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Analysis of magnetohydrodynamics flow of incompressible fluids over an oscillating bottom surface with heat andmass transfer is
discussed. &e flow is free convection in nature. Momentum, energy, and concentration equations are obtained for computation
of their respective profiles. &e unsteady flow two-dimensional governing equations are solved numerically by the explicit finite
difference method of the Forward Time Backward Space scheme. &e numerical results show that the applied parameters have
significant effects on the fluid flow and heat transfer and have been discussed with the help of graphical illustrations.

1. Introduction

&e problems of hydromagnetic free convection flow of
incompressible fluids over corrugated vibrating surface have
drawn considerable attention from several medical re-
searchers and engineers, resulting in the enhanced heat
transfer performance by increasing the area over which heat
transfer takes place. &is technology is applied in the design
of processing equipment that complies with cheap, envi-
ronmental friendly, and energy-saving with high efficiency
of mass and heat transfers. Temperature control is important
in corrugated structures manufacturing because it helps to
ensure a strong bond between the layers of the corrugated
surface and indicates moisture content [1].

Fluid flow and heat transfer on corrugated channel
laminar in nature were first studied by [2] for transitional
and low Reynolds number turbulent flow. Magnetohydro-
dynamic free convection flow past an infinite vertical plate
oscillating in its plane was studied in the case of an iso-
thermal plate [3]. Rizwan et al. [4] investigatedMHD natural
convection flow enclosure in a corrugated cavity filled with a

porous medium with a complete structure of corrugated
surface for heat transfer effects in the presence of the uni-
form magnetic field. &e unsteady flow of second-order
thermoviscous incompressible forced oscillations of a fluid
bounded by rigid bottom was studied by [5]. Also,
Schlichting [6] observed experimentally and numerically
that corrugated channels do not have significant effects on
heat transfer enhancement if operated in a steady regime.
Garg and Maji [7] numerically studied the heat transfer of
sinusoidal wavy channels at zero degrees phase shift. A
numerical analysis of laminar forced convection in corru-
gated-plate channels with a sinusoidal, ellipse, and rounded-
vee wall shapes were studied [8]. Furthermore, Gbadeyan
et al. [9] investigated Soret and Dufour effects on heat and
mass transfer in chemically reacting MHD flow through a
wavy channel using amplitude as the perturbation
parameter.

&is work attempts to study the effects of velocities,
concentration, and temperature fields on the unsteady flow
of incompressible fluid over the heated oscillating bottom
for the various material parameters.
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2. Mathematical Formulation

Consider a two-dimensional unsteady flow of a viscous
incompressible fluid that is electrically conducting flows
upwards on an oscillating bottom surface.&e x-axis is taken
along the infinite surface and the y-axis normal to it. &e
corrugated surface and the fluid are initially put at the same
temperature. &e fluid is initially at rest, responds to the
fluctuations of the bottom and the periods of oscillation of
the fluid response, and the temperature distribution are
assumed to be oscillatory with the same frequency. At time
t> 0, the plate starts vibrating with a frequency of oscillation
ω and reference velocity UR forming boundary oscillating
velocity u � UR sinωt approximated [10]. A magnetic field
B0 of uniform strength is applied perpendicular to the plate
along the positive z-axis and the magnetic Reynolds number
is assumed to be small since the electric intensity E is zero at
the plate; therefore, it is assumed to be zero everywhere
within the flow [11–13]. &e bottom surface is subjected to
perturbations through forced transverse oscillations.

Linear sinusoidal displacement of the fluid along the
vibrating surface, along the x-axis, is generated. Under the
Navier–Stokes equation approximation, the viscous stress
tensor is zero. &e restoring force that produces the oscil-
lation is the buoyancy force, and the waves are associated
with these vibrations. &e boundary contains the effect of
confining the wave energy to a region of finite extent.
Corrugation causes periodic variation in the force

component and the oscillations due to vortex shedding [14].
Fluid dumping is generated as a result of relative fluid
movement to the vibrating structure [15]. It means that the
cross-flow vibration is caused by the lift force while the inline
flow vibration is caused by the drag force, which in all cases
are vortex-induced vibrations represented by periodic cor-
rugation [2]. From Lorentz force, a moving particle with
velocity, carrying a charge, contains a force acting on this
particle. Also, the magnetic field vector B is perpendicular to
the vibrating surface.

