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In this article, we utilize the (G'/G?)-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-
dimensional integro-differential Jaulent-Miodek equation for exact solutions. The equation is shortly called the Jau-
lent-Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrédinger
potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation
using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain
an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two
methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including
the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second
approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions
are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons.
A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of
the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial
differential equations taking place in mathematical physics.

1. Introduction

Nonlinear partial differential equations (NPDEs) are ex-
tensively used to explain complex phenomena in various
fields of applied sciences, especially in physics and engi-
neering. Nonlinear evolution equations, which are formu-
lated using NPDEs, describe more than one of dispersion,
dissipation, diffusion, reaction, and convection. The inves-
tigation of searching solutions for nonlinear evolution
equations plays an important role in nonlinear physical
science because the solutions can describe various natural
phenomena of the problems such as vibrations, solitons, and
propagation with a finite speed. There are two essential types
of solutions for NPDEs, which are analytical and exact

solutions. Some examples of the schemes used to obtain
analytical approximate solutions to NPDEs are the homo-
topy analysis method (HAM) [3], the Adomian decompo-
sition method (ADM) [4, 5], the modified Laplace
variational iteration method (ML-VIM) [6], and the reduced
differential transform method [7], while many effective
methods have been proposed to obtain exact solutions of
NPDEs including fractional order partial differential
equations such as the generalized Kudryashov method
[8-10], the amplitude ansatz method [11], the He’s semi-
inverse method [12, 13], the exp-function method [14, 15],
the auxiliary equation method [16, 17], the extended trial
equation method [18, 19], and the extended direct algebraic
method [20]. Moreover, the sine-cosine method [21, 22], the
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tanh-coth method [23, 24], the extended sech-tanh method
[25], the sine-Gordon expansion method [26-28], and the
(G'/G)-expansion method [29-31] have been recently uti-
lized to find analytical exact solutions of NPDEs as well. The
advantage of finding exact solutions of nonlinear partial
differential equations (NPDEs) is that they do not give any
error terms for the problems which are better than nu-
merical solutions of the problems.

The Jaulent-Miodek equation describes many branches
of physics such as condensed matter physics, fluid dynamics,
and optics [32]. In particular, the (2 + 1)-dimensional Jau-
lent-Miodek (JM) equation associates with energy-depen-
dent Schrodinger potential [33]. The investigations of
finding exact solutions of some kinds of the Jaulent-Miodek
equations are as follows. In 2007, Wazwaz [34] used the
tanh-coth and the sech methods to find exact solutions of the
Jaulent-Miodek system. The obtained solutions included
solitons, kink solutions, complex solutions, and solitary
wave solutions. In 2008, He and Zhang [35] worked on the
same system using the exp-function method. A generalized
solitary wave solution and a generalized compacton-like
solution were acquired. Jia-Min et al. [36] utilized the
variational iteration method, which was combined with the
Jacobian-function method, to solve the Jaulent-Miodek
system. The resulting solutions consisted of doubly periodic
wave solutions, solitary wave solutions, bell-type solitary
wave solutions, and kink-type solitary wave solutions. In
2009, Wazwaz [37] used Hirota’s bilinear method to solve
the (2+1)-dimensional Jaulent-Miodek equation for its
exact solutions. The multiple kink solutions and multiple
singular kink solutions were constructed. In 2010, the
(1+1)-dimensional Jaulent-Miodek equations were solved
using the extended tanh method [38]. Lii et al. [39] obtained
exact solutions of the coupled Jaulent-Miodek equations via
the generalized (G'/G)-expansion method. As a result, some
new exact solutions were obtained including triangular
periodic wave solutions, exponential solutions, and complex
traveling solutions. In 2012, the (G'/G)-expansion method
was used to construct some new traveling wave solutions
including hyperbolic function, trigonometric function, and
rational function solutions of the (2 + 1)-dimensional Jau-
lent-Miodek equation [40]. Wazwaz [41] used the simplified
form of Hirota’s direct method to obtain multiple soliton
solutions of the (3+1)-dimensional nonlinear models
generated by the Jaulent-Miodek hierarchy. Zhang et al. [42]
solved the (2+ 1)-dimensional Jaulent-Miodek equation
using the direct symmetry method for the exact solutions
including polynomial solutions, Airy function solutions,
elliptic periodic solutions, and rational solutions. In 2015,
Matinfar et al. [43] utilized the first integral method to
obtain the kink-type and soliton solutions of the (2 +1)-
dimensional Jaulent-Miodek equation, while Li et al. [32]
investigated the extended (2+ 1)-dimensional Jau-
lent-Miodek equation via Lie symmetries. In 2018, Gu et al.
[44] derived exact traveling wave solutions of the (2+ 1)-
dimensional Jaulent-Miodek equation using the complex
method. Sadat and Kassem [45] solved the (2 + 1)-dimen-
sional Jaulent-Miodek equation using the integrating factor

technique. However, we here consider the (2 + 1)-dimen-
sional integro-differential Jaulent-Miodek evolution equa-
tion [37, 42, 44]:

2 -1
aW,+a,WW, =W, -a;W.o, W, -aWW, M

+ aSO;IW},}, =0,

where ay, a,, a;, a,, a; are arbitrary constants and
9. = Idx. Setting W = u, and substituting it into (1), we
obtain the equivalent form of (1) as follows:

2
Ayl + U U — Uy — A3l

—auu

xxx +asuy, = 0.

(2)

In this paper, we aim to use the (G'/G?)-expansion
method [46-48] and the Jacobi elliptic equation method
[49-52] to solve (2) for its exact traveling wave solutions.

The rest arrangement of the present paper is as follows.
In Section 2, the algorithms of the (G'/G?)-expansion
method and the Jacobi elliptic equation method are con-
cisely given. In Section 3, the application of the methods for
obtaining the exact solutions of (2) is demonstrated. We
provide graphs and physical explanations of some selected
exact solutions of the equation obtained using the two
methods in Section 4. Finally, the conclusions are drawn in
Section 5.

xxuy xuxy

2. Description of the Methods

In this section, we provide the concise description of the
(G'/G?)-expansion method [46-48] and the Jacobi elliptic
equation method [49-52]. Since both methods have a
common initial step, then we will describe the preliminary
step which is the conversion from a partial differential
equation into an ordinary differential equation (ODE) using
a traveling wave transformation. Consider a nonlinear
evolution partial differential equation in three independent
variables t, x, and y as follows:

J=0, (3

F(u, Ups Ungs Uy Uyps Uy Uy s Ups Uy - -

where F is a polynomial of the unknown function
u = u(x, y,t) and its various partial derivatives in which the
highest order derivatives and nonlinear terms are involved.
Converting (3) into an ODE using the following traveling
wave transformation

u(x, y,t) =U(8),

4
E=x+1y+At, )

where [ and \ are nonzero arbitrary constants to be deter-
mined later and then integrating the resulting equation with
respect to § as many as possible; hence, (3) is reduced to the
ODE in U = U (¢) as follows:

pU, U, U"U",..) =0, (5)
where P is a polynomial of U (£) and its various derivatives.
The prime notation (') denotes the derivative with respect to .
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2.1. Algorithm of the (G'/G?)-Expansion Method. The main
steps of the (G'/G?)-expansion method are as follows
[46-48].

Step 1. Suppose that the formal solution of the ODE (5) can
be written in powers of (G'/G?) as follows:

N G j G -j
U(f)=“o+;|:“j<G2> +ﬁj(G2> :|’ (6)

where G = G () satisfies the following nonlinear ODE:

I\ / I\ 2
@l o

in which yg+#1 and w+#0 are integers. The unknown con-
stants ay; or 5, may be zero, but both of them cannot be zero
simultaneously. The coefficients «, ocj,ﬁj (j=12,...,N)
are unknown constants to be determined at a later step.

