∈ K, (1)

0≤ 􏽘
i∈K

ψi
e ≤ ue, ∀e ∈ A, (2)

where

excessi
ψ(v) � 􏽘

e∈Ain(v)

ψi
e − 􏽘

e∈Aout(v)

ψi
e, (3)

represents the excess flow of commodity i at node v. +e sets
Aout(v) � (v, w)|w ∈ V{ } and Ain(v) � (w, v)|w ∈ V{ } denote
the outgoing arcs from node v and the incoming arcs to node
v, respectively, such that Aout(S−) � ∅ and Ain(S+) � ∅,
except in the lane reversals. +e second condition of the
constraints in (1) are flow conservation constraints for each
commodity at intermediate nodes. +e constraints in (2) are
bundle constraints that limit the flow of each commodity on
the arc. +e network flow is called circulation if it satisfies
flow conservation at all the nodes, i.e., excessi

ψ(v) �

0, ∀v ∈ V. +e maximum static multicommodity flow
problem with k-commodities consist of ψ1,ψ2, . . . ,ψk sin-
gle-commodity flows maximizing 􏽐

k
i�1 |ψi| satisfying con-

straints (1) and (2).
A polynomial-time solution of the MSMCF problem has

been obtained by linear programming techniques (e.g., el-
lipsoid method or interior-point method). In this problem,
each commodity i � 1, 2, 3, . . . , k has a unique source-sink
pair (si − ti), and we wish to send the maximum flow from
the source nodes si to the sink nodes ti satisfying given
bundle capacity ue on each arc e � (v, w). +at is, we wish to
maximize the sum of the flows over all the commodities.
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2.1.2. Dynamic Multicommodity Flow. For a given dynamic
network N with constant transit time on arcs, a multi-
commodity flow over times ξ is a sum of flows defined by
ξi

: A × T⟶R+ satisfying constraints (4)–(6):

excessi
ξ(v, T − 1) �

−di, if v � si,

0, if v ∉ si, ti􏼈 􏼉,

di, if v � ti,

⎧⎪⎪⎨

⎪⎪⎩
∀i ∈ K, (4)

excessi
ξ(v, θ)≥ 0, ∀v ∉ si, ti􏼈 􏼉, i ∈ K, θ ∈ T , (5)

0≤ ξe(θ) � 􏽘
i∈K

ξi
e(θ) ≤ ue, ∀e ∈ A, θ ∈ T , (6)

where

excessi
ξ(v, θ) � 􏽘

θ

δ�τe

􏽘
e∈Ain(v)

ξi
e δ − τe( 􏼁 − 􏽘

θ

δ�0
􏽘

e∈Aout(v)

ξi
e(δ),

(7)

is the excess flow of commodity i on node v at time θ. Here,
the second condition of the constraints in (4) are flow
conservation constraints at time horizon T, whereas non-
conservation of flow at intermediate time points θ ∈ T �

0, 1, . . . , T − 1{ } is represented by the constraints in (5).
Similarly, the constraints in (6) are bundle constraints that
limit the flow on each arc at each point of time. +e aim is to
maximize the amount of flow to satisfy the demand di of

each commodity i from si to ti which is stated in the first and
last conditions of (4). +e earliest arrival multicommodity
flow problem is to find a dynamic multicommodity flow of
maximum value valmax(ξ(θ)) for all time units θ ∈ 0, 1,{

. . . , T − 1} defined by objective function:

valξ(θ) � 􏽘
θ

δ�τe

􏽘

e∈Ain
ti

ξi
e δ − τe( 􏼁. (8)

Instead of each time θ, if the maximization is considered
for a given time θ � T − 1, it is defined as an MDMCF
problem.

+e equality in (5) represents strong flow conservation
constraints that do not allow to store the flow at intermediate
nodes for each time θ (i.e., without intermediate storage).
+e strict inequality constraint in (5) represents the weak
flow conservation constraint at intermediate nodes for all
times with intermediate storage.

2.2. Δ-Condensed Time-Expanded Graph. +e network to-
pology N � (V, A, K, u, τ, di, S+, S−, T) is considered.
Fleischer and Skutella [21] introduced the Δ-condensed
time-expanded network NΔT � (VΔT, AΔT � AΔM ∪AΔH ∪AΔ+ ∪
AΔ− , K, u′, τ′, di, S+

′ , S−
′ , T), where all transit times on arcs are

multiples of Δ> 0 such that ⌈T/Δ⌉ is bounded by a poly-
nomial in input size. +e nodes and arcs in the Δ-condensed
time-expanded network are defined as

