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In this paper, we present a sufficient condition for the output reachability of discrete-time positive switched systems. Besides,
necessary and sufficient conditions for output monomial reachability and zero output controllability are provided. Further, some
examples are shown.

1. Introduction

In recent years, engineers and applied mathematicians have
been interested in the study and analysis of switched sys-
tems, which represent an important class of hybrid dy-
namical systems. A switched system is the association of a
finite set of differential or difference subsystems and a
switching law that indicates at each instant the active system.
Switched systems are of a great interest, since they are very
convenient in the mathematical modelling of several systems
such as network control systems, near-space vehicle control
systems [1], biological systems [2], dc/dc convertors, os-
cillators [3], chaos generators [4], and so on. Based on
previous research, many mathematical problems have been
posed and investigated such as stability and stabilizability
properties [5, 6]. Recent studies examined other issues such
as reachability and controllability [7–13]. It is important to
note that Babiarz [14] provided important results on the
output controllability for standard switched systems.

It should be noted that positive systems are of great
importance in practice as they appear naturally in various
fields of science and technology. %ey have the property that
all descriptive variables can only take positive values, or at
least nonnegative values. %ese systems can be found in

economics [15], biology, stochastic processes (Markov
chains or hidden Markov models) [16], chemical processing
[17], communication science and information [18], etc. %e
theory of positive systems is more complicated than the one
of the standard systems because positive linear systems are
defined on cones and not on linear spaces [19]. As a result,
some known properties of linear systems cannot be applied
for positive systems (for more details, see [20]).

Combing the characteristics of general switched systems
and positive systems, results are obtained on positive
switched systems [21]. %e strong interest that this type of
system has recently raised is due to its strong presence in the
most important areas. As an example, in the field of biology
and pharmacokinetics, they are used to describe the dy-
namics of the viral mutation under drug treatment [22]. It is
also applied in HIV treatment modelling [21], formation
flying [23], and communication systems [18]. Many prob-
lems have been examined concerning positive switched
systems, such as stability and stabilizability [24] as well as
structural properties, like reachability, controllability, and
observability [25, 26].

%is paper which deals with the output reachability and
controllability problem of discrete-time positive switched
systems is organized as follows. After some preliminaries in
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the following section, we provide necessary conditions for
the output reachability in Section 3. In Section 4, necessary
and sufficient conditions for the output monomial reach-
ability are provided. %e zero output controllability problem
is explored in Section 5.

2. Preliminaries

%e symbols Z+ and R+ denote the sets of nonnegative
integers and nonnegative real numbers, respectively. Rn is
the n-dimensional Euclidean space and Rn

+ is the set of all
n-dimensional nonnegative real vectors. In addition, Rn×m

represents the space of n × m matrices with real entries and
Rn×m

+ represents the set of all n × m matrices with non-
negative entries. If E ∈ Rn×m

+ , we say that E is nonnegative
and write E≥ 0. We write AT for the transpose of the matrix
A and In the n × n identity matrix. For any i, j ∈ Z+, with
i≤ j, we set [i, j] � i, i + 1, . . . , j􏼈 􏼉.

Let A � a1, a2, . . . , ar􏼈 􏼉, r ∈ Z+\ 0{ }, be an alphabet
whose elements are called letters. A word over the alphabet
A is a finite sequence of elements ofA; it will be denoted by
ω � ai1

ai2
, . . . , ail

where aij
∈ A, l ∈ Z+\ 0{ }.%e length of the

word ω is the number of letters it is composed of, written as
|ω| � l.

%e set of all words over the alphabet is a free monoidA∗
for concatenation, whose neutral element is the empty word
denoted by ε � ∅. Clearly, for any word ω ∈ A∗, εω � ωε �

ω and |ε| � 0.
Let A1, A2, . . . , Ar􏼈 􏼉 be a set of n × n matrices and

i1, i2, . . . , il ∈ [1, r]. If ω is a word in A∗, we set

ω A1, A2, . . . , Ar( 􏼁 �
In, if ω � ε,

Ai1
Ai2

, . . . , Ail
, if ω � ai1

ai2
, . . . , ail

.