Step 2. 'The value of the positive integer N can be calculated
using the homogeneous balance principle, i.e., by balancing
between the highest order derivatives and the nonlinear
terms appearing in (5). More precisely, if the degree of U (§)
is Deg[U (£)] = N, then the degree of the other terms will be
expressed as follows:

diU
Deg[ dfgf)] =N +gq,

o (®)
diU
df’gg)) ] =Np+s(N +q).

Deg[ (U(f))p<

Step 3. Substituting (6) along with (7) into (5), we obtain a
polynomial in (G'/G?). Collecting all coefficients of like-
power of (G'/G?)* with k=0, 1, +2,..., +M, where M
is some positive integer and then setting all of the obtained
coefficients to zero, we obtain a system of nonlinear algebraic
equations for the following unknown constants
aga; B (j=12,...,N),l, and A Assume that the
resulting algebraic system can be solved for the unknown
constants using symbolic software packages such as Maple.

Step 4. 'The general solutions of (7) can be categorized into
the following three cases when A, B are arbitrary nonzero
constants.

If pw >0, then we obtain the general solution:

g_\/ﬁ Acos((rwé) + Bsin (/g &) ©
@ \w Beos(\wé) — Asin(\Ewl) )

If pw <0, then we have the following general solution:

G 1 4 ATl VI
—:%<2\/wwl —L) (10)

G? AVl _ g

which is equivalent to

g’_ [uwl (Asinh(Z VIpwl€) + Acosh (2 \/l‘uwlf)+B)

G w \Asinh(2+/|Jpw[&)+ Acosh(2+/[uw|&)-B
(11)

If 4 =0 and w#0, then the general solution of (7) is

!
G4 (12)
G? w (A¢ + B)
The explicit exact solutions of (3) can be obtained by
substituting the values of oy, &}, 8, (j = 1,2,...,N),,A and
the solutions (9)-(12) into (6) with the transformation (4).

2.2. Algorithm of the Jacobi Elliptic Equation Method. The
primary steps of the Jacobi elliptic equation method [49-52]
can be summarized as follows.

Step 1. We assume that the solution of (5) has the following
form:

N
UE =) aly@®r, (13)

i=—N
where «; (i = -N,...,N) are constants to be determined

later, such that a3, + a?y #0, while the function y () sat-
isfies the Jacobi elliptic equation:

[v' ()] =1, + Ly* (&) + Ly* (&), (14)

where [, I,, I, are real constants to be determined.

Step 2. We determine the positive integer N in (13) by
applying the homogeneous balance principle to (5). The
balancing rules are already described in (8) of the previous
method.

Step 3. Substituting (13) along with (14) into (5) and
collecting all of the coefficients of [y’ (£)]7[y (§)]?, where
q=0,1 and p=0, £1, £2,..., £P, where P is some
positive integer, and then setting them to zero, we yield a
system of algebraic equations, which can be solved using
symbolic software packages such as Maple for the values of
a; (i=-N,...,N), I, 1,, 1, I, and \.

Step 4. It is well-known in [49-51] that (14) has the Jacobi
elliptic function solutions as follows:
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Case Iy I
1 1 —(1+M?)
2 1-M? 2M? -1
3 M? -1 2 — M?
4 M? —(1+M?)
5 -M? 2M? -1
6 -1 2 — M?
7 1 2 — M?
8 1 2M? -1
9 1 - M? 2 - M?
10 -M*(1-M?*)  2M*-1
1 - M? 1+ M?
11
4 2
~(1-M?)? 1+ M2
12
4 2
1 1-2M?
13 Z
4 2
1 - M? 1+ M?
14
4 2
1 1+ M?
15 =
4 2

Remark 1. In the abovementioned table: sn (&) = sn (¢, M),
cn(§) =cn (& M), dn(§) =dn(§ M), ns(§) =ns(§ M),
nc (&) = nc(§ M),nd (§) = nd (&, M), cs(§) = cs (& M),
ds(&) =ds(&, M),  cd(§) =cd(EM),  sc(§) =sc(&M),
sd (&) = sd (&, M), and dc (&) = dc(é, M) are the Jacobi el-
liptic functions and am(§) = am (¢, M) is the Jacobi am-
plitude function. The constant M with 0<M <1 is the
modulus of these functions.

Remark 2. It can be noticed that sn () = 1/ns (&), cn(§) =
I/nc(§), dn(§) =1/nd(§), sc(§) = 1/cs(§) =sn(§)/en(9),

Iy v (&)
M? sn (&) or cd (),
-M? cn (&),
-1 dn (%),
1 ns (&) or dc(£),
1-M? nc (),
M?2-1 nd (&),
1 - M? sc (&),
-M?*(1- M?) sd (§),
(15)
1 cs (&),
1 ds (),
a2

— ne(£) + sc(é),
-3 Men (&) + dn (9),
1 sn ()
4 1 +cn(é)
1 - M? cn(§)

4 1+sn(&)
(1- M) sn (§)

4 cn (&) £ dn(é)

sd(§) = 1/ds (&) = sn(§)/dn (§),
cn(8).

dc(é) = 1/cd(§) = dn(§)/

Remark 3. The Jacobi elliptic functions can be transformed
into hyperbolic functions when M = 1 as follows: sn (&, 1) =
tanh (§),cd(&,1) = 1,cn (€, 1) = sech (), dn (¢, 1) = sech (&),
ns(&,1) = coth (), cs(&,1) = csch(é), ds(¢,1) = csch (&),
sc(&,1) =sinh (§), sd(&,1) =sinh(€), nc(é, 1) = cosh (&),
and into trigonometric functions when M =0 as follows:
sn(&,0) = sin (&),cd (£,0) = cos (&), cn (&, 0) = cos (&),
dn(&,0) = 1, ns(£,0) = csc(£), cs(&,0) = cot (), ds(&,0) =
csc(€),sc(&,0) = tan(£),sd (¢, 0) = sin (&), nc(&,0) = sec(&).
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Remark 4. The Jacobi elliptic functions satisfy the following
relations:  sn?(&) + cn?(§) =1, dn*(&) + M2sn?(§) = 1,
sn' (&) =cn(&)dn (&), cn'(§) =-sn()dn(§), dn'(¢) =
-M?sn(&)en(§), cd' (&) = —(1 - M?)sd(é)nd (£), ns'(§) =
—cs(&)ds(),  dc' (&) = (1-M*)nc(&sc(§), cn'(§) =
sc(&)dc(&), nd' (&) = M*cd(&)sd(§), sc’ (&) = dc()nc(8),
cs' (&) = —ns (§)ds (§), ds' (&) = —cs(E)ns(£), sd’ (&) = nd (&)
cd (§),am’ (§) = dn (&), where the prime notation (') denotes
the derivative with respect to &.

Step 5. Substituting the values of «; (i=-N,...,N),
Ip» 1, 1y, 1, A, and the Jacobi elliptic functions y (&) with §
in (4) into (13), we finally obtain the exact solutions
of (3).

