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Consider a self-mapping T defined on the union of p subsets of a metric space, and T'is said to be p cyclic if T'(A;) € A;,, for

i=1,..
for p cyclic contraction in (S) convex metric spaces.

1. Introduction

Let {A;}7, be nonempty subsets of a metric space (X,d). A
mapping T: UL A, — UL A, is said to be cyclic if
T(A)CA, fori=1,....,pwith A, =A,.

In 2003, Kirk et al. [1] proved that if T: U;D:IA,» —
U A, is cyclic and for some ke (0,1), d(Tx,Ty)<
kd(x, y) for all then N2 A;# @ and T has a unique fixed
point in N’ A;. In the case where N’ A; = &, Eldred and
Veeramani [2] introduced the existence of the best prox-
imity point for the map T in setting of uniformly convex
Banach spaces.

Theorem 1 (see [2]). Let A and B be nonempty closed and
convex subsets of a uniformly convex Banach space. Suppose
T: AUB — AUB is a cyclic contraction map, then there
exists a unique best proximity point x in A (that is, with
llx — Tx|l = dist (A, B)). Further, if x, € A and x,,, = Tx,,
then {x,,} converges to the best proximity point.

This result received considerable interest by many au-
thors recently and more results have been obtained, see for
example [3, 4].

> pwith Ay, = A;. In this article, we introduce the notion of (§) convex structure, and we acquire a best proximity point

In 2009, Al-Thagafi and Shahzad [5] studied conver-
gence and existence results of best proximity points for
g—contraction mappings, and in 2011, Sadiq Basha [6] stated
some best proximity point results. We can find other results
on best proximity points in [7] by Felhi and Aydi. In [8],
results of the best proximity point for cyclic Meir-Keeler
contraction mappings were found.

In 2017, T. Sabar et al. [9] studied convergence and ex-
istence results of best proximity points for tricyclic contraction.

Theorem 2 (see [10]). Let A, B, and C be nonempty closed,
bounded, and convex subsets of a (S) convex metric space
(X, d,W) which has the (C) property; suppose A, B, and C
are disjoint subsets of [a,b] where a,beX, let
T: AUBUC — A U B U C be a tricyclic contraction map.
Then, T has a best proximity point.

In this work, we introduce new results of the best
proximity points for a self-mapping defined on the union of
p nonempty subsets of a (S) convex metric space (X, d, W).

Let {A;}2 | be nonempty subsets of a metric space (X, d),
then we shall adopt the following notations throughout this

paper:


mailto:hbassou@gmail.com
https://orcid.org/0000-0002-6743-7237
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4367482

2 International Journal of Mathematics and Mathematical Sciences

..,xp):Zd(xi,xj) for 1<i, j<p,

i<j
S{IEI]A } = inf{DP(xl,xz,...,xp): xX; €A, i= 1,...,p},
(1)
]» =sup{DP(x1,x2,...,xp): x; €A, i= 1,...,p},

forall x; e A, i=1,...,p— 1
Definition 1. Let {A;}Y.| be nonempty subsets of a metric
space (X,d), and a mapping T: UL | A, — UL A, is said to
be p cyclic contraction if

(1) T(A)C Ay, for 1<i<p, with A,,, = A,

(2) D, (TxT Tx,,...,Tx,)< kDp (%1, %5, ..., Xx,) +

(1-k)o{riZ, A} for some ke (0,1) and all
x; €A,i=1,...,p

2. Preliminaries

Definition 2. Let {A;}f. be nonempty subsets of a metric
space (X, d).

T: UP A, — UP A, is a p cyclic contraction; let
x € UL A, where x is said to be a best proximity point for T
if

P
Dp(x,Tx,stx,...,Tp_lx) = 8{HA,-}. (2)
i=1

Definition 3 (see [11]). Let (X,d) be metric space, then a
mapping W: X x X x I — X is to be a convex structure on
X provided that

du,W(x, y,A)) <A (u,x) + (1 - N)d (u, y),

forallu,x, y € XandA € I == [0, 1]. 3)
A metric space (X, d) along with a convex structure W is
called a convex metric space and is denoted by (X,d, W),
and we denote by [x, y] the set {W (x, y,A): A € I}. A subset
C of a convex metric space is said to be a convex if [x, y]<C
for all x, y € C. The closed and convex hull of set A will be
denoted by
co(A) :== n{C: Cis a closed and convex subset of X that
contains A}.