A current is induced in a conducting loop when
magnetic flux linking the loop changes [16, 17]. &e
electric field intensity in a region of time with varying
magnetic flux density is present. When the magnetic
Reynolds number is small [3, 18] the induced magnetic
field is negligible in comparison with the applied magnetic
field, therefore becoming constant. Since the corrugated
bottom surface is nonconducting, therefore the heat flux is
zero at the surface and hence zero everywhere in the flow.
&ere is a variation in the temperature and the density, but
density is neglected everywhere [19, 20] apart from the
buoyancy terms which varies linearly with the local
temperature and mass fraction.

Under the above-stated conditions and assuming vari-
ation of density in the body force term under Boussinesq’s
approximation [7], the problem is governed by the following
momentum equations describing velocity profiles:
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&e heat due to viscous dissipation is taken into an ac-
count and thermal radiation is assumed to be present in the
form of a unidirectional flux in the z-direction denoted by qr.

By using the Rosseland approximation [19], the radiative
heat flux qr is given by
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Since temperature differences within the flow are suf-
ficiently small, then (5) can be linearized by expanding T4 in
Taylor series about T∞, which after neglecting higher-order
terms is
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Substituting the partial derivative with respect to T of (5)
in (4), the rate of change of radiative heat flux becomes
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With initial and boundary conditions,

t � 0: u � 0, v � 0, T � 0, C � 0 at 0≤ x≤ L,

t> 0: U � U∞, C � Cw, T � Tw, C � C∞ atx � 0,

u � UR sinωt,

T � T∞ + Tw − T∞( ,

v � 0,

C � C∞ + Cw − C∞(  aty � 0.

(8)

Introducing nondimensional numbers,
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Equations (1)–(3) and (6) are nondimensionalised as
follows.

Momentum equations in x− axis and y− axis are given as
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&e energy equation is given as
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&e concentration equation is given as

zC∗

zt∗
+ u
∗zC∗

zx∗
+ v
∗zC∗

zy∗
�

1
ScRe

z2C∗

zx∗2
+

z2C∗

zy∗2
 

+
Sr
Re

z2T∗

zx∗2
+

z2T∗

zy∗2
 ,

(13)

where

M �
σB2

0u

ρU2
R

,

Re �
URL

υ
,

Grθ �
gβΔTL

U2
R

,

Grm �
gβ C − C∞( L

U2
R

,

Re �
URL

υ
,

Pr �
Cpμ
κ

,

Sr �
ρDMk(ΔT)

μTm Cs − C∞( 
,

Df �
ρDMk C − C∞( 

μcsCp(ΔT)
,

Sc �
μ

ρDM

,

R �
σB2

0μ
ρ2CpΔT

,

Ec �
U2

R

CpΔT
,

N �
kek

4σsT
3
∞

.

(14)

International Journal of Mathematics and Mathematical Sciences 3



With the following initial and boundary conditions,
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&e Skin friction, Nusselt number, and Sherwood
number at the corrugated surfaces are estimated as follows:
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3. Numerical Technique

&e partial differential equations (10)–(14) show the solu-
tions to highly nonlinear coupled governing equations of
velocity, concentration, and temperature with the various
physical parameters, and the associated boundary conditions
in (15) are solved numerically using the explicit finite dif-
ference method of the Forward Time Backward Space
(FTBS) scheme since this method is stable and is validated
using computer software. &is is carried out by discretizing
the computational domain with nonuniform grids of si-
nusoidal elements. &e flow is in two dimensions and
therefore flow domain is confined by the x, y, and t axes.&e
approximate values of u∗, v∗, C∗, and T∗ are found at every
nodal point for particular i at (k + 1)th time level. A nec-
essary condition for time stability, the Courant–Frie-
drichs–Lewy (CFL) condition, which depends on time and
space discretization, is used. &e FTBS finite difference
method is applied to replace continuous derivatives with
difference formulas that involve only the discrete values
associated with positions on the mesh. &e basic unknowns
for the above differential equations are the velocity com-
ponents (Um+1