3. Application of the Methods

Substituting traveling wave transform
u(x, y,t) =v(€),E=x+1y+At, (16)

into (2) and then integrating it, we obtain

l(as+a,), .2 a 3
mo_ 2\, 3 4 ! 20 _ 5=
v (al)t+asl )v L (") 3 (V) -6=0,

(17)

where [ and \ are constants to be determined, and § is a
constant of integration. Setting z = v/, (17) becomes

Has+ay) » 5 s (0 (1)

2" —(a)d +asl’)z + 3 3

3.1. On Solving (18) Using the (G'/G?)-Expansion Method.
Following the steps of the (G'/G?)-expansion method de-
scribed in Section 2.1, we assume that the exact solution of
(18) has the form

N G j G -Jj
z(£)=a0+j_zl[aj(cz> +ﬁj(G2) } (19)

where G = G (&) satisfies (7). Using (8) to balance the terms
z" and z* in (18), we obtain Deg[z"] = N + 2 = Deg[z®] =
3N, leading to N = 1. Hence, the solution can be written as

i r\ —1
z(&) = ay+ oc(%) +/51<%> , (20)

where o, «;, 3, are unknown constants with «,, 3, #0.
Substituting (20) into (18) along with (7), collecting all of the
coefficients with the same power of (G'/G?), and then setting
these resulting coefficients to zero, we consequently obtain
the following system of algebraic equations in «g, &, 3;,
w, w, A, 1, 8:

3
32ﬁ1#2——azfl=0,

G'\? I(ay+a,)p?

(&) + 5Pt <o

s (a5 +ay)lagf, ~ 12‘15/31 - ‘12“3/31 - az“lﬁ%
—Aa,f; +2uwp, =0,
G\ (a;+a,)la?
<G2) : % —Pasa, — Aa,ay + (as + a,)la, B,

a,o

=0,
3

- 2ay050,3, — 6 —

) 2 2 2
o (as + ag)laga, — Fasa, — a,ap0 — aya;f,

-Aaya; + 2uwa; =0,

G\ I(a;+a,)?
< ): 7(3 24) l—az(xotxf=0,

G\’ a,’
(@) : Zalwz—%=0.

Solving the obtained algebraic system (21) with the as-
sistance of the Maple package program, we get the following
three results.

(21)

Result 1
g = (as + a4)l)
2a,
\F
o = +\|—ow,
a
B, =0, (22)
s (a3 + a4)( (a5 +a,)’ > + 24ywa2)l

>

24a3

_(as+ a,)’I* - 4Pasa, + 8uwa,

4a,a, ’
where a,,a,,as,a,, as, , w, and y are arbitrary constants. In
order to obtain the solution v (&) of (17), we must integrate
the solution z(&) of (18) once. Then, the exact solution
u(x, y,t) of (2) can be obtained by replacing & = x + Iy + Af,
where A is expressed in (22), into the solution v(§).
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If uw > 0, then the trigonometric function solution of (2),
which is obtained by substituting the parameter values in
(22) and the term (G'/G?) in (9) into (20), can be written as

u;(x,y,t) = %1 \/Eln(Bcos(\//,t—wE) - Asin(\/pw §)).
2 2

(23)

If uw <0, then the exponential function solution of (2),
which is obtained by substituting the parameter values in
(22) and the term (G'/G?) in (10) into (20), can be written as

I 6 p
M; (x, y,t) = %‘?)g + \j;( |pw| & - ln<Aetz\/“‘_"S - B)),

(24)

which is equivalent to

ub (x, 1) = (a5 +a))Ig [\/gln((A + B)tanh (\|uw| &)
2a, a,

+A-B)- \/gln<tanh2( ol &) - 1)]
2

(25)

If 4 = 0, w #0, then the rational function solution of (2),
which is obtained by substituting the parameter values in
(22) and the term (G'/G?) in (12) into (20), can be expressed
as

us (x, y,t) = Mi\/a%ln(Af +B). (26)

2a,

Result 2
a, +ay)l
CRTN
2a,
a, =0,

6
Bi=+ \/a:z.“) 27)

S (a5 +a,)( (a5 + a,)’ P+ 24pwa, )l
- 24a3 ’

a; +a,)’ > - 4Pasa, + Suwa,

L

4a,a, ’
where a,,a,,a;,4,,as,l, w and y are arbitrary constants. In
order for obtain the solution v (&) of (17), we must integrate
the solution z(&) of (18) once. Then, the exact solution
u(x, y,t) of (2) can be obtained by replacing & = x + 1y + At
with A expressed in (27) into the solution v(£).

If uw > 0, then the trigonometric function solution of (2),
which is constructed by substituting the parameter values in
(27) and the term (G'/G?) in (9) into (20), can be expressed
as

(a; +ay)l§ +
2a,

\/Eln(Acos(\/Wf) + Bsin (\Juw&)).
2

(28)

W (x, y,t) =

If yw < 0, the exponential function solution of (2), which
is generated by substituting the parameter values in (27) and
the term (G'/G?) in (10) into (20), can be written as

I 6 >
ug(x,y,t) :%;T?)Ei a—2<ln<Ae2 \/“‘_|£+B) -\l wlf),
(29)

which is equivalent to

12 (x, y,t) = (“%::4)15 + [\Eln(m — B)tanh (y/|uw| &)

+A-B)- \jgln<tanh2( ol &) - 1)}
2

(30)

If 4 = 0, w # 0, then the rational function solution of (2),
which is obtained by substituting the parameter values in
(27) and the term (G'/G?) in (12) into (20), can be expressed
as

5 (a3 +ay,)lE
, Y, t) = ——"—, 31
uz (x, y,t) 2, (31)
Result 3
Result 3.1
o = (a5 + a4)l’

2a,

6
a, = \|—w,
a,

_ (a3 + a4)(12a§(x1ﬁ1 —(as + a4)212 - 24pw az)l
24a?

>

4ada, B, - (a5 +a,)’I* + 4Pa,a; — 8uwa,

)L:

>

4a,a,
(32)

where a,,a,,as,ay, as, l, w, and y are arbitrary constants. In
order to acquire the solution v () of (17), we must integrate
the solution z (&) of (18) one time. Then, the exact solution
u(x, y,t) of (2) can be obtained by replacing & = x + Iy + At,
where A is expressed in (32), into the solution v(§).

If yw > 0, then the trigonometric function solution of (2),
which is obtained by substituting the parameter values in
(32) and the term (G'/G?) in (9) into (20), can be written as
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(

as +a,)l§ \/Eln(Bcos(\/Wf) - Asin(\/pw &)
2a2 a,

w(x, y,t) =

+ \/agln (Acos (\pw&) + Bsin (\jpw¥)).
2
(33)

If uw <0, then the exponential function solution of (2),
which is attained by substituting the parameter values in (32)
and the term (G'/G?) in (10) into (20), can be expressed as

1 6 "
() = (“3;7‘2‘4)‘1 J%( £ - In{ AV _ ) )

f( £ - AV 1 5)),

or equivalently,

i€ [e
1 (3, y,1) = (“3%‘*)5— \/a:zln((A N B)tanh( ol E) +A-B)

+ \/agzln((A - B)tanh( ol f) +A+B)

If 4 =0, w+0, then we get the solution (26).

(34)

(35)

Result 3.2
a +ay)l
T
2a,
\F
a = —\|—w,
a,
6
=41 ,
b=t

(as + a4)(12a§(x1/31 —(a +ay)’ P - 24p0 az)l
24a2

>

4a2a,B, - (as + a,)’I* + 4Pa,a; — 8uwa,

)L:

>

4a,a,
(36)

where a,, 4y, sz, Ay, ds, I, w, and u are arbitrary constants. In
the same manner as mentioned above, we can obtain other
solutions of (2) using the parameter values in (36). However,
they are omitted here because of the minimalism.