Definition 4 (see [12]). A normed linear space X is said to
have the property (C) if every bounded decreasing net of
nonempty closed and convex subsets of X has a nonempty
intersection.

For example, a reflexive Banach space has the property
(C), so does every weakly compact convex subset of Banach.

...,xp): X, € AP},

Definition 5. Let xy,x,,...,x,; be points of a convex
metric space (X,d,W) and r>0 the closed ball (resp.
opened) of focuses x;,x,,...,x,_j,then ray r is defined by

B(xl, Xpsoo s Xp g5 r)

4
={x € X: D, (X,%X,,... ®
{ p(x0 %

»Xp_1> xO) < (resp< )r}.

Remark 1. B(xq,x,,...
convex.

»Xp_1,7) is bounded, closed, and

Definition 6 (see [4]). Let (X,d,W) be a convex metric
space, in which W is said to be a strict convex structure if it

has the property that whenever we X there is
(x, y,A) € X x X x I for which
d(u,w) <Ad(u, x) + (1 - Nd (u, ), (5)

for all u € X then w =W (x, y,A). If W is a strict convex
structure on (X, d), the (X,d, W) is called a strictly convex
metric space.

Lemma 1 (see [4]). Let (X,d, W) be a strictly convex metric
space; then, for every (x,y,A;,A,) € X>xI*> we have
W (W ('x’ y) A1)> y) /\2) = W (x) y: /\41/‘42).

Definition 7 (see [4]). Let (X,d,W) be a convex metric
space. W is to be called a (S) convex structure on X provided
that whenever x, y € X such that x =W (a,b,a) and y =
W(a,b,) where «a>f and a,beX, we have
x=Wi(a,y, (a-p)/(1-p)) and y = W (x, b, (f/a)).

If Wisa (S) convex structure on X, then (X,d,W) is
called a (S) convex metric space.

Proposition 1. Let (X,d,W) be a (S) convex metric
space and let x,y € X such that x=W(a,b,a),y=
W (a,b,p), and z = W (a, b, y) where a,b € X and a> 3>y,
then d(x,y) = (a—p)d(a,b) and y=W (x,z, (f-7y)/
(@a=y).

Proof. By the (S) property, we have x = W (a, y, ((a - B)/
(1-P8))
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- ds(er (5B}

(“" ﬁ))d( ») = ( ﬁ))d(aW(a,bﬂ»

B) -B)

—P)d(a,b).
(6)

Since a>y and B>y, then x=W(a,z, (o —y)/
(1-y))) and y =W (a,z (B-y)/(1-))) and put o' =
((a=y)/(1-7)) and [3/ = ((B-1v)/(1-1y)), then we have
y=Wi(x,z, (Briar)) =W (x,z, (f—p)/ (a«—1))). O

Now, let (X;,d WX,-) i=1,...,p— 1beconvex metric
spaces, then the mapping

. . -1
is a distance on 17 X,.

3. Main Results

Before presenting our results, we give the following lemma.
Lemma 2. The mapping

p-1 p-1
W(IHIX> (IHIX) (il_'IIX,-)xI—>(i1:IlXi), 9)

defined by
p-1
W<i1;[1 X,»)((xl,xz, Xy

= <WX1 (x1 y1:); Wy, (%25 Y22A)s- -

= 7p1))A)
WXP,I(xp—l’ yp—l’A>)’