k,j , Vm+1
k,j ), the temperature (Tm+1

k,j ), and the
concentration (Cm+1

k,j ).
Momentum equations expressed in finite differences is

given as
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&e concentration equation expressed in finite differ-
ences is given as
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&e energy equation expressed in finite differences is
given as
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To get the analytical results of velocities in (17) and (18),
concentration in (19), and temperature in (20) for various
values of physical parameters, the code of the algorithm has
been executed in MATLAB running on a PC.&is is done by
applying numerical calculations, and the mesh size is fixed at
Δx � 0.2, Δy � 0.3, and Δt � 0.0001, where a sinusoidal
shape is formed by the x -axis and y-axis containing 15 × 20
meshes.

4. Discussion of the Results

&e effects of various parameters on the flow field of the
physical problem for velocities, concentration, and tem-
perature are discussed based on the following
considerations:

(i) &e value of Prandtl number Pr is taken to be to 0.71
corresponding to air

(ii) &e value of Schmidt number Sc is chosen 0.22
which represents hydrogen at approx. Tm � 25°C
and 1 atm

(iii) &e values of Dufour number Df and Soret number
Sr are chosen in such a way that their product is
constant provided that the mean temperature Tm is
kept constant as well

(iv) &e radiation parameter N is kept constant at N � 3
as an indication that there is strong thermal radi-
ation compared with thermal conduction

4.1. Velocity Profiles. &e analytical solutions to the coupled
equations (10)–(14) together with the boundary condition
(15) yield the velocity distribution. Figures 1–10 show the
variations of velocity profiles with the different values of
different parameters. &e graphs shown the figures are
generated using MATLAB Code, for instance, by fixing the
values of Grθ � 10, Grm � 10,M � 0.2, Ec � 0.5, Df � 0.03,
Sr � 0.08, Sc � 0.22, R � 0.2, and ωt � π/6 and varying the
value Pr.

As shown in Figure 1, the magnitude of the Prandtl
number, Pr, is varied in Table 1, that determines whether the
thermal boundary layer is larger for Pr≤ 1, where buoyancy

forces are in balance with the thin viscous boundary layer, or
smaller for Pr≥ 1, where inertial and buoyancy forces are in
balance with themomentum boundary layer; this is shown at
the oscillating bottom surface with the wave-like motion. A
smaller value of Pr is an indication that heat diffuses faster
than velocity; therefore, it is clear that fluids with small
Prandtl numbers are free-flowing liquids with high thermal
conductivity and are therefore a good choice for heat-
conducting liquids, as shown in Figure 1.

Figure 2 shows the effect of Reynolds number on sec-
ondary velocity profiles. Since Re is associated with the
smoothness of fluid flow, at lower velocities the flow is
laminar and this is pictured as a series of parallel layers
moving at different velocities. In the presence of oscillations,
the fluid flows vigorously and reaches a velocity at which the
velocity changes from laminar to turbulence. When a small
Re is used, it applies that the viscous force is predominant
thus imposing drug in the fluid and reducing the fluid flow.

&e effect of local mass Grashof number Grm on velocity
is shown in Figure 3. In this case, mass transfer natural
convection is as a result of concentration gradients rather
than temperature gradients. It is clear that when the value of
Grm increases, the velocity rises as it reaches the greatest
value near the surface due to the enhancement in the
buoyancy force (Tables 1–3).

&e inline vibration of a structure is caused by the os-
cillating drag force with different ranges in the reduced
velocities. A similar effect is experienced when thermal
Grashof number Grθ is used, as shown in Figure 4. By
varying the values of Grθ, the effects of free convection
currents on the flow are indicated and the fluid’s velocity
increases since fluid flow is aided by the free convection
currents.