3.2. On Solving (18) Using the Jacobi Elliptic Function Method.
Balancing the terms z* and z" in (18), we thus obtain the
same balance number N as the previous method, i.e., N = 1.
From (13), the formal solution of (18) has the form

z2(&) = ag + (&) +a_ v (D), (37)

where v (£) satisfies (14), while «; (i = 0, +1) are arbitrary
constants to be determined later such that a; # 0 and a_; #0.
Substituting (37) into (18) along with (14), gathering all of
the coefficients of [y (&)]7[y(§)]? with g=0,1 and
p=0, £1, +2, 3, and then letting these resulting coeffi-
cients be zero, we consequently obtain the following alge-
braic equations in «y, &y, a_;, 1, L, 1y, 1, and A

3
w(@ 7 2a0, - 251 2,
o 1l(ay+ay)d?
w(f) 2 . %_ azao(le =0,
v (ay +a)la o - Pasa_, —a,a” ) — aya 0
-Aaja_; +a_l, =0,
v(E): 1(as +a)ma, —2a,0,0,0_; — xga A — ayasl®
1 2 3
(a5 +ay)ag _o_ % _ 0,
2 3
v(O': (a5 +ay)lage, - Pasa, — aya & - a,o0a,
—-Aaa; +oql, =0,
I(a; +ay)a?
w(&)?: I(ay +a,)o1 a,ay0; =0,

2

a,o’
v (&)’ —%+2(xll4 =0.

(38)

Solving (38) with the aid of the Maple software package,
we have three results of the parameter values as follows.

Result 4

+ay)l

oy = (a5 +a,) i
2a,

a, =0,
61

a, =+
a, (39)

1z (a; +a,)’ 2 - 4Pasa, + 4l,a,

>

4a,a,

I(as +ay)((a; + a,)’ I+ 121,a,)
24a3

8=—

>

where a,, a,, as, a4, as, 1, I, 1;, and [ are arbitrary con-
stants, provided that a,a, #0, [ja, > 0. Using the obtained
results (39), we have the following cases of the exact solu-
tions for (2).
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Case 1. Whenl,=1,1, = —(1+ M?)andl, = M?, we have

1 C(as+a)iE e sn (&)
up, (%, ,) = © 2a, + \ja:zln(m))

(40)

1
ul,z (X) y> t) =

(as+a)i§  [6 (sd()+nd(®)
2a, N\ cd (&) ’

(41)

where & =x + 1y — ((41%asa,— I*a3- 21Paya,— Ia} +4a, (M?
+1))/ 4a,a,)t and a, > 0.
If M =0, then (40) and (41) become

uil (x, y,t) = M + \/a%ln(csc(f) - cot (&),

2a,
(42)
up, (x, 1) = (a%:*)lf + \jagzln(seC(f) + tan (£)),
(43)

respectively, where & = x + Iy — ((41%aya; — I*a3 - 21%aa, -
1’a2 + 4a,)/4a,a,)t and a, > 0.

If M =1, then (40) and (41) turn out to be only one
solution as follows:

1 6
uy, (%, 1) = <% + \ja:z >€, (44)

where &=x+1y- ((4Paya; — Ia} - 2I*aza, — 1*a} + 8a,)/
4a,a,)t and a, > 0.

Case 2. When I, =1-M?2, 1, =2M?* -1 and I, = -M?, we
have

(as + ay)l N 6ln<\/1 - M?sn(&)+ dn(f))

(5000 = (@

2a, a,
(45)

where & = x + 1y — ((4aya5 — I’a% - 21*asa, — 1’} - 4 a,)-
(2 M?* - 1))/4a,a,t and a, > 0.

If M =0, then (45) becomes the solution (43) with & =
x +ly - ((4Payas — IPa3 — 2I*asa, — a2 + 4a,)/4a,a,)t.

If M =1, then (45) reduces to
(as +a )l

, 46
2 (46)

1
uz’l (x) )/, t) =

where & = x +1y — ((4aya; — I*a3 - 21*aza, — I*a} - 4a,)/
4a,a,)t.

Case 3. When Iy = M? - 1,1, =2 - M?, 1, = -1, we have
! 6 1-M?
u;l(x,y,t):wi — —arctan @ ,
’ 2a; a, (@
(47)

where & =x+1y— ((4layas - 1’a% - 21*asa, — 1’a} - 4a,
(2 - M?))/4a,a,)t and a, <0.
If M =0, then (47) turns out to be

I 6
uy, (%, y,t) = <% + J—; )5, (48)

where & = x + 1y — (4 1%aya5 — I’a3 - 2*asa, — I’a} - 8 a,)/
4a,a,)t and a, <0.

If M =1, then (47) reduces to the solution (46) with
¢ =x+1y- (1/4a,a,) (4%aya; — Paj - 21aza, — *al -
4a,— 4a,4a,a,)t.

Case 4. When [, = M?, 1, = — (1 + M?), I, = 1, we have

1 _(az+a)lE |6 (ds(&) - Mcs(§)
l/l4,1 (X, y, f) = T + a—21n<T(€)>,
(49)
1 (a3 +a,)i€ 6. (nc(&) + Msc(&)
st = 20 L),
(50)

where & =x+1y - ((4laya; — I*a3 - 21*aza, — I*a} + 4a,-
(M? +1))/4a,a,)t and a, > 0.

If M = 0, then both (49) and (50) reduce to the solution
(46) with & =x+1y— ((4Payas — IPa3 - 21%a,a,
—12aZ + 4a,)/4a,a,)t.

If M =1, then both (49) and (50) turn out to be

U}M (x, y,t) = M + \/a—gzln(cosh(f))

2a,

Ttl \/E(ln(cosh(f) —1) +In(cosh (&) + 1)),
2 \a,

(51)

where
§{=x+1y - (41%ayas — *a} - 21*aya, — I°a’ + 8 a,)/
4a,a,)t and a, > 0.

Case 5. When I, =-M?* 1, =2M?*-1,1, =1- M?, we
obtain
l 6
u; (%, p,t) = M + |- —arctan (Msd (§)), (52)
’ 2a, a,

where & =x+1y - ((41ayas — 1*a3 - 2Paza, — I*a5 — 4 a,-
(2 M? - 1))/4a,a,)t and a, <0.
If M = 0, then (52) reduces to the solution (46) with & =
x+ly - (1/4a,a,) (41%aya5 —1a% - 21Pasa, — a3 + 4a,)t.
If M =1, then (52) becomes

u;’l (x, y,t) = (613;734)1& + 24 —a%arctan(ef), (53)

where & = x + 1y — (41%a,a; — I’a5 — 2%aza, — Paj -4 a,)/
4a,a,)t and a, <0.
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Case 6. When I, =-1,1,=2-M? 1, = M?* - 1, then we
have

(a5 +a,)l .

6
2, —-—am(¢),

a

ug, (x, 1) = (54)

where & = x +1y - ((4aya; — I*a5 - 21’aza, — I’a} - 4a, -
(2 - M?))/4a,a,)t and a, < 0.
If M =0, then (54) becomes the solution (48) with & =
x+1y - (4PPayas — Pa3 - 21*aza, — I*a} - 8 a,)/4a,a,)t.
If M = 1, then (54) turns out to be the solution (53) with
§=x+1y- (1/4a,a,) (4 Paya; — Paj - 21aza, — Pa -
4a,)t.

Case 7. When [y =1,1,=2-M? 1, =1- M?, then we

have
\jEln ( ) ’
a,

(55)
where & = x +1y — ((4aya; — I*a} - 21’aza, — I*a’ - 4a, -
(2 - M?))/4a,a,)t and a, > 0.