1))()’11)’2’--

p1 p1 . .
di I Xix ITXG — R @ (10)
defined by is a convex structure on the metric space (Hf:_llXi,dl).
p-1
d1((x1>x2) e "xp—l)’ (J’pyz) e ’yp—l)) = Z dXi (x5 i) Proof. Let
i=1
(8)
(ul,uz, . ,up,l) € (Hf:llX,-), (xl,xz, e ,xp,l), (yl,yz, e ,yp,l) € (H;:lXi), Ael, (11)
p-1
d1<(u1,u2, e ,up_l),W< n_f(i)((xl,xz, e Xp g (yl,yz, e .,yp_l),)t)))
= dl((ul,uz, . ,up_l), (WX1 (%1 Y1 A) Wi (%2, ¥2,4), - - ,pril(xp_l,yp_l,)t)>
p-1 p-l p-l
= Z dy, (up Wi (x5 74)) < z Ady, (w5 x;) + Z (1-Mdy, (ui i) (12)
i=1 i=1 i=1
p-l p-l1
<A Z dy, (upx;) + (1= 1) z dy, (up ;)
i=1 i=1
= Adl(ul,uz, Uy (xl,xz, e ,xp,l)
+(1 —/\)dl(ul,uz, cesUp s ()’1>)’2> . .,yp,l).
Definition 8. A subset E of the convex metric space subsets  of [a bl where abeX, let a map

(I* X, d,, W (IT"' X})) is a convex if

W(Hf:llxi)((xl,xz, .. .,xp,l), (yl,yz, . .,yp,l),)t) € E,

(13)

for all (x,x...x, 1), (V1,25 ¥py) €EEand A € L.
We now state our first main result. O

Theorem 3. Let {A;}Y | be nonempty, closed, bounded, and
convex subsets of a (S) convex metric space (X,d,W)
which has the (C) property; suppose {A;}L, are disjoint

T: UL, A; — UL A, be p cyclic contraction map. Then, T
has a best proxzmzty point.

Proof. We denote by ) the set of all nonempty, bounded,
closed, and convex subset (Bl,Bz, By € (A Ay AY)
such that T'is p cyclic on UZ | B;. Then pz is nonempty and
partially ordered by reverse inclusion, that is,
B,;<B,;&B,; € By;.

Fori=1,2,...,p. (14)
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Let (Bjj)jefi-1,..p be an increasing chain of }’, and since
X has the property (C), N;B;; for ., , are bounded,
closed, and convex. We have

B < jfgl B;jfor; .

»p

,p forall jel (15)

By Zorn’s lemma, we have a maximal element say
(C,Cyyovne C,) € Y. We have
co(T(C))<Cyyy,  fori=1,2,...,pwithC,,; =C,,
(16)
hence, T (co(T(C;))) ST (C;,q) Sco(T(C,)); we have T
which is p cyclic on UL, (co(T (C;)), and by the maximality
of (C,C,,...,C,) we have

Ciy =co(T(C))), fori=1,2,...,p. (17)

Now let x; € C; fori=1,2,...,p, k€ (0,1):

D,(Txy, ..o Tx, ) <KD (1, %) + (1 - k)S(ﬁlAi>

r
SkA(Cpr..,Cp) +(1-K)3| T 4; | = A

(18)

DP(W(xz,yz,)L),W(x3,y3,/\), e

p
= Y AW (xyud)W(xppph)) + Y d(W
2<i<j<p i=2
Z Ad(x,»,W(xj,yj,/l) +(1-1) Z
2<i<j<p 2si<jsp
p P
<Ay d((xpxp) + (1=2) Y d((yix,) +
i=2 i=2

W(xp,yp,)t),x1

Then, Tx, € B(Tx,, ..

Txp LA) Vx, € CP=>T(C ) C
B(Txl,..