V
Δ
T � vθ: v ∈ V, θ � 0, 1, 2, . . . , ⌈T/Δ⌉ − 1􏼈 􏼉∪ si

′, ti
′: i ∈ K􏼈 􏼉∪ s

∗
, t
∗

􏼈 􏼉,

A
Δ
M � vθ, wθ+τe

􏼐 􏼑: e � (v, w) ∈ A, θ � 0, 1, . . . , ⌈ T − τe( 􏼁/Δ⌉ − 1􏽮 􏽯,

A
Δ
H � vθ, vθ+1( 􏼁: e � (v, w) ∈ A, θ � 0, 1, . . . , ⌈T/Δ⌉ − 2􏼈 􏼉,

A
Δ
+ � ∪ s

∗
, si
′( 􏼁: i ∈ K􏼈 􏼉∪ si

′, sθ( 􏼁: i ∈ K, si
′ ∈ S+
′ , θ ∈ 0, 1, 2, . . . , ⌈T/Δ⌉ − 1{ }􏼈 􏼉,

A
Δ
− � ∪ ti

′, t
∗

( 􏼁: i ∈ K􏼈 􏼉∪ tθ, ti
′( 􏼁: i ∈ K, ti

′ ∈ S−
′ , θ ∈ 0, 1, 2, . . . , ⌈T/Δ⌉ − 1{ }􏼈 􏼉,

(9)

where S+
′ and S−
′ are the super terminals for each commodity

as well as for the Δ-condensed time-expanded network, i.e.,
si
′, ti
′ : i ∈ K􏼈 􏼉∪ s∗, t∗{ }. +e copies of VΔT correspond to flow

through V in time T � αΔ{ } for discrete-time and T � [αΔ,
(α + 1)Δ) for continuous-time, where α � 0, 1, 2, . . . ,{

⌈T/Δ⌉ − 1}. In this setting, for every arc corresponding to a
discrete-time with a multiple of Δ, capacities are rescaled by
Δue. If arc transit times are not multiples of Δ, then transit
times are rounded up to a multiple of Δ by τe

′ � ⌈τe/Δ⌉Δ and
0≤ τe
′ − τe <Δ for all arcs e ∈ A. If we take Δ � 1, then the

Δ-condensed time-expanded network reduces to the clas-
sical time-expanded network.

2.3. Lane Reversal Technique. For a given network N, the
corresponding auxiliary network is denoted by Na � (V,

Aa, K, ua, τa, di, S+, S−, T) with undirected edges in
Aa � (v, w) : (v, w) or (w, v) ∈ A{ }, where er � (w, v) is the
reversed arc of e � (v, w). +e capacity of the auxiliary arc is

the sum of capacities of arcs e and er such that ua
e � ue + uer ,

where ue � 0 if e ∉ A. +e transit time of the auxiliary arc is

τa
e �

τe, if e ∈ A,

τer , otherwise.
􏼨 (10)

Other network parameters are the same. +e transfor-
mation of the multicommodity network with lane reversals
is represented in Figures 1(a) and 1(b). +e first, second, and
third commodities are shipped through the paths s1 − t1,
s2 − t2, and s3 − t3, respectively.

Example 1. Let us consider a multicommodity network,
where s1, s2, and s3 are the source nodes and t1, t2, and t3 are
the sink nodes as shown in Figure 1(a). +e arcs between
nodes v and w denoted by (v, w) and (w, v) represent the
two way of road segments. +e first and second numbers on
the arcs represent capacity and transit time (cost) associated

International Journal of Mathematics and Mathematical Sciences 3



with the arcs. By adding two-way capacities of the arcs e and
er having the same transit time, an auxiliary network is
formed with capacities ua and transit time τa as shown in
Figure 1(b).

3. Static Mutlicommodity Flow with
Lane Reversals

In this section, we introduce the partial lane reversals on the
static multicommodity flow problem that makes best uti-
lization of arc capacities to optimize the solution. +e
procedure for lane reversals is as follows:

(1) Arc er � (w, v) is reversed iff either ψe − ue > 0,
where e � (v, w), or there is ψe ≥ 0 along the arc
e � (v, w) ∉ A. If ua

e − ψe > 0, then the arc er is re-
versed partially, and capacity of remaining arcs er is
saved.

(2) If ψe − ue > 0 and ua
e − ψe � 0, then the arc er is

reversed completely.
(3) If ψe − ue < 0 neither e nor er is reversed.

Problem 1. A network N � (V, A, K, u, S+, S−) is consid-
ered. +e MSMCF problem with partial lane reversals sends
the maximum flow from the sources si to the corresponding
sinks ti in the unique pair (si, ti) for each commodity i �

1, 2, . . . , k by saving the unused arc capacity.

3.1. Polynomial-Time Solution of MSMCF Problem.
General linear programming approach (e.g., ellipsoid
method or interior-point method) solves the static multi-
commodity flow problem in polynomial-time. To solve the
MSMCF problem with partial lane reversals (problem 1), we
present Algorithm 1.

Theorem 1. 5e MSMCF with partial lane reversal problem
can be solved using Algorithm 1 optimally.

Proof. First, we show that Algorithm 1 is feasible. We can
compute maximum multicommodity flow either by using
the ellipsoid or interior-point methods. +erefore, Step 2 of
the algorithm is feasible. Steps 1, 3, 4, 5, and 6 are feasible

being transformation, decomposition, reversing arc, and
saving arc capacities as in [19]. Hence, feasibility is shown.