If M =0, then (55) turns out to be
(a; +ay

JiE + \/Eln(sin(ﬁ)), (56)
a,

where & = x + 1y — ((4aya; — I*a} - 21’aza, — I*a’- 8 a,)/
4a,a,)t and a, > 0.
If M =1, then (55) reduces to

(a5 +ay)l +
2a,

nc (&) —dc (&)

try (5 3,1) = (@)

u;)l (-x) )/, t) = 2(1
2

M2 (1 - M?), we

)

(58)

Case 8. Whenly=1,1,=2M*-1,1,

get
+ \jgln(
a

where & = x +1y - ((41%ayas — ’a% - 21’aja, — ’a’ - 4a, -
(2M? - 1))/4a,a,)t and a, > 0.
If M = 0, then (58) becomes the solution (42) with & =
x+1y - ((4Payas — I’a% - 21%asa, — 1*a} + 4a,)/4a,a,)t.
If M =1, then (58) becomes the solution (57) with & =
x+1ly - ((41Payas — 1’a% - 21Pasa, - 1’a% — 4a,)/4a,a,)t.

(a5 +ay)l

2a,

nd (§) - cd(§)

gy (,) = sd(©®

Case 9. Whenly=1-M?1,=2-M? 1, =1, we have
\j?ln<\/1 ~MZns(§) +ds(f)>
a, ’

cs (&)

(59)
where & = x + 1y - ((41%ayas — ’a} - 21’aja, — *a’ - 4a, -
(2 - M?))/4a,a,)t and a, > 0.

If M =0, then (59) can be reduced into

l 6
Uy (x, y,t) = @%‘j‘*)fi\jﬂgln(wﬂf)), (60)

(as +ay)lE +

u;)] (x) y) t) = 2(12

where & =x+1y - ((41%ayas — 1’a% - 2aza, — PaZ — 8a,)/
4a,a,)t and a, > 0.

If M =1, then (59) becomes the solution (46) with & =
x+1y - ((4Payas — Pa3 - 21Pasa, — Pa3 — 4a,)/4a,a,)t.

”;,1 (x, 9,t) = Mi 2\]Earctan(e£), (57)
20, a4 Case 10. When [, =-M*(1-M?), L, =2M>-1,1,=1,
where £=x+ly— (4Payas - Pa2 - 2Paya, - > ¢ have
a2 —4a,)/4a,a,)t and a, > 0.
(as+a)lé_ | 6 M? -1 ,
ulo, (%, ,1) = #+ —a—z de(f) arcsin (Mcd (£)), (61)

where & = x + 1y - ((41%aya; — I*a} - 21*aya, — *a} - 4 a, -
(2 M? - 1))/4a,a,)t and a, <0.

If M =0, then (61) becomes the solution (46) with & =
x +ly - ((4Payas — IPa3 — 2I*asa, — Ia% + 4a,)/4a,a,)t.

If M = 1, then (61) turns out to be the solution (46) with ¢ =
x +1y — (1/4a,a,) (4 Payas — Pal — 2 Paja, — Pa? — 4a,)t.

Case 11. When I,=(1-M?)/4,1,=1+M?)/2,1, =
(1 - M?)/4, we have

1 _(as+a)is |3 (dc(§)+V1-M2nc(§)
Ml =T \JZaZI“(dc(f) ) 2
uilz(xa% f) zwi iln de(§) + v1- M nc(f)_l , (63)
’ 2a, 2a;  \ (dc(&) + V1 - M2sc(§))
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where & =x+1y - ((41%aya; — a% - 21*aya, — Ia% - 2a,-
(M? + 1))/4a,a,)t and a, > 0.
If M =0, then (62) and (63) reduce to

l 3
uly, (6 p,0) = (“3;2’4)5 + \/;ln(sin(f) 1), (64)

I 3 )
”il,z(’“ »t) = @;T?)gi \/z_jzln(sm(f) -1),

respectively, ~ where & =x+1y - ((41aya; — 1’3 - 2-
Pasa, — Pa3 - 2a,)/4a,a,)t and a, > 0.

If M =1, then both (62) and (63) become the solution
(46) with & = x + 1y — (1/4a,a,) (4 Pa,as — I*a3 — 2 Paza, —
Pa3 — 4day)t.

Case 12. When
I, = —1/4, we have

ly=—(1-M2%4,1, = (1+M?)/2,

(65)
”}2,1 (x, y,t) = (%;T?)lf * 14 —Ziaz(arctan(Msd(f)) —am (¢§)), (66)
uiz,z (x, y,t) = (%;TT)ZE * 1 —Ziaz(arctan(Msd(f)) +am (§)), (67)

where & =x+1y— ((41ayas — I*a3 - 2Paza, — I*a3 - 2a, -
(1+ M?))/4a,a,t) and a, <0.

If M =0, then (66) and (67) are reduced into only one
solution as follows:

”12,1 (x, y,1) = ( (a; + a,)l t ’ >E, (68)

where & = x + 1y — ((41aya; — I’a% - 21*asa,— 1’a% - 2 a,)/
4a,a,)t and a, <0.

If M =1, then both (66) and (67) become the solution
(46) with & = x + Iy — (1/4a,a,) (4 *a,a; — I’a% - 2Pasa,~
1*a2 — 4a,)t and a, <0.

2a, 2a, Case 13. When I, =1/4,1, = (1-2M?)/2, 1, = 1/4, we
have
! _(az +ay)lg 3 (sn(&))*
Haa (o2t =0 iJ;%<mm0+nmma+m@») ()
. _(as +ay)lE 3 dn(&) +1
Uy, (x, y,t) = 2—612 * \jz—:zln<m>) (70)

where &= x+1y - ((41%a,a; - Iaj - 2%aya, — *aj - 2a, -
(1-2M?))/4a,a,)t and a, > 0.
If M =0, then (69) and (70) become

(a; +ay)l§ +

why, (6 ,8) = E%mu—wum,(n>

2a,
(a; +ay)lE 3
Uy, (%, 1) = # + Z—%m(l +cos(), (72)
respectively, ~ where & =x+1y - ((41aya; - ’a3 - 2-

Pasa, — ’a2 — 2 a,)/4a,a,)t and a, > 0.

If M =1, then (69) and (70) turn out to be

”}3 (x5 p,t) = M + g(arctanh(ez"t)
, 2a, a, 73)
~In(sinh (£)) )
u}n (x, y,t) = M + g(arc:tanh(ez"t)
. 2a, a, (74)

+ 1n(sinh(§))),
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respectively, where & = x +1y — ((41%a,a; — I*aj - 21*aza,
-I2a% + 2 a,)/4a,a,)t and a, >0.

Case 14. When I,=(1-M?*)/4,1,=(1+M?)/2,1, =
(1 — M?)/4, we have

1 (az+a)lE_ |6 1 M?sn (é)

Uy (X 9t) = T+ azarctanh(\ﬁ__M2 (dn(f) 1 1)), (75)
L _(as+ay)lE_ |6 1 M?sn(£)

Uy, (X, 9,8) = T+ 7 azarctanh(m (dn(f) 1t 1)), (76)

where &= x+1y - ((4Payas - a% - 2Paya, — ’al - 2a, -
(1+ M?))/4a,a,)t and a, > 0.
If M =0, then both (75) and (76) turn out to be

Uy, (3, y,8) = (@ +a)lb \/%ln(l —sin(®),  (77)

2a,

where & = x + 1y — ((4Pa,a; — I’a3 — 2%aza, — Paj— 2 a,)/
4a,a,)t and a, > 0.

If M =1, then both (75) and (76) become the solution
(46) with ¢{=x+1y- (1/4a,a,) (4 Paya; — 1Pa3 -
2Pasa, - Pa - 4ay)t.