Tx, 1,A) C1 —co(T(C )) € B(Tx,,... Txp s,

Put
P
By =1(x5. .5 x,) € | 11G; A () (C AL

p+i—-1
B; = {(xi+1> . ..xp+i—l) € <]Iz—£1 C]> A(X,'H,--mxpﬂ,l) (Cz) gA},

fori=2,...,pwithC, ;=C;for j=1,...,p. B; is non-
empty, bounded, and closed fori =1,2,..., p.
Put ¥, : 7,C; — R* and let x, € C, such that

Y, (x5, ... .,xp) =D, (xp5. .. .,xp), then we have
B, = leCI‘{’ L (10, A]). (20)
Let (x5 ...,xp), (¥2, <> ¥p) € Bx; € Crand L € L.
We have

(%5 yisA)> %1)

p p
d()’i)W(xja)’j’/\) +Azd((xi’xl) +(1 _)‘)Zd((yi’xl)
i=2 i=2

+1 Z (/\d(x,-,xj)+(1—/\)d(xi,yj)>+(1—/1) Z (/\d(yi,xj)+(1—/\)d(yi,yj))

2<i<j<p

P
s/\z

(x5 %) + (1 —/\)Zd yox)+ A Y d

i=2 2<i<j<p

+A(1 —A)( > d(x,y)) +d(y,~,xj)> +(1- )7
2<i<j<p

Since x;, y; € [a,b] for i =1,..., p implies there exist
a;, 3; € I, such that d(x,-,yj) = |o; —ﬁjld(a, b), d(x;, xj) =
|lo; — ajld (a,b), and d (y;, ;) = |B; = B;|d (a, b).

If ;> B, a; ¢ lo, Bl and B, ¢ Jaj, ;[ for i # j.

2<i<j<p

%)

Y. d(yiy;).

2<i<j<p

Suppose for example «; <a, <f;, then we have x, =
Wy, x5, (o —a))/ (B —a))) = x5 € [y, %] since C,
is convex then [y,,x;] € C,=x, € C,, which is a contra-
diction, C, NC, = &.
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Suppose «; > a; and ;> f3.. So
We have d (x;, yi)+d(y,x;) = d(x,-,xj) + d(yi,yj).
DP(W (%2, ¥2,A), W (x5, ¥3,4), . ... ,W(xp,yp,/l),xl))
P P 5
<AY d((xpx,)+(1=1) Y d((ypx,) + A Y d(x;x))
i=2 i=2 2<i<j<p
+A(1-2) < Y d(xiy)) +d(y,~,xj)> +(1-0 Y d(yny;) (22)
2<i<j<p 2<i<j<p
P
<A Y d(xex)+ (-0 Y d((yex)+ Y, d(yey;)
1<ij<p i=2 2<i<j<p
= /\Dp(xl,xz, . ,xp) +(1- )L)Dp(xl,yz, e ,yp) <A.
That means Let
(W(xz,yz,/\),W(x3,y3,/\), .. .W(xp,yp,)t)) ( ) (P—l ) ~( )
X Xg oo Xy ) €L ITC |, T(x0,%0, 5%,
= W(Hfizci)((xz,x3, .. ,xp), (yz,y3, .. yp),)t) € By, P2 Pt i=1 12 p-1 27)
23
(23) :<Tx1’sz , "’Txp—1> e (m2,C)).
for all (x;,x3,...,%,), (¥ ¥3,-->¥,) € Byand A € L.
Define We have
_ p+i-2 » p+i-2
T: Uf—1< 1T Aj) — Ui—l( I Aj>’ (24) A(T T T )(C )
J=t J=t X x>ttt xp71 1
by B p (28)
~ <A=T(x),%,...,x,,) € Bj=T( 11 C; |<B,.
T(x) %50 0% ) = (Txl,Tx2, N .,Tx}H). (25) =l
~ ) So T is p cyclic on UY | B,. ((HP;CI-), (T2,C)), ..., (Cp x
We have T which is pcyclic: 117°2C})) is maximal in 3 where '
_ [ p-1 P [ P
r(H) = (A ()
(26)

P _ 2
§<H3Ai ><A1>,...,T<AP X Hl Ai)g(
1= i=

p-1
0 A>
i=1

p-2
Mpx I M,
i=

gl

P
fi)oo
i=2

p P2
HMi),....,<MP>< in)g(
i

with T is p cyclic on (P;[lMi) U (
i=1

P
11 A,

p-1
IT A,
i=2

i=1

M(fia) (s,

) are nonempty, closed, bounded, and convex ¢,

)