Now, we prove the optimality of the algorithm. On the
transformed network Na, the MSMCF is computed itera-
tively using an efficient algorithm. As flow is send in a unique
pair (si, ti) for each commodity i � 1, 2, . . . , k, the problem
can be reduced to the static flow for a single commodity. In
the static single-commodity flow, the maximum static flow
on the transformed network is equivalent to the maximum
static flow with partial lane reversals on the original network
as in [19], and capacity of unused arcs is saved. +us, the
MSMCF in the transformed network is equal to the MSMCF
with partial lane reversals for the original network. □

Corollary 1. 5e MSMCF with partial lane reversals can be
computed in polynomial-time complexity.

Proof. +e complexity of the algorithm is dominated by
Steps 2 and 3. All other steps can be computed in linear time.
+e maximum multicommodity flow problem is a linear
programming problem, so the general linear programming
technique (ellipsoid method or interior-point methods)
solves the static multicommodity problem on the auxiliary
network in polynomial-time in Step 2. +is solution is
equivalent to the maximum static multicommodity flow
problem on the given network. +e flow can be decomposed
in O(mn) time in Step 3. Hence, the MSMCF with partial
lane reversals can be computed in polynomial-time. □

Example 2. If we consider network as in Example 1 without
temporal dimension, then it becomes a static multi-
commodity network. We can send the flow on an auxiliary
network as shown in Figure 1(b). +e maximum static
multicommodity flow before lane reversals can be calculated
in Figure 1(a) and after lane reversals in Figure 2(a). +e
saved capacity of unused arcs is shown in Figure 2(b).

+e comparison of MSMCF before and after lane re-
versals is presented in Table 1.

Theorem 2. If a minimum cut in the multicommodity
network has the symmetric capacity, then the flow value can
be at most doubled with lane reversal reconfiguration.

7, 2

7, 2x y

2, 1
3, 1

2, 2
1, 2

5, 2

3, 2

3, 2

3, 2
1, 2

s1

s2

s3 t3

t2

t1

(a)

14, 2x y

5, 1

3, 2

5, 2

3, 2

3, 2

4, 2

s1

s2

s3 t3

t2

t1

(b)

Figure 1: Auxiliary network (b) of the given network (a). (a) Capacity, transit time; (b) capacity, transit time.
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Proof. We know that the cut set C⊆A is the collection of
disconnected and saturated arcs with the property that it
disconnects sources and sinks. Let Val (C) be a value of cut
which is the sum of the capacities of its individual arcs, i.e.,
Val (C) � 􏽐e∈Cue. We know that the arcs e ∈ C have two-
way orientations with asymmetric (or symmetric) capacities.
If each arc e ∈ C has the symmetric capacity, the lane re-
versal reconfiguration of the multicommodity network ex-
pands the capacity of cut two times. Let Ca ⊆Aa be the cut
set in the auxiliary network, then its value becomes

Val C
a

( 􏼁 � 􏽘
a∈Ca

u
a
e � 2 􏽘

e∈A
ue. (11)

+e minimum multicommodity cut is

Valmin C
a

( 􏼁 � min 􏽘
a∈Ca

u
a
e . (12)

Moreover, we have that every optimal maximum static
multicommodity ψ is less or equal to the minimum

multicommodity cut in the auxiliary network. Consequently,
the flow value can be increased up to double with lane
reversals.

+e reconfiguration of the multicommodity network
with lane reversals is as follows:

Valmax(ψ) � max 􏽘
Pa∈Pa

ψ P
a

( 􏼁≤Valmin C
a

( 􏼁 � 2 Valmax(ψ),

(13)

where Pa is the collection of all paths.
By +eorem 1, every optimal maximum static multi-

commodity flow in auxiliary network Na is a feasible
maximum static multicommodity flow with lane reversals in
original network N. +is completes the proof. □

3.2. Approximation Solution of MSMCF Problem. Linear
programming techniques provide polynomial-time solu-
tions for multicommodity flow problems. However, in many
applications, these problems are large in input size and can
take a long time to solve using these techniques. Due to this,
it is beneficial to develop approximation algorithms that
provide solutions close to the optimal solution. As a con-
sequence, an intense attempt was made to obtain an efficient
approximate algorithm for the multicommodity flow
problem.

Let a minimization (or a maximization) problem be X
and let the optimal solution of the objective function be
denoted by Opt(I) for an instance I ∈ X. Suppose ε> 0. An
algorithm A is called a (1 + ε)(or (1 − ε)) approximation

Input: given static multicommodity flow network N � (V, A, u, K, S+, S−)

Output: the MSMCF with partial lane reversals
(1) +e given network is transformed by adding two-way capacities as Na � (V, Aa, ua

e , K, S+, S−).
(2) Compute the MSMCF on the transformed network Na.
(3) Decompose the flow along the si − ti paths and cycles and remove flows in cycles ∀i ∈ K.
(4) Reverse er ∈ A up to the capacity ψe − ue iff ψe > ue, ue replaced by 0 whenever e ∉ A, where ψe � 􏽐

k
i�1 ψi

e and ue � 􏽐
k
i�1 ui

e.
(5) For each e ∈ A, if er is reversed, sc(er) � ua

e − ψe and sc(e) � 0. If neither e nor er is reversed, sc(e) � ue − ψe > 0, where sc(e) is
the saved capacity of e.

(6) Transform the solution to the original network.

ALGORITHM 1: MSMCF algorithm with partial lane reversals.