⎧⎨

⎩

(1)

Next, we introduce a class of nonnegative matrices,
namely, the monomial matrices.

Definition 1. A nonnegative vector v is said to be monomial
if it contains precisely one nonzero entry. We will call it an
i-monomial vector if the nonzero component is in the ith
position.

Definition 2. A nonnegative matrix E is a monomial matrix
if it has only one nonzero entry in every row and every
column.

In this paper, we consider a discrete-time switched
system described by the difference state equation

xt+1 � Aδ(t)xt + Bδ(t)ut, t ∈ Z+,

yt � Cδ(t)xt,

⎧⎨

⎩ (2)

where xt ∈ Rn is the state vector, ut ∈ Rm is the control
input, yt ∈ Rp is the output vector, and δ: Z+⟶Ω � [1, r]

is a switching sequence.
Given a control ut, t ∈ [0, k − 1], and a switching se-

quence δ(t), t ∈ [0, k − 1], the solution of system (2), with
the initial condition x0, at time k, can be expressed as [25]

xk � Hδ(k, 0)x0 + 􏽘
k−1

t�0
Hδ(k, t + 1)Bδ(t)ut, (3)

where

Hδ(t, l) �
In, t � l≥ 0,

Aδ(t−1) Aδ(t−2) · · · Aδ(l) t> l.
􏼨

(4)

Definition 3. %e discrete system (2) is called positive if for
any switching sequence δ, any initial condition x0 ∈ Rn

+, and
for any input ut ∈ Rm

+ , t ∈ Z+, the state xt ∈ Rn
+ and the

output yt ∈ R
p
+ for all t ∈ Z+.

Proposition 1. 0e discrete system (2) is positive if and only
if, for each i ∈ Ω, Ai ∈ Rn×n

+ , Bi ∈ Rn×m
+ , and Ci ∈ R

p×n
+ .

Proof. If Ai ∈ Rn×n
+ , Bi ∈ Rn×m

+ , and Ci ∈ R
p×n
+ for all i ∈ Ω,

then equations (3) and (4) imply that for all x0 ∈ Rn
+ and

ut ∈ Rm
+ , t ∈ Z+ we have xt ∈ Rn

+ and yt ∈ R
p
+ for all t ∈ Z+.

Conversely, assume that the positive switched system (1)
is positive. Let δ(t) � i, i ∈ Ω, and ut � 0 for all t ∈ Z+. %en,
from (2), for t � 0, we obtain x1 � Aix0 ∈ Rn

+ and
y0 � Cix0 ∈ R

p
+. %us, Ai ∈ Rn×n

+ and Ci ∈ R
p×n
+ , since x0

may be arbitrary. Now, assuming that x0 � 0, then from (2),
for t � 0, we have x1 � Biu0 ∈ Rn

+. It follows that Bi ∈ Rn×m
+ ,

since u0 may be arbitrary. □

3. Output Reachability of Switched
Positive Systems

In the main result of this section, we provide a sufficient
condition for the output reachability of system (2). Before
giving our result, some definitions concerning the output
reachability of positive switched systems should be cited.

Definition 4. An output yd ∈ R
p
+ is said to be reachable in N

steps if there exists a switching sequence δ(t), t ∈ [0, N], and
inputs ut ∈ Rm

+ for t ∈ [0, N − 1] that steer the output of
system (2) from x0 � 0 to yd, namely, yd � yN. System (2) is
called output reachable if every nonnegative output yd ∈ R

p
+

is reachable in some step N.
It is clearly seen that when x0 � 0, the output can be

written as

yk � Rk(δ)u
k
, (5)

where

Rk(δ) � Cδ(k)Hδ(k, 1)Bδ(0)Cδ(k)Hδ(k, 2)Bδ(1) · · · Cδ(k)Bδ(k−1)􏽨 􏽩,

u
k

�

u0

u1

⋮

uk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)
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Rk(δ) is called the output reachability matrix associated
to the switching sequence δ.