Y

(29)

p-2
Mp x M,
i=1

P
mM;

i=2
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Y is partially ordered by M,,<M,&My,CM,;. For Inductively,
i=1,...,p. Let (M;j)jes iy, Dean increasing chain of )., p-1
and since X has a the (C) property, N;;M;; for ., _, are A(x i )(Cp) SA,V(xl,xz,...,xp,l) € (Hl Ci).
bounded, closed, and convex subsets. We have e .
- . (32)
M;;< ].QIMiij”iﬂ,u.,p forall jel (30)
So, we have
So
B, =(C,...,C,), )
B, :(Ci+1,...,CP+i_1) for i=2,...,p.
p p
A (x]’xp__,xp_])(cp) —kA(( LG ) < (=R { T14; ) ),
p-1
V(xl,xz,...,xp,l) € (;131 Ci) (33)
p p
=(1- k)A((l'[lCi)) <(1- k)a(ﬁAi).
So Now let (ry,7,,. .. ,rP) € (H;-DZICi), then we have

P P
A(El C,-)sa(il;[l Ai). (34)

b 2 -1 -1
a<iH Al-) <D, (r, Tr, T?ry,..., TP '), D, (TP

2
Ty 7y, T, T71,, ..

,T‘D_zrz), .. .,Dp(Trp,Tzrp, .. .,Tp_lrp,rp)

p p p p
SA(EC,») SU(EA:')’ thenA(ECi) = U(EAi),

which finishes the proof of the theorem.
Now, we give some examples for p = 4. O

Example 1. Let X be R* normed by the norm ||(x, y)| =
Ix| +1yl, and let A=[1,2]x{0}, B={0}x[-2-1],
C=[-2-1x{0}, and D={0}x[L2], then

(35)

0(A,B,C,D) = D,((1,0), (0,-1), (=1,0), (0, 1)) = 12. We
define W: X x X xI — X by W(x, y,A) =Ax+ (1 -1)y
for all x, y € X, € I, then (X,d, W) is a complete convex
metric space. W is a (S) convex structure on X. Let
a,be X, x=W(a,b,a),and y =W (a,b,p) with a> 3. We
have
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a-B\ a-p a-
o)

B
:“_ﬁa+<1_a>W(a,b,/3)

o —
ﬁa+

=17

(i5)

1-p 1-p
:“_ﬁa+<l_—a>(/3a+(l—ﬁ)b): L (@ =B)a+(1-ab=aa+(l-ab=x
1-8 1-p 1-8 ’ (36)
W(x,b,/—3> = /—5x +<1 —[—;)b = /—5W(a,b,(x) +<1 —/—5)19
[0 o 24 44 o
:E((xa+(l —oc)b)+(1 —E)bzﬁa+é((1—(x)b)+(l —E>b
44 o o [0
=Pa+(1-pb=y.
P _
o T (2,0) =(o,1—z> if z € [-2,-1],
T AUBUCUD— AUBUCUD, (37)
such that T(0,1) =(%,o) if e [1,2].
T (x,0) =<o,—xT+1) if x € [1,2], (38)
We have
-1
(0, y) =(yT,o) if y € [-2,-1],
T(A) cBT(B)<C,T(C)< D, T(D) C A, (39)
D, (T (x,0),T(0, ), T (2,0), T(0, 1)) :(x;1+1;y)+(x-2|rl+1;z)
x+1 t+1 1-z 1-y t+1 1-y t+1 1-z
(5 ) ()G ) ()
:%(x—y)+(x—z)+(x+t)+(—y—z)+(t—y)+(t—z)+6 (40)
= %DAL ((x’ 0)) (0’ y)’ (Z> 0)) (0> t)) +6
1 1
= 3P4 ((5,0), (0, ), (2,0), (0.1)) +<1 - 5)0(A, B,C,D).
So T'is a quadricyclic contraction. Then, T has (1,0) a A={1+Kk")e,,, neN}
best proximity point, since B= {(1 . k4m’3)e . me N}
- 4m-3> >
D,((1,0),T(1,0),T%(1,0),T°(1,0)) C={1+Kk*?)ey,, seN},
4t—1
= D,((1,0), (0,~1), (~1,0), (0,1)) = 12 = ¢(A, B,C, D). D={(1+k" "eyy, teN} (42)
(41) Put
0 T: AUBUCUD — AUBUCUD, (43)