Figure 4 shows that when the values of Grθ causes a rise
in velocity profiles on a cooled surface due to the varying
nature of boundary conditions, an indication that the
thermal radiation parameter produces significant increases
in the thermal conditions of the fluid temperature which
consequently induces more fluid in the boundary layer
through buoyancy effect to the viscous force, therefore
enhancing fluid velocity. Variation in Grθ and Grm, as shown
in Figure 5, has an increasing effect on velocity near the
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center as a result of thermal andmass buoyancy forces due to
cooling of the surface, by making the bond between the
fluids to become weaker, strengthening the internal friction
to reduce, and the gravity becoming stronger enough. Due to
oscillation, thermal and flow patterns adjacent to the
boundary are mainly affected.

A reverse effect in the case of heating of the surface,
where Grm < 0 and Grθ < 0, is shown in Figure 6. Reducing
the effect on velocity near the center as a result of thermal
and mass buoyancy forces due to the heating of the surface is
carried out by making the bond between the fluids to be-
come stronger thus strengthening the internal friction to
increase and the gravity becoming weaker enough.

It is observed from Figure 7 that while all other par-
ticipating parameters are held constant, the values of Sc from
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hydrogen to atmosphere pressure reduce the velocity due to
oscillation. Since Sc is the ratio velocity boundary layer to the
concentration boundary layer which is comparable to
Prandtl number in heat transfer, therefore Sc is applied to
characterize flows when there are simultaneous momentum
and mass transfer.

Figure 8 depicts the effects of velocity on the magnetic
parameter M. Velocity rises as values of M improves
because the frictional or drag force (Lorentz force) in the
magnetic field is responsible, which affects the velocity field
that opposes the fluid motion, causing the velocity to
decrease.

An increase in magnetism significantly reduces the
thickness of the boundary layer, thereby reducing the ve-
locity components. A reversal in the direction of the sec-
ondary velocity profiles is achieved by using large values of
M. Here, the effective conductivity of the fluid rises with a
rise in M as a result of damping force due to oscillation.

&e Soret effect causes the main-flow shear stress to rise
and the cross-flow shear stress to fall, as shown in Figure 9.
By decreasing the values of Sr effect leads to a rise in themain
flow and cross-flow velocities, as an indication that the
velocity boundary layer thickness decreases with an increase
in Sr as a result of mass buoyancy force.&is brings about the
thermal diffusion effect.

Figure 10 shows that when the values of the Dufour
number increases, velocity rises as an indication that the
velocity boundary layer thickness increases due to mass
diffusion effect.

4.2. Concentration Profiles. Prandtl number shows how fast
thermal diffusion takes place in comparison to momentum
diffusion. Here, the values of Prandtl number Pr used are
Pr � 0.16 representing a mixture of noble gases, Pr � 0.63
for oxygen, Pr � 0.71 for air, Pr � 1.38 for gaseous ammonia,
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and Pr � 7.56 for water at 20∘C and one-atmosphere
pressure. It is clear from Figure 11 that an increase in Pr
causes a fall in concentration due to the Brownian motion of
the fluid as a result of an increase in migration from the high
concentration regions to the regions with low concentration.

&e Reynolds number used is assumed to be small so
that the induced magnetic field is neglected within the
fluid particles as the fluid moves due to vibration, as
shown in Figure 12. It is clear that the Reynolds number is
varied in Table 2, to help predict flow patterns in different
fluid flow situations.

As the values of Schmidt number rises, i.e., 0.22 (hy-
drogen), 0.62 (water vapour), and 0.78 (ammonia), from
Figure 13, the concentration profile rises because the con-
centration profile and the boundary layer thickness de-
creases, corresponding to a thinner concentration boundary
layer relative to the momentum boundary layer.

&e effect of oscillation on velocity is overcome by
freestream velocity, leading to the observed crossover of
concentration profiles. When the values of Dufour number
increases, the fluid concentration field reduces the
boundary layer thickness due to oscillation, as shown in
Figure 14.

4.3. Temperature Profiles. An increase in Prandtl number
results in a fall in temperature, as shown in Figure 15, be-
cause the thermal boundary layer thickness decreases with
increasing Pr. &is is because the fluid viscosity becomes
larger and reduces the thickness of the thermal boundary
layer. In cases where Pr is high in liquids, the instability is
hydrothermal and the related mechanism involves com-
munication between free-surface temperature perturbations
and bulk-liquid temperature. By eliminating the free-surface
temperature, oscillations caused by hydrothermal wave
coupling could be broken and they would cease. A smaller
value of Pr is an indication that heat diffuses quickly
compared to the velocity.