Definition 5. %e set of all nonnegative linear combinations
of the columns of a matrix A ∈ Rp×n is called polyhedral
convex cone, namely,

Cone(A) � y ∈ Rp
: y � Ax, x ∈ Rn

+􏼈 􏼉. (7)

Polyhedral convex cones play an important role in the
output reachability of positive systems since the set of all
reachable outputs in k steps is a polyhedral cone belonging
to the nonnegative orthant.

Cone(Rk(δ)) is a polyhedral cone generated by the
columns of the output reachability matrix Rk(δ) associated
to the switching sequence δ of length k + 1. %e length of the
switching sequence δ is the cardinality of the discrete-time
interval [0, k] and it is denoted, for short, by means of the
notation |δ| � k + 1.

Clearly, the positive switched system (2) is output
reachable if there exist switching sequences δ1, δ2, . . . , δh of
lengths k1 + 1, k2 + 1, . . . , kh + 1, respectively, h≥ 1, such that

∪
h

t�1
Cone Rkt

δt( 􏼁􏼐 􏼑 � R
p
+. (8)

Example 1. Consider positive switched system (2) with Ω �

[1, 2] and the following matrices:

A1 �
1 1

1 1
􏼠 􏼡,

A2 �
1 1

0 0
􏼠 􏼡,

B1 �
0 1

1 0
􏼠 􏼡,

B2 �
1 0

0 1
􏼠 􏼡,

C1 �
1 1

0 1
􏼠 􏼡,

C2 �
1 0

1 1
􏼠 􏼡.

(9)

Define
δ1(0) � 2,

δ1(1) � 2,
􏼨

δ2(0) � 1,

δ2(1) � 1.
􏼨

(10)

We get

Cone R1 δ1( 􏼁( 􏼁⋃Cone R1 δ2( 􏼁( 􏼁

� Cone
1 0

1 1
􏼠 􏼡⋃Cone

1 1

1 0
􏼠 􏼡 � R

2
+.

(11)

%erefore, the system is output reachable.

4. Output Monomial Reachability of Switched
Positive Systems

We study in this section the concept of output monomial
reachability and provide necessary and sufficient conditions
for this property. First, we recall the following definition and
give some preliminary results.

Definition 6. %e positive switched system (2) with x0 � 0 is
said to be output monomially reachable if, for all i ∈ [1, p],
there exist k≥ 1, a switching sequence δ: [0, k]⟶Ω, and
nonnegative control inputs u0, u1, . . . , uk−1 such that

yk � ei, (12)

with ei being the ith canonical vector of Rp.

Lemma 1. If B ∈ Rm×n
+ and V ∈ Rn

+ are such that BV is an i-
monomial vector, then B includes an i-monomial column.

Proof. Let B � b1 b2 . . . bn( 􏼁 ∈ Rm×n
+ , with bl � (b1l,

b2l, . . . , bml)
T being the vector columns of B and

V � (v1, v2, . . . , vn)T ∈ Rn
+. If BV is i-monomial, then

BV � v1b1 + v2b2 + · · · + vnbn � (0, 0, . . . , α, 0, . . . , 0)
T
,

with α> 0,

(13)

which implies that for all j ∈ [1, n], we have vjbj �

(0, 0, . . . , vjbij, 0, . . . , 0)T and there exists some j ∈ [1, n]

such that vjbj ≠ 0. %erefore, there exists j ∈ [1, n] such that
bj � (0, 0, . . . , bij, 0, . . . , 0)T ≠ 0. Hence, B includes an i-
monomial column. □

Corollary 1. Let A ∈ Rp×n
+ and B ∈ Rn×m

+ . If AB includes an
i-monomial column, then A has an i-monomial column.