10, 14x y
3, 5

3, 3

4, 5

3, 3

3, 3

4, 4
s3

s2

s1 t1

t2

t3

(a)

x y

10, 0

0, 4

3, 0
0, 2

3, 0

4, 0
0, 1

3, 0

3, 0

4, 0

s1

s2

s3 t3

t1

t2

(b)

Figure 2: Network with (a) flow, capacity and (b) flow with saved capacity on the arcs.

Table 1: Maximum multicommodity flow before and after lane
reversals.

Path Flow before LR Flow after LR % of flow
increased

s1 − x − y − t1 2 3
s2 − x − y − t2 2 3
s3 − x − y − t3 0 4
Total 4 10 150
LR� lane reversals.
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algorithm for problem X, if it produces a feasible solution
with objective valueA(I) for each instance I ofX such that

|A(I) − Opt(I)|≤ εOpt(I),

⇒ − εOpt (I)≤A(I) − Opt (I)≤ εOpt (I),

⇒(1 − ε)Opt (I)≤A(I)≤ (1 + ε)Opt (I).

(14)

For a problem X, a polynomial-time approximation
scheme (PTAS) is an approximation scheme with the
running time polynomial in the input size of the
problem.
For a problem X, a fully polynomial-time approxi-
mation scheme (FPTAS) is an approximation scheme
with running time polynomial in the input size of the
problem as well as polynomial in 1/ϵ.

Fleischer [22] presented the first FPTAS for the maxi-
mum multicommodity flow problem that is independent of
the number of commodities. It is faster than the best pre-
vious approximation schemes, whose running time is
O(ε−2m2). To calculate the approximate solution, Fleischer
uses path flow linear programming formulation of a max-
imummulticommodity flow problem.+e dual of this linear
program corresponds to the problem of assigning length to
the edges of the network such that the length of the shortest
path from si to ti is at least one for each commodity.

Let us assume that l(e) and l(P) denote the length of
edges and length of the shortest path from si to ti for each i,
respectively. Algorithm starts with l(e) � δ, ∀e, ψ � 0, and
selects a path P ∈ Pwith l(P)< 1.+e flow ψ(P) � ψ(P) + u

is assigned along the path P where u � mine∈Pu(e), and the
length l(e) � l(e)(1 + (εu/u(e))), ∀e ∈ P, of each edge is
updated. +e process is repeated until there exists a path
with l(P)< 1 otherwise return (ψ, l).

Based on this, we present Algorithm 2 to calculate ap-
proximate solution of MSMCF with partial lane reversals.

Example 1 with capacity on arcs only (cf. Figure 2(a)) is
considered, and maximum multicommodity flow with lane
reversals is calculated.

Let us assume that l(e) � 0.25, ε � 0.4, andψ � 0. We
choose the path P1: s1 − x − y − t1.

Since l(P1) � l(s1, x) + l(x, y) + l(y, t1) � 0.25 + 0.25+

0.25 � 0.75< 1 and u � mine∈P1
ue � min 5, 12, 3{ } � 3, we

update the flow ψ(P1) � 0 + 3 � 3 and calculate the length of
edges, i.e., l(s1, x) � l(s1, x)(1 + (εu/u(s1, x))) � 0.25(1+

((0.4 × 3)/5)) � 0.31.
Similarly, l(x, y) � 0.275 and l(y, t1) � 0.35. +erefore,

l(P1) � 0.31 + 0.275 + 0.35 � 0.935< 1. But, there is no path
between s1 and t1 since edge (y, t1) is saturated.

We choose the next path P3: s3 − x − y − t3. Since l(P3)

� l(s3, x) + l(x, y) + l(y, t3) � 0.25 + 0.25 + 0.25 � 0.75< 1
and u � mine∈P3

ue � min 5, 9, 4{ } � 4, we update the flow
value.

Now, l(s3, x) � 0.33, l(x, y) � 0.283, l(y, t3) � 0.35,

and l(p3) � 0.33 + 0.283 + 0.35 � 0.963< 1. But, there is no
path between s3 and t3 since edge (y, t3) is saturated. Again,
we update the flow value and length of the edges.

In the same way, the next path is P2: s2 − x − y − t2,

l(p2)< 1 and u � mine∈P2
ue � 3,ψ(P2) � 0 + 3 � 3. +ere is

no path from s2 to t2. Since there is no anymore si − ti path,
the algorithm terminates, and maximum flow is 3 + 4 +
3�10.

Corollary 2. An approximate solution of MSMCF with
partial lane reversals can be computed in fully polynomial-
time complexity.

Proof. +e complexity of the algorithm is dominated by
Steps 2 and 3. All other steps can be computed in linear time.
+e solution to an approximate maximum multicommodity
flow problem can be computed by Fleischer [22] on the
auxiliary network in O(ε−2m2) time in Step 2. +is solution
is equivalent to the maximum static multicommodity flow
problem on the given network. +e flow can be decomposed
in O(mn) time in Step 3. Hence, the MSMCF with partial
lane reversals can be computed in fully polynomial-
time. □

4. Dynamic Multicommodity Flow with Partial
Lane Reversals

In this section, we introduce the MDMCF with partial lane
reversals by reverting the necessary arc capacities. Hall et al.
[10] proved that multicommodity flow over time is
NP-hard. +ey provided the solution of the flow over time
problem in a network having uniform path length (a net-
work where the length of all paths is the same).