Example 2. Let k € (0,1), and let A,B,C, and D the four
subsets of [,, 1< p<oo, defined by

such that T (1 +kP)e, = (1+ kf’“)ep+1 for all p € N.
We have T(A)cBT(B)cCT(C)cD, and
T (D) c A.



Since k € (0,1), Lim ((1+k* )P + (1 + k¥ i)P)VP = So 0 (A, B,C,D) = 6.21/7,
2V for i, j=1,2,3." %

D, (T(14K), T(1+ K2, (14K 2),7(1+ K1)
=D, (1 R (1), (1K), (1K)
(1R (R (kY (k)

(R (1 k) (1) (1))

(R (k) (Y (k)

= ((k(1+ k") + (1= 0)) +(k(1+K") + (1 =R))") "

(R + K"+ (1= R) +(k(1+K2) + (1 -R))

+ )

1/p
+

(
(
(
(%
((x(
F((k(1+ K2 + (1 =) +(k(1+K*72) + (1 - k)
((x(
((x(
(
(k

k(1+K7) +(1-k)"
p)llp

+

(
K(1+k ) +(1-k)

(

(

)
k(1K) + (1= 0) +(k(1+ K1) + (1 -0))
(k1K) + (1 =R) +(k(1+ k) + (1 -R)")
<((R(1+ k) (k1 k) + 201 =R07)"
#((k(1+ k7)) (k14 k) 2= 00) 7
((k(1+ k)Y + k(14K )) 7+ 21 =007
NV -rr)e
NP -k

N ea-pn

((k(1+£")" (k1o k)))
P+( ( +k4ns—2>)P)1/P
k)

H((k(1 K2+ (k(1+ kD)) P 162 (1 k)

= kD, ((1+ &™), (1+ &™), (1+£*7%), (1+ k")) + (1 - K)o (A, B,C, D).

International Journal of Mathematics and Mathematical Sciences

(44)
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T is a quadricyclic contraction.
Put W: [, xI,xI—1, such that W(x,y,A) =
((Ax+ (1 =Vp)/Ax + (1= 1) yl).

Let

ue lp,x,y € lp,d(u,W(x,y,/\)) =d(u, (Ax+ 1 -D)py)/ (IAx + (1= L)yl)))

1
T x+ (1 =)yl

- 1
[Ax + (1 =)yl

- 1
Ax + (1 =)yl

- 1
[Ax + (1 =)yl

1
<—
[Ax + (1 =)yl

1

d(u,Ax +(1-1)y)
(D Jui + Ax; + (1 - A))’ilp)up
(X hhas + (1= My A, + (1= My |)
(45)

(SR +x) + =D+ 7))

(Ap Z|(“i +ol” (1= 1) Z|“i + }’i|P)1/p

1/p » 1/p
Sm)t(Z'(ui‘kxiV) +(1—/\)Z|ui+yi| >

<Ad(u,x)+ (1 -MN)d(u, y).

Then, (1,,d, W) is a complete convex metric space for all
I<p<oo.

For p=2, let a=(1,0,0,0,...) elp, b=
(0,1,0,0,...) €1,
1 1 1
x:W a)b) >: _,_,0,0,0, N
2 2 V2

(! DI
(

bl>_ L3 b0
“Py) " \viovio )
We have
W (a, y, (1/3)) = ((1/3) + (2/(3V10)), (2/V/10),0,0,...) # x,

W (x,b, (1/2)) = ((1/(2V2)), (1/(2v2)) +(1/2),0,0,0,.. ) # y.
(47)

W is not a (S) convex structure on X. Then, T has not a
best proximity point.
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