Proof. Let b1, b2, . . . , bm be the vector columns of B; then,

AB � Ab1 Ab2 . . . Abm( 􏼁 (14)

Since AB contains an i-monomial column, then there
exists j ∈ [1, m] such that Abj is an i-monomial vector.
Applying Lemma 1, it yields that the matrix A has an i-
monomial vector.

%e proposition below contains a necessary and suffi-
cient condition for output monomial reachability using the
output reachable matrix RN associated with all possible
switching sequences. □

Proposition 2. 0e positive switched system (2) is output
monomially reachable if and only if there exists some positive
integer N such that the output reachability matrix in N steps
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RN � C1ω A1, . . . , Ar( 􏼁B1 · · · C1ω A1, . . . , Ar( 􏼁Br C2ω A1, . . . , Ar( 􏼁B1 · · · Crω A1, . . . , Ar( 􏼁Br􏼂 􏼃ω∈A∗,
0≤ |ω|≤N − 1

(15)

includes an p × p monomial submatrix.

Proof. Assume that for all i ∈ [1, p], there exist k≥ 1, a
switching sequence δ: [0, k]⟶Ω, and nonnegative con-
trol inputs u0, u1, . . . , uk−1 such that yk � ei. %is implies
that the following equality 􏽐

k−1
t�0 Cδ(k)Hδ(k, t + 1)Bδ(t)

ut � ei holds.
%en, there exists l ∈ [1, k] such that

Cδ(k)Aδ(k−1) · · · Aδ(l)Bδ(l−1)ul−1( 􏼁 is an i-monomial vector.
By Lemma 1, Cδ(k)Aδ(k−1) · · · Aδ(l)Bδ(l−1)( 􏼁 includes an i-
monomial column. Let

ωi �
ε, if k � l,

aδ(k−1) aδ(k−2) · · · aδ(l), if l≤ k − 1,
􏼨 (16)

and pose δ(k) � li and δ(l − 1) � ji. %en, Cli
ωi

(A1, A2, . . . , Ar)Bji
includes an i-monomial column. For

N � max1≤i≤p|ωi| + 1, we have RN includes an p × p mo-
nomial submatrix.

Conversely, let i ∈ [1, p]; then, RN includes an i-mo-
nomial column, which implies that there exist ωi ∈ A∗,
0≤ |ωi|≤N − 1, and li, ji ∈ Ω such that Cli

ωi(A1,

A2, . . . , Ar)Bji
contains an i-monomial column.

Let k � |ωi| + 1 and pose

ωi �
ε, if ωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0,

aik−1
aik−2

, . . . , ai1
, if ωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 1.

⎧⎨

⎩ (17)

Let δ: [0, k]⟶Ω satisfying δ(0) � ji, δ(k) � li and
δ(h) � ih, where 1≤ h≤ k − 1. %en,

Cli
ωi A1, A2, . . . , Ar( 􏼁Bji

� Cδ(k)Aδ(k−1) · · · Aδ(1)Bδ(0)􏼐 􏼑.

(18)

Set M � (Cδ(k)Aδ(k−1) · · · Aδ(1)Bδ(0)). %en, there exists
j ∈ [1, m] such that Mij > 0 and Mlj � 0, for l ∈ [1, p]\ i{ }.

Let u0 � (0, . . . , 0, (1/Mij), 0, . . . , 0)T ∈ Rm
+ and ul �

0 ∈ Rm
+ , for all j ∈ [1, k − 1].

We get from (5) that

yk � Cδ(k)Aδ(k−1) · · · Aδ(1)Bδ(0)u0􏼐 􏼑 � Mu0 � ei. (19)

%erefore, the system is output monomially
reachable. □

Remark 1. In the case of single output systems (p � 1), the
Proposition 2 gives in fact a characterization of the output
reachability of system (2).

Let us now consider some examples.