+e lane reversal strategy cannot be applied in case of
uniform path length in general. It may violate the criterion of
uniform path length after lane reversals as shown in example
3. Two algorithms to solve the MDMCF problem with lane
reversals are presented in this section.

Example 3. Let us consider a multicommodity network
where s1, s2, and s3 are the source nodes and t1, t2, and t3 are
the sink nodes as shown in Figure 3(a). +e first and second
numbers on the arcs represent capacity and transit time
associated with the arcs. +e auxiliary network for recon-
figuration is as shown in Figure 3(b). +e network is of
uniform path length before lane reversals and after the lane
reversals, and a new path s3 − x − y − t3 is created that vi-
olates uniform path length. In general, it proves that the lane
reversal strategy fails to satisfy the condition of uniform path
length. +e lane reversal technique can be applied in case of
uniform path length by reversing only those arcs that do not
violate uniform path length.

4.1. Pseudopolynomial Solution ofMDMCF. To deal with the
maximum flow over time problem, Ford and Fulkerson [7]
introduced the concept of time expansion. +is well-known
approach can be carried out in the case of the multi-
commodity flow over time problem. Kappmeier [11] has
shown the equivalency between static multicommodity flow
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on a time-expanded network and dynamic multicommodity
flow on the original network as given below.

Lemma 1. Let N � (V, A, K, u, τ, S+, S−, T) be a flow over
time network. For any time horizon T, a feasible static S+

′ − S−
′

multicommodity flow ψ in the time-expanded networkNT, there
exists a feasible multicommodity flow over time ξ with the sources
S+ and sinks S− in networkN that sends the same amount of flow
with time horizon T, i.e., |ψT| � |ξ| and vice-versa.

Due to the reduction of the dynamic multicommodity
flow problem on network N to the static multicommodity
flow problem on a time-expanded network NT, it can be
solved in pseudopolynomial-time complexity.

Problem 2. Consider a network N � (V, A, K, u, τ, S+,

S−, T). +e MDMCF problem with partial lane reversals
sends the maximum flow from the sources si to the cor-
responding sinks ti in the unique pair of source and sink
nodes (si, ti) for each commodity i � 1, 2, . . . , k, and for a
given time by saving the unused arc capacity.

To solve the maximum multicommodity flow over time
problem with partial lane reversals (problem 2), we design
Algorithm 3.

Theorem 3. Algorithm 3 provides pseudopolynomial-time
solution of the MDMCF problem with partial lane reversals.

Proof. +e theorem will be proved in three steps. In the first
step, we show the feasibility. Step 2 of the algorithm is well-
defined because it transforms the given dynamic network
flow problem into the static network flow problem on the
time-expanded auxiliary network. +e feasibility of other
steps in the algorithm can be shown as similar to+eorem 1.
In the second step, we prove the optimality. Feasibility
implies that any feasible solution of MDMCF on Na

T is
feasible to the MDMCF with lane reversal solution on
network N. Dynamic multicommodity flow problem on
network N reduces to a static multicommodity flow
problem on Na

T. By reducing the multicommodity to a
single-commodity and decomposing the flow into the (si −

ti) path, dynamic multicommodity flow solution can be
obtained optimally on auxiliary network Na

T. An optimal
solution onNa

T is equivalent to a feasible solution onN. +e
unused capacities of the arcs are saved by partial lane re-
versals in Step 5. At last, we show that the algorithm solves it
in pseudopolynomial-time. We know that Step 3 is solved in
O(mn) times, and Step 2 can be computed polynomially in
the input size of the network, i.e., it depends on T. All other
steps can be computed in linear time. +us, Algorithm 3
solves the MDMCF problem with partial lane reversals on
given network N optimally in pseudopolynomial-time
complexity. □

Example 4. We compute MDMCF on the auxiliary network
obtained by adding two-way capacities of Figure 1(a) within
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Figure 3: (a) Network with uniform path length before lane reversals (capacity, transit time). (b) Lane reversal network of (a) violating
uniform path length (capacity, transit time).

Input: given static multicommodity flow network N � (V, A, u, K, S+, S−)

Output: the approximate MSMCF solution with partial lane reversals
(1) +e given network is transformed by adding two-way capacities as Na � (V, Aa, ua

e , K, S+, S−).
(2) Compute the approximate MSMCF on the transformed network Na by using the algorithm by Fleischer [22].
(3) Decompose the flow along the si − ti paths and cycles and remove flows in cycles ∀i ∈ K.
(4) Reverse er ∈ A up to the capacity ψe − ue iff ψe > ue, ue replaced by 0 whenever e ∉ A, where ψe � 􏽐

k
i�1 ψi

e and ue � 􏽐
k
i�1 ui

e.
(5) For each e ∈ A, if er is reversed, sc(er) � ua

e − ψe and sc(e) � 0. If neither e nor er is reversed, sc(e) � ue − ψe > 0, where sc(e) is
the saved capacity of e.

(6) Transform the solution to the original network.