Reynolds number incorporates the physical properties of
liquid density and dynamic viscosity which are directly
related to temperature. &is means that dynamic viscosity
decreases in response to falling density. From Figure 16, as
the temperature rises, the change in viscosity decreases due
to the presence of the inertia force. Reynolds number is
directly proportional to the temperature.

&e Eckert number influences the self-heating of a
fluid due to dissipation as a result of internal friction of
the fluid. If dissipation is neglected at Ec≤ 1 as shown in
Table 3. Using Figure 17, it is shown that for higher values
of the Eckert number Ec, the rate of heat transfer de-
creases. All the terms in the energy equation describing
the effects viscous dissipation and body forces on the
energy balance can be neglected, and the equation reduces
to a balance between conduction and convection. &e
effect of viscous dissipation on the flow field is to increase
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the energy, resulting in greater fluid temperature and as a
consequence greater buoyancy force. &e increase in the
buoyancy force due to an increase in the dissipation
parameter enhances the temperature.

Figure 18 shows that the Dufour number is directly
proportional to the fluid temperature when other parame-
ters are kept constant as a result of thermal boundary layer
thickness.

&e values of skin friction, Nusselt number, and Sher-
wood number are computed from random values generated
from MATLAB, as shown in Table 4.

Table 1: Values of the change in Prandtl number.

Pr Re Grθ Grm M Ec Df R Sc ω Sr

0.16 2 8 10 0.2 0.5 0.03 0.2 0.22 π/6 0.08
0.63 2 8 10 0.2 0.5 0.03 0.2 0.22 π/6 0.08
0.71 2 8 10 0.2 0.5 0.03 0.2 0.22 π/6 0.08
1.38 2 8 10 0.2 0.5 0.03 0.2 0.22 π/6 0.08
7.56 2 8 10 0.2 0.5 0.03 0.2 0.22 π/6 0.08

Table 2: Values of the change in Reynolds number.

Pr Re Grθ Grm M Ec Df R Sc ω Sr

0.71 2 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08
0.71 3 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08
0.71 4 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08
0.71 5 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08
0.71 6 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08

Table 3: Values of the change in Eckert number.

Pr Re Grθ Grm M Ec Df R Sc ω Sr

0.71 2 8 10 0.2 0.5 0.03 0.2 0.22 π/3 0.08
0.71 2 8 10 0.2 1.0 0.03 0.2 0.22 π/3 0.08
0.71 2 8 10 0.2 2.0 0.03 0.2 0.22 π/3 0.08
0.71 2 8 10 0.2 3.0 0.03 0.2 0.22 π/3 0.08
0.71 2 8 10 0.2 4.0 0.03 0.2 0.22 π/3 0.08
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Figure 11: Effects of Prandtl number on concentration profile.
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Figure 12: Effects of Reynold number on concentration profile.
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Figure 13: Effects of Schmidt number on concentration profile.
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From Table 4, as time increases, the Nusselt number,
Sherwood number, and Skin friction decrease, as it physi-
cally implies that shear stresses decrease with an increase in
time. A higher value of radiation parameter leads to an
increase in magnitudes of skin frictions and Nusselt number
as a result of an increase in the rate of species concentration.
&e effect of radiation is to decrease the rate of energy
transport to the fluid, thereby decreasing the temperature of
the fluid, but it decreases in Sherwood number.

5. Conclusion

A numerical study has been conducted on free convective
heat and mass transfer of an incompressible electrically
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Figure 17: Effects of Eckert number on temperature profile.
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Figure 15: Effects of Prandtl number on temperature profile.
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Figure 16: Effects of Reynolds number on temperature profile.
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Figure 18: Effects of Dufour number on temperature profile.

Table 4: Values of Nusselt number, Sherwood number, and skin
friction.