Case15. Whenl, = 1/4, I, = (1+ M?)/2, 1, = (1 - M?)*/4,
we have

1 B (a; +ay)lé 3 (sn(&))?
sy (o t) =50 i&;m<mmo+n@ma+n>

(78)

1 (a; +ay)lé 3 cn(é) +1
ulS,z (x, 2 t) = T + \jz:aZhI(m), (79)
where & =x+1y— ((41Payas — I*a3 - 2Paza, — I*a3 - 2a, -
(1+ M?))/4a,a,)t and a, > 0.

If M = 0, then both (78) and (79) become the solution
(71) with & = x + Iy - (1/4a,a,) (4 *a,as — I’a% - 2*a;a, —
a2 —2a,)t.

If M = 1, then (78) and (79) are reduced into the solution
(57) with & = x + 1y — (1/4a,a,) (4 *a,as — I’a% - 2Paza, —
a2 —4a,)t.

Result 5

a, +ay)l
o (ara)l

2a,

6l

a = £,

a

a_; =0, (80)

1z I?(ay +a,)’ - 4a, (Pas - 1,)
4a,a, ’

I(a; + a4)(l2 (a; +a,)’ + 1212a2)
24a?

>

where a,, a,, a;, a,, as, Iy, 1,, I, and [ are arbitrary con-
stants, provided that a,a, #0, l,a, > 0.
Substituting (80) into (37), we get the solution of (18) as

z(8) = ag + oy (8), (81)

where (&) has the forms as expressed in (15) with
& =x+1y + At, where ) is defined in (80). In consequence,
we can proceed the same process as shown above to obtain
the solutions of (2) which are omitted here due to the
minimalism.

Result 6

Result 6.1

l
o = (a5 ;“4) a,

6l
a =\—,
a:
ay =+,
a:
2
1z (a; +ay)’? —4a, (Pas + a_ja; — 1)

>

4a,a,

5o (a; + 614)1(12612 (a_joqa, — 1) — (a5 + a4)212)
- 24a3

>

(82)

where a,, a,, a;, a,, as, Iy, 1, I;, and [ are arbitrary con-
stants, provided that a,a, #0, [ya, >0, [,a,>0.Using the
obtained results (82), we have the following cases for the
exact solutions of (2).

Case 16. When [, =1,1, =—(1+M?) and I, = M?, we
obtain



12 International Journal of Mathematics and Mathematical Sciences

w (% y,t) = (a5 +a )l | \jagln(dn(f) — Men (£))
2

2a,
6 sn (§)
: \ja:zln<cn(£) v dn(f))’

1, (%, 1) = (a5 +a it \jagln(nd(f) + Msd (8))
2

(83)

2a,

5, (nd(f) - sd(£>)
a, cd (§) ’

(84)
where &= x+1y+ (((a5 +a,)*l? - 4Payas — 4a_ a a3~
4(M? + 1)a,)/4a,a,)t and a, > 0.

If M =0, then solutions (83) and (84) reduce to the
solutions (42) and (43), respectively, where &= x+1y+
(((a3 + a,)’P? — 4Payas — 4a_ o a% — 4a,)/4a,a,)t.

If M =1, then both (83) and (84) become

3 [ (a3 +a,)l 6
uy, (x, p,t) = <72a2 + 2\/; )5, (85)

where  &=x+1y+ (((a; +a))’? - 4la,a; — 4a_ 0,02 -
8a,)/4a,a,)t and a, > 0.

Case 17. When Iy =1-M?1,=2M?-1 and I, = -M?,
we have

M + Earc:tanh (iMsd ()

3
uZ,l (x) ys t) = za a
2 2

(86)

. Eln(msn(f) + dn(f))
- cn(§) ’

a,

where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_aa2 + 4-
(2M? - 1)a,)/4a,a,)t and a, > 0.

If M =0, then (86) becomes the solution (43) with
E=x+1ly + (((ay + a,)*P* - 4Payas — 4a_ a,a3 - 4a,)/
4a,a,)t.

If M =1, then (86) turns out to be

”2,1 (x, y,t) = M + 1 —a%arctan(sinh(f)), (87)

2a,

where  &=x+1y+ ((a;+a))’? - 4la,a; — 4a_ a2 +
4a,/4a,a,)t and a, <0.

Case 18. When Iy = M*> - 1,1, =2 - M?, 1, = -1, we have

l 6
u, (x, 1) = (%;Tj“)f + \/;am(f)

6 (\/I—Mzsn(f))
+ q|—arctan| ——— |,
a, cn (&)

(88)

where E=x+1ly+ (a5 +ay)’ P - 4layas — 4a_ a2
+4(2 - M?)a,)/4a,a,)t and a, <0.
If M = 0, then (88) becomes

I 6
U3, (%, y,t) = <% + 2\/—7—2 >E, (89)

where  &=x+1y+ (((a; +a)’l? - 4lPaya; — 4a_ o a3 +
8a,)/4a,a,)t and a, <0.

If M =1, then (88) becomes the solution (87) with
E=x+ 1y + (a3 +a,)’l? - 4laya; — 4a_ja,a +4a,)/
4a,a,)t.

Case 19. When [, = M?, 1, = — (1 + M?), I, = 1, we have

Uy (%, 9,1) = (CREAL + Eln(dS(f) - cs(§))
a,

2a,

(90)
6 (dS(E)—MCS(E)>
+ |—Ilnl ————* ),
Ja: ns (8)
1, (%, 1) = % + ngn(ncca —sc())
2 2
(91)

gln(m(f) - MSC(E))
a, dc(é) ’

where &=x+1y+ (((a; +ay)’? - 4l%a,a5 — 4a_ a2 — 4-
(1+ M?)a,)/4a,a,)t and a, > 0.

If M = 0, then the solutions (90) and (91) reduce to the
solutions (42) and (43), respectively, where &= x+1y+
(((as + ay)’P? - 4Payas — 4a_ o a2 — 4a,)/4a,a,)t.

If M =1, then both (90) and (91) become

uzl(x,y, t) = M+ \jgln(sinh(f)) + \jgln(cosh(f)),
’ a, a,

2a,
(92)

where  &=x+1y+ (((a; +a))’? - 4la,a; — 4a_aa% -
8a,)/4a,a,)t and a, > 0.

Case 20. When Iy =-M?*1,=2M>-1,1,=1- M?, we
have

”2,1 (x, y,t) = M + \/iln(\/l - M2sc(§) + dc(f))

2a,

+ \/Earctanh (iMsd (&)),
a,

where &=x+1y+ (((ay +a,)’ P - 4Payas — 4a_ ;0% + 4
(2M? - 1)a,)/4a,a,)t and a, > 0.

If M =0, then (93) becomes the solution (43) with
E=x +1y + (((ay +a)’l? - 4laya5 — 4a_ a2 — 4a,)/
4a,a,)t.

(93)
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If M =1, then (93) turns out to be

5 (a3 +ay)lE 6 ¢
us, (x, y,t) = o +2 —a—zarctan(e ), (94)

2

where  &=x+1y+ (((a; + )l - 4lPaya; — 4a_ a2 +
4a,)/4a,a,)t and a, <0.

Case 21. When I, =-1,1,=2-M? I, = M? - 1, we have

”2,1 (x, y,8) = M + \/— a%arctan(\/l - M? sc(f))

2a,

+ \’—Eam(f),
a,

where &=x+1y+ (((a; +ay)’? - 4l%a,as — 4a_ ;a2 + 4-
(2 - M?)a,)/4a,a,)t and a, <0.
If M =0, then (95) becomes the solution (89) with & =
x+1y+ (a3 + ay)’P? - 4lPayas — 4a_,a,a3 + 8a,)/4a,a,)t.
If M =1, then (95) becomes the solution (94) with & =
x+1y+ (((as+ a))’P - 4Payas — 4a_ o a3 + 4a,)/4a,a,)t.