ALGORITHM 2: An FPTAS for the MSMCF problem with partial lane reversals.
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time horizon T � 8. +e repetition of path flows of each
commodity is shown in a time-expanded network. We get
static flow ψ on the time-expanded network which corre-
sponds to multicommodity flow over time ξ on the auxiliary
network. +e maximum multicommodity flow over time
computation after lane reversals is as shown in Figure 4.

4.2. Approximate Solution of MDMCF. A time-expanded
network is a well-known technique to solve flow over time
problems, but it has the drawback of a large blow-up of its
size. By reducing the size of the time-expanded network, an
efficient algorithm is presented. +is reduction technique is
known as condensation in the setting of a time-expanded
network, and the network is known as the Δ-condensed
time-expanded network. If we take Δ � 1, then the
Δ-condensed time-expanded network reduces to the clas-
sical time-expanded network. To, solve Problem 2 in fully
polynomial-time, we present Algorithm 4.

Theorem 4. Algorithm 4 provides approximate solution of
the MDMCF problem with partial lane reversals.

Proof. First, we prove the feasibility. Step 1 of the algorithm
is well-defined as it transforms the given dynamic network
flow into the static network flow on the Δ-condensed
auxiliary network. +e feasibility of other steps of the al-
gorithm is similar to +eorem 1.

Next, we prove the optimality. Feasibility implies that
any approximate optimal solution of MDMCF with lane
reversals on network N is also a feasible approximate so-
lution to the MDMCF on NΔa. Dynamic multicommodity
flow problem on network N reduces to a static multi-
commodity flow problem on NΔa. By reducing the multi-
commodity to a single commodity and decomposing it into
the (si − ti) path, an approximate dynamic multicommodity
flow solution can be obtained optimally on auxiliary network
NΔa. An approximate optimal solution on NΔa is a feasible
solution on N. +e unused capacities of the arcs by partial
lane reversals are saved in Step 5. +us, an approximate
MDMCF solution with lane reversals on each arc of the
given network N can be computed optimally. □

Corollary 3. An FPTAS to theMDMCF problem with partial
lane reversal can be computed in fully polynomial-time
complexity.

Proof. +e complexity of Algorithm 4 is dominated by Steps
2 and 3. Step 3 is solved in O(mn) time. An approximate
solution of a static multicommodity flow problem on the
Δ-condensed auxiliary network is obtained by Fleischer [22]
in O(ε−2m2) time complexity in Step 2. +e Δ-condensed
auxiliary network contains (n2/ε2) nodes and (mn/ε2) arcs
having polynomial-time complexity. Remaining steps can be
solved in linear O(m) time. So, the problem can be com-
puted in fully polynomial-time.

By scaling the capacities and transit times on arcs given
in Figure 1(b), Δ-condensed networks are formed. +e
approximate solution of Problem 2 can be calculated by
using the Δ-condensed time-expanded network as shown in
Figure 5 by taking Δ � 2.

+e comparison of MDMCF before and after lane re-
versals is shown in Table 2 and Figure 6. □

5. EAMCT with Partial Lane Reversals

+e dynamic network topology N � (V, A, K, u, τ, di,

S+, S−, T) with set of commodities K � 1, 2, . . . , k{ } is con-
sidered.+e earliest arrival multicommodity flow problem is
a feasible multicommodity flow over time ξ with time ho-
rizon T of a maximum value of ξ(θ) for each θ. +is problem
becomes EAMCT if it is a feasible multicommodity trans-
shipment over time ξ with time horizon T such that ξ fulfills
all supplies and demands di and value of ξ(θ) is maximal at
every point in time θ ∈ 0, 1, . . . , T − 1{ }.

Kappmeier [11] proved that the EAMCT exists in the
case of multiple sources and a single-sink. +ey observed
that it is possible to reduce the problem of the multi-
commodity to the single-commodity in the single source-
sink case. If all commodities commence in the same origin
and have the same destination, then it can simply consider
all commodities as one, compute the earliest arrival trans-
shipment, and split the flow up into the commodities.

Problem 3. A network N � (V, A, K, u, τ, di, S+, t, T) with
multisource and a single sink is considered. +e EAMCT

Input: given dynamic multicommodity flow network N � (V, A, u, τ, K, S+, S−, T)

Output: the MDMCF with partial lane reversals
(1) A given dynamic network is transformed into time-expanded network by NT � (VT, AT � AM ∪AH ∪
A+ ∪A−, K, u, τ, S+

′, S−
′, T)

(2) An auxiliary network is constructed by adding two-way capacities as Na
T � (VT, Aa

T, ua, τaK, S+
′, S−
′, T).

(3) Compute the MSMCF on the auxiliary network Na
T.

(4) Decompose the flow along the si − ti paths and cycles and remove flows in cycles ∀i ∈ K.
(5) Reverse er(θ) ∈ AT up to the capacity ψa(θ) − ue iff ψa(θ)> ue, ue replaced by 0 whenever e(θ) ∉ AT where ψe � 􏽐

k
i�1 ψi

e and
ue � 􏽐

k
i�1 ui

e.
(6) For each e(θ) ∈ AT, if er(θ) is reversed, sc(er(θ)) � ua

e − ψe(θ) and sc(e(θ)) � 0. If neither e nor er is reversed,
sc(e(θ)) � ue − ψe(θ)> 0, where sc(e(θ)) is the saved capacity of e.