Parameters Cf Nux Sh

Grm � 5 0.4017 — —
Grm � 10 0.3715 — —
Grθ � 5 0.4132 — —
Grθ � 10 0.3714 — —
Pr � 0.71 0.5501 − 1.3951 − 1.1023
Pr � 7.0 0.4011 − 5.2947 − 1.0943
N � 3 0.4291 − 4.1803 − 1.0958
ωt � 0 0.5458 − 2.9984 − 1.1483
ωt � 30 0.0124 − 2.9983 − 1.1672
M � 0.1 0.0133 − 2.9441 − 1.0841
M � 2.0 0.3097 − 2.9380 − 1.1087
Sc � 0.22 — − 2.9814 − 1.0559
Sc � 0.68 — − 2.9813 − 1.1314
Sr � 0.08 — − 0.8610 − 1.1211
Sr � 2.0 — − 0.8591 − 1.5870
Ec � 0.5 — − 4.7589 − 1.1194
Ec � 4.0 — − 4.0061 − 1.1571
Df � 0.1 — − 2.8015 − 1.1733
Df � 0.3 — − 2.6817 − 1.1764
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conducting fluid on a vibrating bottom surface. Comparing
from various pieces of literature, it is clear that

(i) Concentration is directly proportional to Reynolds
number and inversely proportional to the Prandtl,
Schmidt, Dufour, and Soret numbers, respectively.

(ii) Temperature profiles are directly proportional to the
Reynolds, Eckert, and Dufour numbers, respec-
tively, and inversely proportional to the Prandtl
number.

(iii) &e velocity profiles are directly proportional to Re,
Grθ, and Grm and inversely proportional to M.

(iv) Fluid damping is generated as the bottom surface
vibrates normal to the flow, and this is proportional
to the surface velocity. &erefore, an increase in
damping causes an increase in velocity. &erefore,
corrugated bottom surface is effective on heat
transfer enhancement by breaking and destabilizing
the thermal boundary layer.

Nomenclature

B0: Magnetic field strength (Wbm− 1)
B: Magnetic flux density (Wbm− 2)
Sc: Schmidt number
Sr: Soret number
Df: Dufour number
DM: Molecular diffusion coefficient (m2s− 1)
M: Magnetic parameter
T: Dimensional temperature of the fluid (K)
N: Radiative parameter
g: Acceleration due to gravity (ms− 2)
Pr: Prandtl number
Ec: &e Eckert number
L: Characteristic length (m)
Grθ: &ermal Grashof number
Grm: Local mass Grashof number
kT: &ermal diffusion ratio (m2s− 1)
T∞: Ambient temperature (K)
Tm: Mean fluid temperature (K)
Ts: Wall surface temperature (K)
C∞: Concentration in the fluid away from the surface

(kgm− 3)
C∞: Concentration at the surface (kgm− 3)
Re: Hydromagnetic Reynolds number
E: Electric field strength (Vm− 1)
M: Magnetic parameter
Sh: Sherwood number
Nu: Nusselt number
Ec: Eckert number
u, v: Dimensionless velocity components
x, y: Cartesian coordinates
u∗, v∗: Nondimensional velocity components in the x∗ and

y∗ directions
R: Joules heating parameter
UR: Reference velocity (ms− 2)
q: Velocity vector (ms− 2)
Pr: Prandtl number

Cs: Concentration susceptibility parameter (kmolm− 3)
Cp: Specific heat at constant pressure (Jkg− 1k− 1)
ke: Mean absorption coefficient (m2mol− 1)
Cfx: &e local skin friction coefficient due the primary

velocity profiles
Cfy: &e local skin friction coefficient due the secondary

velocity profiles
∇: Gradient operator

Greek Symbols

β: Volumetric coefficient of thermal expansion (K− 1)
σ: Electrical conductivity (Ω− 1m− 1)
ρ: Density (kgm− 3)
ωt: Phase angle
σs: Stefan–Boltzmann Constant (W·m− 2·K− 4)
βT: &ermal expansion coefficient (K− 1)
βc: Mass expansion coefficient (K− 1)
ω: Frequency of oscillation (Hz)
μ: Dynamic viscosity (m2s− 1)
υ: Kinematic viscosity (m2s− 1)
α: &ermal diffusivity (m2s− 1).
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