(95)

Case 22. Whenl,=1,1,=2-M? 1, =1- M?, we obtain

”;,1 (x, y,t) = (a%ﬂaz})lf + \/aEln(dc(tf) + V1 - M? nc(f))
2

2

gln(nC(E) - ddf))
a, sc (&) ’
(96)

where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_ ;a2 + 4-
(2 - M?)a,)/4a,a,)t and a, > 0.
If M =0, then (96) reduces to

I
M;,l (x, y,1) = (613;6214)& - \jagzln(cos(f))

i-JE;n(ﬁn(fD,
a,

where  &=x+1y+ (((a; +a)’l? - 4lPaya; — 4a_ o a3 +
8a,)/4a,a,)t and a, > 0.
If M =1, then (97) turns out to be

(97)

“;1 (x, y,t) = M F 2\/Earctanh(e€), (98)
’ 2a a,

2
where  &=x+1y+ (((a; +ay)’? - 4la,as — 4a_,aa% +

4a,)/4a,a,)t and a, > 0.

Case 23.
we have

When [, =1,1, =2M?* -1, 1, = -M?*(1 - M?),

(99)

3
u&] (x’ )/> t) = 2a a
2 2

where &=x+1y+ (((a; +ay)’? - 4l%a,as — 4a_ ;a2 + 4-
(M? - 1)a,)/4a,a,)t and a, > 0.
If M = 0, then (99) becomes the solution (42), where & =
x+1y+ (1/4a,a,) ((as+ a,) 12— 4Payjas — 4a_ a a2~ 4ay)t.
If M =1, then (99) reduces to the solution (98) with
E=x+1ly+ (1/4a,a,) ((a; + a))’? - 4la,as — 4a_ a,ad)t.

Case 24. When Iy =1-M? 1, =2-M? 1, =1, we have

Uy, (%, y,1) = (@ +a, )l + \/Eln(m(f) - ds(8))
2

2a,
+ gln(dc(&) +7.1—1\/12ns(f)>,
a, cs (&)

(100)

(as +a)lE [6 (arcsin(Mcd (§))y (Mcd(§)* -1 , |6, (nd(®)-cd(®)
nd (§) B '

a,

sd (&)

where &=x+1y+ (((a; +ay)’? - 4la,a5 — 4a_ ;a2 + 4-
(2 - M?)a,)/4a,a,)t and a, > 0.
If M =0, then (100) becomes

uy, (%, y,t) = %‘2’4)’5 - Jiln(oos(s)) + \/len(sin(f)),

(101)

where  &=x+1y+ (((a; +a)’l? - 4lPaya; — 4a_ o a3 +
84a,)/4a,a,)t and a, > 0.
If M =1, then (100) turns out to be

u;l(x,y,t)=M+ E1n(tanh<£)), (102)

2a, a, 2

where  &=x+1y+ (((a; +a)’l? - 4lPaya; — 4a_ o a3 +
4a,)/4a,a,)t and a, > 0.
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Case 25. When I, =-M?>(1-M?»),l,=2M?>-1,1,=1,
we get 0 2 4 s Gyt =228 Ft“(ﬁg))
2 2
Uy, (%, 1) :M+ \/Eln(m(f) -cs(§) (109)
a) a,
_ M-1 ~ ul,, (%, y,t) = (@5 +a,)lE \anm(f), (110)
F \/a:z< W:dn(f))arcsm(Mcd(f)), 12,2 2a, a,

(103)
where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_a a3 + 4

(2M? - 1)a,)/4a,a,)t and a, > 0.
If M =0, then (103) reduces to

I
Uy, (%, 1) = (%;Tj“)g - \/a%ln(csc(f) + cot (£)),

(104)

where  &=x+1y+ (((a; + a)’l? - 4lPaya; — 4a_ a3 —
4a,)/4a,a,)t and a, > 0.

If M = 1, then (103) becomes the solution (102) with & =
x+1y+ (((a; + ay)’? - 4P%a, a; — 4a_ ,a% + 4a,) /4a,a,)t.

Case 26. When I,=(1-M?)/4,1,=(1+M?)/2,1,=
(1 — M?)/4, we have

Uy, (6 p,t) = % + \/a%ln(\/l - M2sc () +dc(9)),

2
(105)

up, (%, 1) = (ay+a)lk g1n(V1 - M2 nc(§) +dc(8)),

2a, a,
(106)
where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_a b + 2-

(M? + 1)a,)/4a,a,)t and a, > 0.
If M =0, then (105) and (106) turn out to be

Uy (% 1) = (a3 +a)lf_ \/;%—Zln(l —sin (&)

2a,

(107)
+ \/Eln(l + sin (£)),
2a,
!
Uy, (%, p,t) = (%;T“‘*)f - \/gln(sin(f) +1)
2 2 (108)

+ \/zln(sin(f) -1),
2a,

respectively, where &=x+1y+ (((a; +ay)’P - 4la,as -
da_,a a3 + 2a,)/4a,a,)t and a, > 0.

If M = 1, then both (105) and (106) become the solution
(46) with &=x+1y+ (1/4a,a,) ((as + a,)’? - 4Payas —
da_ o a3 + 4a,)t.

Case 27. When Iy =—(1-M?)?/4,1, = (1+M?)/2,1, =
—1/4, we have

where &=x+1y+ (((a; +ay)’P? - 4la,a5 — 4a_aa2 + 2-
(M? + 1)a,)/4a,a,)t and a, > 0.

If M = 0, then the solutions (109) and (110) reduce to the
solutions (46) and (48), respectively, where &= x+1y+
(((a3 + a)’? — 4Paya; — 4a_ 0,02 + 2a,)/4a,a,)t.

If M = 1, then both (109) and (110) become the solution
(87) with &=x+1ly+ (1/4a,a,)((a; + a,)’l> - 4Pa,a; —
da_ja a3 + 4a,)t.

Case28. Whenl, = 1/4,1, = (1 -2M?)/2, 1, = 1/4, we have

3 _(az +a,)l€ 6 sn (&)
uyzy (%, 9,0) = T oa, * \jaizln(icn(rf) " dn(f))’

(111)

3 _(as+a,)ig |6 sn(§)
Uiz, (x,y)t) _T-F \/;ln((m(fm>’ (112)

where  &=x+1y+ (((a; +ay)’P - 4l%a,a; — da_ a,a% +
2(1 -2M?)a,)/4a,a,)t and a, > 0.
If M =0, then both (111) and (112) reduce to

“?3,1 (x, y,8) = M - \jz—zln(l + cos (£))

2a,

+ \/zln(l - cos(¢)),
2a,

where  &=x+1y+ (((a; +a)’l? - 4lPa,a; — 4a_ o a3 +
2a,)/4a,a,)t and a, > 0.
If M =1, then (111) and (112) become

”§3,1 (x, y,t) = M + \/%ln(l + cosh (&)

(113)

2a,
+ <\/% In (sinh (£)) - \/a%arctanh(ef))
(114)
Uy, (x, y,t) = % + \/gln(l — cosh ()
2 2
+ <\/2—€2 In(sinh (£)) - \Earctanh(ef) >,
(115)
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respectively, where &=x+1y+ (((a; +a,)’? - 4Paa; -
da_ a3 — 2a,)/4a,a,)t and a, > 0.