(7) Transform the solution to the original network.

ALGORITHM 3: Algorithm for MDMCF with partial lane reversals.
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problem with partial lane reversals sends the maximum flow
from the sources si to the corresponding sink t in the unique
source-sink pair (si, t), for each commodity i � 1, 2, . . . , k

and each time θ satisfying supplies and demands by saving
the unused arc capacity.

Lemma 2. EAMCT with multiple sources and a single sink
exists, and it can be computed with a running time that is
polynomial in k and size of the earliest arrival transshipment
in the same network wherein all commodities are considered
as one.

s1 s2 s3

s′1
s′2

s′3

t1 t2 t3

t′1

t′2
t′3

x y

s∗ t∗

θ = 0

θ = 1

θ = 2

θ = 3

θ = 4

θ = 5

θ = 6

θ = 7

Figure 4: Time-expanded network of Figure 1(b).

Input: given dynamic multicommodity flow network N � (V, A, u, τ, K, S+, S−, T)

Output: the MDMCF with partial lane reversals
(1) +e auxiliary network Na is transformed to Δ-condensed auxiliary network NΔaT � (VΔT, AΔaT , K, u′

a
, τ′a, di
′, S+
′, S−
′, T) with

u′ae � Δ(ue + uer ), τ′ae �
⌈τe/Δ⌉Δ, if e ∈ A,

⌈τer /Δ⌉Δ, otherwise.􏼨

(2) Compute the approximate MSMCF by using algorithm by Fleischer [22] on the auxiliary network NΔaT .
(3) Decompose the flow along the si − ti paths and cycles and remove flows in cycles ∀i ∈ K.
(4) Reverse er(θ) ∈ AΔT up to the capacity ψe

′(θ) − Δue iff ψe
′(θ)>Δue, ue replaced by 0 whenever e(θ) ∉ AΔT where ψe

′ � 􏽐
k
i�1 ψ′ie and

ue
′ � 􏽐

k
i�1 u′ie .

(5) For each e(θ) ∈ AΔT, if er(θ) is reversed, sc(er(θ)) � ua
e − ψe(θ) and sc(e(θ)) � 0. If neither e nor er is reversed,

sc(e(θ)) � ue − ψe(θ)> 0, where sc(e(θ)) is the saved capacity of e.
(6) Transform the solution to the original network.

ALGORITHM 4: An FPTAS algorithm for MDMCF with partial lane reversals.
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Proof. Considering the flow over time network
N � (V, A, K, u, τ, di, S+, t, T) having multiple sources (k-
sources) and a single-sink t with k-commodities. Defining
new supplies and demands d′ by

dv
′ �

􏽘
i∈K

d
i
v, if source v in ∪ i∈KS

i
+,

􏽘
i∈K

d
i
t, if v � t is the sink,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

To compute an earliest arrival transshipment for the
instance defined by the network N, we first build the time-
expanded network with supplies and demands and calculate
minimum cost flow by considering transit time as the cost
using the successive shortest path algorithm. +is yields
multicommodity flow over time corresponding to the static
multicommodity flow.

We split the path for each commodity i ∈ K into com-
modity-dependent paths and select a source s ∈ ∪ i∈KSi

+ with
supply di

s > 0. An s − t path P with a flow value ξP > 0 is
chosen, and ξ′iP � min ξp, di

s􏽮 􏽯 is set as the flow value.+en, we

update the residual demand di
s � di

s − ξ′iP and flow value ξP �

ξP − ξ′iP and continue the process until there is no any source in
Si

+ with positive supply according to Kappmeier [11].
+e above construction creates a feasible solution of

the EAMCT problem. We have 􏽐P∈Pst
ξP � 􏽐i∈Kdi

v by the
definition of new demand for each source.
ξ′iP � min ξp, di

s􏽮 􏽯 assures that no path capacity is violated
as no more supply is sent exceeding the capacity. +e flow
value is reduced until arc capacities are zero, for any path
P, and the constructed flow obeys the capacity constraint
due to 􏽐i∈Kξ

′i
P � ξP. Hence, feasible flow satisfying all

demands is ξi
P for all i. +e flow obtained is the earliest

arrival flow for a single-commodity setting. +us, a path
decomposition of the earliest arrival transshipment is
computed in network N. Selection of path flow for each

s1 s2 s3

s′1
s′2

s′3

t1 t2 t3

t′1
t′2 t′3

x y

s∗ t∗

θ = 0

θ = 2

θ = 4

θ = 6

Figure 5: Δ-condensed time-expanded network of Figure 1(b) after scaling capacity and transit time.

Table 2: Maximum multicommodity flow over time with lane
reversals.

Time-expanded Δ-condensed

Path Flow before
LR

Flow after
LR

Flow before
LR

Flow after
LR

s1 − x − y − t1 6 9 4 6
s2 − x − y − t2 4 6 4 6
s3 − x − y − t3 0 8 0 8
Total 10 23 8 20
% increased 130 150
LR� lane reversals.
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5

0
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13

MDMCF before and a�er LR, T-expanded

6

23

10

Flow before LR
Flow a�er LR

Figure 6: Comparison of flow before and after lane reversals.
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commodity in polynomial-time in the size of the de-
composition. +us, running time is polynomial in k and
size of the input.