Example 2. Consider positive switched system (2) consisting
of two subsystems with the following matrices:

A1, B1, C1( 􏼁 �
1 0

1 0
⎡⎢⎣ ⎤⎥⎦,

1

0
⎡⎢⎣ ⎤⎥⎦, 0 1􏼂 􏼃⎛⎝ ⎞⎠,

A2, B2, C2( 􏼁 �
0 1

0 1
⎡⎢⎣ ⎤⎥⎦,

0

1
⎡⎢⎣ ⎤⎥⎦, 1 0􏼂 􏼃⎛⎝ ⎞⎠.

(20)

For the two subsystems, we have x0 � 0, y1 � CiBiu0 � 0,
and i ∈ [1,2]. So, neither one is output reachable in one step.
But R1 � C1B1 C1B2 C2B1 C2B2􏼂 􏼃 � 0 1 1 0􏼂 􏼃, and hence the
positive system (2) is output reachable in one step. Indeed,
let δ(0) � 1 and δ(1) � 2; then, for all yd ∈R+, for u0 � yd we
get y1 � C2B1u0 � yd.

Example 3. Consider the positive system switching among
the following subsystems:

A1, B1, C1( 􏼁 �
1 0

1 0
􏼢 􏼣,

1

0
􏼢 􏼣,

0 0

1 0
􏼢 􏼣􏼠 􏼡,

A2, B2, C2( 􏼁 �
0 1

0 1
􏼢 􏼣,

0

1
􏼢 􏼣,

0 1

0 0
􏼢 􏼣􏼠 􏼡.

(21)

We have

C1B1 �
0

1
􏼢 􏼣,

C2B2 �
1

0
􏼢 􏼣.

(22)

So, the two subsystems are not output monomially
reachable in one step. But

R1 � C1B1 C1B2 C2B1 C2B2􏼂 􏼃 �
0 0 0 1

1 0 0 0
􏼢 􏼣. (23)

Hence, the positive system (2) is output monomially

reachable in one step. Indeed, for any yd �
α
0􏼢 􏼣, let δ(0) �

δ(1) � 2 and u0 � α. %en, y1 � C2B2u0 �
α
0􏼢 􏼣 � yd.

Also, for any yd �
0
β􏼢 􏼣, let δ(0) � δ(1) � 1 and u0 � β.

%en, y1 � C1B1u0 �
0
β􏼢 􏼣 � yd.

On the other hand, it is clearly seen that this system is not

reachable in one step because the vector 1
1􏼢 􏼣 can never be

reached in one step.

Corollary 2. If the positive switched system (2) is output
monomially reachable, then the matrix C1 C2 · · · Cr􏼂 􏼃 has
an p × p monomial submatrix.
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Proof. Suppose the system is output monomially reachable.
%us, for all i ∈ [1, p], there existωi ∈ A∗, ji, li ∈ Ω such that
Cli

ωi(A1, A2, . . . , Ar)Bji
has an i-monomial column. Ap-

plying Corollary 1, it yields that the matrix Cli
has an i-

monomial column.
Hence, the matrix C1 C2 · · · Cr􏼂 􏼃 has an p × p mo-

nomial submatrix. □

5. Zero Output Controllability

To present our main results for zero output controllability,
we introduce the following definition.

Definition 7. %e positive switched system (2) is said to be
zero output controllable if, for all x0 ∈ Rn

+, there exist k≥ 1, a
switching sequence δ: [0, k]⟶Ω, and nonnegative con-
trol input ut ∈ Rm

+ , t ∈ [0, k − 1] such that

yk � 0. (24)

Proposition 3. 0e positive switched system (2) is zero
output controllable if and only if there exist ω ∈ A∗ and
j ∈ [1, r] such that

Cjω A1, A2, . . . , Ar( 􏼁 � 0. (25)

Proof. If the system is zero output controllable, then in
particular, for x0 � (1, 1, . . . , 1)T, there exist k≥ 1, a
switching sequence δ: [0, k]⟶Ω, and ut ∈ Rm

+ , t ∈ [0, k −

1] such that yk � 0.
It follows that

Cδ(k)Aδ(k−1) · · · Aδ(0)x0􏼐 􏼑 � 0. (26)

%en,

Cδ(k)Aδ(k−1) · · · Aδ(0)􏼐 􏼑 � 0. (27)

Let ω � (aδ(k−1) · · · aδ(0)) and j � δ(k); then,
Cjω(A1, A2, . . . , Ar) � 0.