Case 29. When I,=(1-M?)/4,1L,=>0+M?)/21,=
(1 - M?)/4, we have

I 6 1
”i4,1 (x, y,t) = %;T?)f + J%arctanh(m
M?sn (§) 6
: (dn(f)+1+ 1)) + \j;arctanh
( 1 <Mzsn(£)_l>)
VI-M?2 \dn(&)+1 ’

where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_aa2 + 2-
(1+ M?)a,)/4a,a,)t and a, > 0.
If M =0, then (116) turns out to be

Wy, (%, p,t) = (a3 +a,)IE | \/%111(1 +sin(8))

2a,

1\/Tln(l —sin (§)),
2a,

where  &=x+1y+ (((a; +a))’? - 4la,a; — 4a_ 0,02 +
2a,)/4a,a,)t and a, > 0.

If M = 1, then (116) is the same as the solution (46) with
E=x+ly+ (1/4a,a,) ((a;+a,)’ P —4Payas —da_ a0l +
4a,)t.

(116)

(117)

Case 30. Whenly =1/4,1, = (1+ M?)/2, 1, = (1 - M?)*/4,
we have

3 (a3 +ay)lE 6 sn (§)
1/[15)1 (x,y,t) —T'F \]a:Zln(m>, (118)
(a3 +a,)l§ sn (&)

6
2o, +\/a:21n<7cn(f)+l), (119)

where &=x+1y+ (((a; +ay)’? - 4la,as — 4a_aa3 + 2-
(1+ M?)a,)/4a,a,)t and a, > 0.
If M =0, then both (118) and (119) become

1
ujs, (%, y,t) = @3%:4)5 + \/%IH(COS(E) -1)

¢\j71n(cos(f) +1),
2a,

where  &=x+1y+ (((a; +a))’ - 4la,a; — 4a_ 0,02 +
2a,)/4a,a,)t and a, > 0.

If M =1, then both (118) and (119) are the same as the
solution  (98) with &=x+1y+ (((ay +a,)’® -4
ayas — 4a_ a3 + 4a,)/4a,a,)t.

3
u15)2 (x) y) t) =

(120)

Result 6.2.
_ (a5 +ay)l
°7 24,
6l
o =— —4
a,
6l
a, = £
a,

_(ay+ (14)212 —da, (Pas + a_ja, — 1)
- 4a,a,

A

>

5o (a; + a4)l(12a2 (ajoya, = 1) —(a; + a4)212)
- 24a?

>

(121)

where a,, a,, as, a4, as, 1), I,, 1;, and [ are arbitrary con-
stants, provided that a,a, #0, [ya, >0, I,a, > 0.Substituting
(121) into (37), then the solution of (18) becomes

z2(&) = ay+ oy (&) +a_y (&), (122)

where y (&) has the forms expressed in (15) with
& = x — 1y + At, where A is defined in (121). Consequently, we
can achieve many similar solutions of (2) using the same
procedure as shown above. However, they are ignored here
due to the minimalism.

4. Some Graphical Representations of the
Obtained Exact Solutions

In this section, we will show graphical representations of the
selected exact solutions, which have been constructed using the
(G'/G*)-expansion method and the Jacobi elliptic equation
method, for the (2 + 1)-dimensional Jaulent-Miodek equation
(2). In addition, we will also discuss their physical explanations.
The domain for plotting the chosen exact solutions of the
equation is —10 <x <10 and —10<t <10, but y = 0 is fixed.

For the (G'/G?)-expansion method, only two solutions
(23) and (26) are selected in order to show their graphical
behaviors using a; =1,a,=6,a;=1,a,=1,a;=-1,1=
1, A=2,B=1, y=2,and w = 2 on the above domain. The
graph of the exact solution u] (x, y,t) in (23) is depicted in
Figure 1(a). It represents the singular periodic traveling wave
solution. Similarly, the exact solution u} (x, y,t) in (26) is
plotted in Figure 1(b) using the different set of the parameter
values: a;, =1,a,=6,a;=1,a,=1,a;,=-1,1=1, A =2,
B =1, and w = —1. The graph demonstrates discontinuities
of solution (26) on the domain.

For the Jacobi elliptic equation method, exact solutions
(51), (52), and (116) of (2) are plotted using the distinct
values of the modulus M but utilizing the same set of the
parameter values: a,=1,a,=6,a;,=1,a,=>5,4as; =1,
I = 1. Solution (51) with M = 1 is portrayed in Figure 2(a), in
which the symmetrical peakons is characterized. The graph
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F1GURE 2: Plots of the solutions of (2) obtained using the Jacobi elliptic equation method and setting y = 0: (a) solution (51) with M =1,
(b) solution (64) with M = 0, and (c) solution (116) with M = 1/3.
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of the exact solution (52) with M = 0 is shown in Figure 2(b)
describing the periodic traveling wave solution. In addition,
Figure 2(c) shows the graphical result of the Jacobi elliptic
function solution (116) with M = 1/3. This graph gives
singularities on the domain.

5. Discussions and Conclusions

In this article, we have utilized the two methods, namely, the
(G'/G?)-expansion method and the Jacobi elliptic equation
method to compute the explicit exact traveling wave solu-
tions of the (2 + 1)-dimensional Jaulent-Miodek equation as
given by (2). Applying the (G'/G?)-expansion method to the
equation, we have obtained the different three sets of the
parameter values from which the exact solutions have been
formed. The obtained solutions include the trigonometric,
hyperbolic, and rational function solutions. Employing the
Jacobi elliptic equation method to analytically solve (2),
three sets of the parameter values have been attained. Each
set has consequently generated fifteen exact solutions in
terms of the Jacobi elliptic function solutions depending
upon the modulus M € [0, 1]. In particular, the trigono-
metric and hyperbolic function solutions of (2) can be re-
duced from the Jacobi elliptic function solutions when M is
replaced by 0 and 1, respectively. In Section 4, we have given
some figures describing the behaviors of the chosen solu-
tions of (2), e.g., the singular periodic traveling wave so-
lution. All of the exact solutions, constructed by the two
methods, have been achieved and verified by putting them
back into the original problems with the help of the Maple 17
package program. The following results of (2) are brought
from the previous literature to compare with our solutions.

(a) In [42], the authors used the direct symmetry
method to obtain the exact solutions of (2). They
obtained the symmetry reductions, group invariant
solutions, and rich new exact solutions of the
equation. Their solutions consist of elliptic functions
in rational solutions, airy function solutions, poly-
nomial solutions, trigonometric function solutions,
hyperbolic function solutions, and elliptic periodic
solutions. Nevertheless, some of their exact solutions
are written in the integral forms of arbitrary func-
tions which are not convenient to use.

(b) In [44], the authors employed the complex method
to analytically solve (2). Instead of directly solving
(2), they obtained the solutions of the transformed
equation corresponding to the original problem.
They acquired the meromorphic solutions of the
transformed equation including the rational func-
tion solutions, the simply periodic solutions, i.e.,
hyperbolic cotangent function solutions, and the
elliptic function solutions.

It is quite difficult to individually compare our obtained
solutions with the solutions in the abovementioned refer-
ences due to the generality of arbitrary functions in their
solutions. Comparing in terms of mathematical structures
between our solutions and the solutions from the previous
works, the formulas of our solutions are written using the

same functions as appearing in their results such as trigo-
nometric, hyperbolic, rational, and elliptic functions.
However, the number of our exact solutions especially
obtained utilizing the Jacobi elliptic equation method are
more than the number of ones generated in the previous
literature. In addition, some of our solutions are distinct
from those found in [42, 44] and have not been published
elsewhere before. In summary, the two methods employed in
the present paper are powerful, efficient, and reliable
schemes in searching the exact traveling wave solutions for a
wide range of NPDEs.
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