Earliest arrival multicommodity flow problem with
partial lane reversals on network N � (V, A, K, u, τ, di,

S+, t, T) is to find S+ − t multicommodity flow over time that
is maximum for all time steps θ ∈ 0, 1, . . . T − 1{ } satisfying
supply and demand of each commodity by reverting the arc
partially. We present Algorithm 5 to calculate EAMCTwith
partial lane reversals. □

Theorem 5. Algorithm 5 always computes an earliest arrival
multicommodity flow with lane reversals on the multisource
and single-sink network.

Proof. +e theorem will be proved in two steps. In the first
step, we show the feasibility of the algorithm, and in the
second step, we show the optimality. Steps 1 and 4 of the
algorithm are feasible according to Rebennack et al. [12].+e
feasibility of Step 2 is verified by using the EAMCTalgorithm
(Kappmeier [11]). Step 3 of the algorithm is feasible being
decomposition of flow along paths and cycles and assures
that there is no cycle. +e feasibility of Step 5 of the algo-
rithm is due to Pyakurel et al. [19]. +us, Algorithm 5 is
feasible. To prove the optimality, we compute the EAMCT
solution on the auxiliary network using the algorithm by
Kappmeier [11]. From the feasibility of the algorithm, we
conclude that every feasible EAMCT solution on the aux-
iliary networkNa is equivalent to the EAMCTsolution with

Input: given a multicommodity flow network N � (V, A, K, u, τ, di, S+, t, T)

Output: the EAMCT with partial lane reversals
(1) +e given network is transformed to auxiliary network by adding two-way capacities inNa � (V, Aa, K, ua, τa, di, ∪ i∈KSi

+, t, T)

as ua
e � ue + uer , τa

e �
τe, if e ∈ A,

τer , otherwise.􏼨

(2) Compute the EAMCT on the transformed network Na by using algorithm by Kappmeier [11].
(3) Decompose the flow along the si − t paths and cycles and remove flows in cycles ∀i ∈ K.
(4) Reverse er(θ) ∈ AT up to the capacity ψa(θ) − ue iff ψa(θ)> ue, ue replaced by 0 whenever e(θ) ∉ AT where ψe � 􏽐

k
i�1 ψi

e and
ue � 􏽐

k
i�1 ui

e.
(5) For each e(θ) ∈ AT, if er(θ) is reversed, sc(er(θ)) � ua

e − ψe(θ) and sc(e) � 0. If neither e nor er is reversed,
sc(e(θ)) � ue − ψe(θ)> 0, where sc(e) is the saved capacity of e.

(6) Transform the solution to the original network.

ALGORITHM 5: EAMCT algorithm with partial lane reversals.
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Figure 7: (a) Network having flow, capacity, and transit time on the arc after lane reversals. (b) Time-expanded network of (a).
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lane reversals in the original network N. +us, the solution
obtained on the auxiliary network Na is the EAMCT with
lane reversals on the original network N. Moreover, we can
save the capacities of all unused arcs of the network by Step 5
of the algorithm. □

Example 5. Considering a multisource and a single-sink
network with demands for each commodity being
d1 � 20, d2 � 6, and d3 � 15, respectively. We compute
maximum multicommodity flow over time on the auxiliary
network as shown in Figure 7(a) with the flow, capacities,
and transit times on the arcs within time horizon T � 6 by
searching the successive shortest path for each commodity
on each time step θ. +e repetition of path flows of each
commodity is shown in a time-expanded graph. We get
static flow ψ on the time-expanded graph which corresponds
multicommodity flow over time ξ on the auxiliary network.
Computation of the EAMCTafter lane reversals is shown in
Figure 7(b).

Table 3 represents the value of EAMCTon each path with
partial lane reversals.

6. Conclusions

One of the major problems in operational research is
transshipping several kinds of commodities (goods) in
underlying network topology, respecting capacity con-
straints on the arcs. Maximizing the sum of flow of all
commodities in the specified period, it turns to maximum
multicommodity flow over time. Multicommodity flow over
time is computationally hard. A time-expanded network is a
technique to solve flow over time problems, but it has
pseudopolynomial-time complexity. By shrinking the size of
the network, a Δ-condensed time-expanded network is
introduced without changing flow values too much, and it
provided an efficient approximation scheme. By flipping the
orientation of lanes, the capacity of the lanes will be in-
creased that amplifies the flow value and reduces the time
horizon. Partial lane reversal strategy reverses only necessary
arc capacities and saves the capacity of unused arcs that can
be used in case of emergency.

In this paper, we introduce a partial lane reversal strategy
in static multicommodity flow, multicommodity flow over
time, and earliest arrival multicommodity transshipment
problems and provide algorithms to solve these problems.
+e first problem is solved in polynomial-time, the second
problem is solved in pseudopolynomial-time as well as
polynomial-time approximately, and the third problem is
solved in pseudopolynomial-time complexity.
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