Conversely, let k � |ω| with ω � (aik−1
· · · ai0

), δ(l) � il,
l ∈ [0, k − 1], δ(k) � j, and u0 � · · · � uk−1 � 0. %en, for
each x0 ∈ Rn

+, we have

yk � Cδ(k)Aδ(k−1) · · · Aδ(0)x0􏼐 􏼑 � Cjω A1, A2, . . . , Ar( 􏼁x0 � 0.

(28)

If |ω| � 0, then Cj � 0, and for δ(0) � δ(1) � j and
u0 � 0, we obtain y1 � 0, for all x0 ∈ Rn

+, which completes
the proof. □

Corollary 3. 0e positive switched system (2) is zero output
controllable if there exists ω ∈ A∗ such that ω(A1,

A2, . . . , Ar) is nilpotent.

Proof. Assume that there exists ω � (ai1
· · · aik

) such that
(ω(A1,A2,...,Ar))

N �[Ai1
···Aik

Ai1
···Aik

··· ···Ai1
··· Aik

]�0.

Let 􏽥ω � [ai1
· · · aik

ai1
· · · aik

· · · · · · ai1
· · · aik

]. %en,
􏽥ω(A1, A2, . . . , Ar) � 0. According to Proposition 3, system
(2) is zero output controllable. □

Example 4. Consider the positive switched system com-
posed of two subsystems with the following matrices:

A1, B1, C1( 􏼁 �

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
1 0 0 0

1 0 0 0
􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A2, B2, C2( 􏼁 �

1 0 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
0 0 0 1

0 0 0 1
􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(29)

By choosing j � 2 and ω � a1a2 ∈ A∗, we get
C2ω(A1, A2) � C2A1A2 � 0. %erefore, positive switched
system (2) is zero output controllable. Also, the positive
switched system (2) is zero output controllable, since there
exists a word ω � a2a1 such that (ω(A1, A2))

4 � 0, that is,
ω(A1, A2) is nilpotent.

6. Conclusions

In this paper, we have addressed a number of issues related
to the output reachability, output monomial reachability,
and the zero output controllability properties of discrete-
time positive switched systems. Bymeans of certain concepts
borrowed from the algebra of noncommutative polynomials,
we have been able to establish the necessary and sufficient
conditions guaranteeing the output monomial reachability
(Proposition 2) and the zero output controllability of dis-
crete-time positive switched systems (Proposition 3). %ese
conditions were then applied to numerical examples to il-
lustrate their application and to support the theoretical
results. %e results discussed here will be of great value for
our future work that will treat another class of positive
systems.
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botics (MMAR), Międzyzdroje, Poland, August 2019.

[9] S. S. Ge, Z. Zhendong Sun, and T. H. Lee, “Reachability and
controllability of switched linear discrete-time systems,” IEEE
Transactions on Automatic Control, vol. 46, no. 9, pp. 1437–
1441, 2001.

[10] J. Klamka and M. Niezabitowski, “Controllability of switched
linear dynamical systems,” in Proceedings of the 18th Inter-
national Conference on Methods and Models in Automation
and Robotics, MMAR, 2013, pp. 464–467, Miedzyzdroje,
Poland, August 2013.

[11] G. Ma and P. R. Pagilla, “Preview control of switched sys-
tems,” in Proceedings of the 2019 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM),
Hong Kong, China, July 2019.

[12] L. Tian, Y. Guan, and L. Wang, “Controllability and ob-
servability of switched multi-agent systems,” International
Journal of Control, vol. 92, no. 8, pp. 1742–1752, 2019.
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