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Metaheuristic algorithms are used to solve many optimization problems. Firefly algorithm, particle swarm improvement,
harmonic search, and bat algorithm are used as search algorithms to find the optimal solution to the problem field. In this paper,
we have investigated and analyzed a new scaled conjugate gradient algorithm and its implementation, based on the exact Wolfe
line search conditions and the restart Powell criterion. *e new spectral conjugate gradient algorithm is a modification of the
Birgin and Mart́ınez method, a manner to overcome the lack of positive definiteness of the matrix defining the search direction.
*e preliminary computational results for a set of 30 unconstrained optimization test problems show that this new spectral
conjugate gradient outperforms a standard conjugate gradient in this field and we have applied the newly proposed spectral
conjugate gradient algorithm in bat algorithm to reach the lowest possible goal of bat algorithm. *e newly proposed approach,
namely, the directional bat algorithm (CG-BAT), has been then tested using several standard and nonstandard benchmarks from
the CEC’2005 benchmark suite with five other algorithms and has been then tested using nonparametric statistical tests and the
statistical test results show the superiority of the directional bat algorithm, and also we have adopted the performance profiles
given by Dolan and More which show the superiority of the new algorithm (CG-BAT).

1. Introduction

In 2010, Yang proposed a new optimization algorithm,
namely, bat algorithm (BA), based on swarm intelligence
and the inspiration from observing the bats. Although the
original BA presents superior results in the experiments than
PSO, we notice that the performance and the accuracy of the
original BA still have the capacity to present better. *e
algorithm exploits the so-called echolocation of bats.

Bats use sonar echoes to detect and avoid obstacles. It is
generally known that sound pulses are transformed to
frequency which reflects from obstacle. Bats can use time
delay from emission to reflection and use it for navigation.
*ey typically emit short loud, sound impulses. *e pulse
rate is usually defined as 10 to 20 times per second. After
hitting and reflecting, the bats transform their own pulse

into useful information to gauge how far away the prey is.
*e bats are using wavelengths that vary from the range 0.7
to 17mm or inbound frequencies of 20–500 kHz. To im-
plement the algorithm, the pulse frequency and rate have to
be defined. *e pulse rate can be simply determined in the
range from 0 to 1, where 0 means that there is no emission
and 1 means that bats are emitting maximum [1].

*e bat-inspired algorithm is a recent swarm-based
intelligent system which mimics the echolocation system of
microbats. In the bat-inspired algorithm, the bats randomly
fly around the best bat locations found during the search so
as to improve their hunting of prey. In practice, one bat
location from a set of best bat locations is selected.
*ereafter, that best bat location is used by local search with
a random walk strategy to inform other bats about the prey
location. *is selection mechanism can be improved using
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other natural selection mechanisms adopted from other
advanced algorithms such as genetic algorithm. *erefore,
six selection mechanisms are studied to choose the best bat
location: global-best, tournament, proportional, linear
rank, exponential rank, and random. Consequently, six
versions of the bat-inspired algorithm are proposed and
studied which are global-best bat-inspired algorithm
(GBA), tournament bat-inspired algorithm (TBA), pro-
portional bat-inspired algorithm (PBA), linear rank bat-
inspired algorithm (LBA), exponential rank bat-inspired
algorithm (EBA), and random bat-inspired algorithm
(RBA). Using two sets of global optimization functions, the
bat-inspired versions are evaluated and the sensitivity
analyses of each version to its parameters studied [2]. A
success of an algorithm always depends on well balanced of
these components. *e aim of this study is to improve the
performance of the standard bat algorithm by increasing its
exploration and exploitation abilities along the main line of
the BA. In this paper, two improvement strategies are
presented. *e first improvement strategy is the develop-
ment of a spectral conjugate gradient technique, which can
be used to guide the research process, and the second
improvement strategy is to improve the bat algorithm using
the conjugate gradient method to arrive at the best solution
for the current iteration, which can be used to enhance the
ability to local search. *e newly proposed optimally di-
rectional bat algorithm (CG-BAT) will be tested on several
benchmark problems chosen from the well-known
CEC’2005 benchmark set and compared with several other
swarm and evolutionary algorithms.*erefore, this study is
organized as follows. A new scalar in a spectral conjugate
gradient is described in Section 2. A global convergence is
described in Section 3, the standard bat algorithm is
presented in Section 4. *en, the enhanced bat algorithm is
presented in Section 5. Finally, the results of the numerical
experiments are presented in Section 6, followed by the
conclusions in Section 7. Too much exploration but too
little exploitation may cause difficulties that algorithm
converges towards optimal solutions. *e conjugate gra-
dient technique could be a helpful procedure to search out
the minimum value of any nonlinear function to find
optimal solutions:

minimize
x∈Rn

f(x), (1)

where f : Rn⟶ R is a real-valued function. *e numerical
formula is given by

xk+1 � xk + αkdk, (2)

where αk is a step length to be computed by a line search
procedure [3]. *e search direction dT

k � − gk is outlined as
follows:

dk+1 �
− gk+1, for k � 0,

− gk+1 + βkdk, for k≥ 1,
􏼨 (3)

and gk � ∇f(xk) is gradient and βk is a parameter of
conjugacy condition. Some famed formulas of this param-
eter are outlined as follows:

βHS
k �

gT
k+1yk

dT
k yk

,

βPRk �
gT

k+1yk

gT
k gk

,

βFRk �
gT

k+1gk+1

gT
k gk

,

βDYk �
gT

k+1gk+1

dT
k yk

,

βHS
k �

gT
k+1yk

dT
k yk

,

βPRk �
gT

k+1yk

gT
k gk

,

βFRk �
gT

k+1gk+1

gT
k gk

,

βDYk �
gT

k+1gk+1

dT
k yk

,

(4)

where yk � gk+1 − gk, which are referred to as Hestenes–
Stiefel (HS) [4], Polak–Ribière (PR) [5], Fletcher–Reeves
(FR) [6], and Dai–Yuan (DY) [7] severally. Many authors
have studied the convergence of the on top of formulas for
years [8–11].

To prove the convergence analysis of the conjugate
gradient technique, the following weakWolfe conditions are
used:

f xk + αkdk( 􏼁 − f xk( 􏼁≤ 􏽢δαk∇f xk( 􏼁
T
dk, (5)

∇f xk + αkdk( 􏼁
T
dk ≥ 􏽢σ∇f xk( 􏼁

T
dk. (6)

Used the strong Wolfe conditions consist of (5) and

g xk + αkdk( 􏼁
T
dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼌 ≤ − 􏽢σg

T
k dk. (7)

*e constants are within the period 0< 􏽢δ < 􏽢σ < 1, and
additional details are found in [3]. Well, the sufficient de-
scent property is defined as follows:

d
T
k+1 gk+1 ≤ − 􏽢c gk+1

����
����
2
, (8)

where ‖·‖ denotes the Euclidean norm, provided that c is any
positive constant [7].

2. A New Scalar in Spectral CG Method (ξk+1)

Birgin andMart́ınez (SS) [12] instructed a spectral conjugate
gradient technique outlined by

dk+1 � − gk+1 + βksk, (9)

where sk � αkdk.
*e parameter βk has the following form:
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βk �
ξk+1yk − sk( 􏼁

T
gk+1

sT
k yk

, (10)

where the spectral ξk+1 in [13] is determined by using the
following equation:

ξk+1 �
sT

k sk

sT
k yk

. (11)

In this section, we will derive a new spectral CG method
as follows:

dk+1 � − ρ⌣k+1Hk+1gk+1. (12)

*e matrix Hk+1 is asymmetrical and positive definite
and the scalar ρ⌣k+1 is defined by Al-Bayati and Salah [14] as
ρ⌣k+1 � (yT

k sk/gT
k Hkgk).

By equating (9) and (12), we get

−
yT

k sk

gT
k Hkgk

Hk+1gk+1 � − gk+1 +
ξk+1yk − sk( 􏼁

T
gk+1

sT
k yk

sk. (13)

Multiplying both sides of (13) by yT
k , we get

−
yT

k sk

gT
k Hkgk

y
T
k Hk+1gk+1 � − y

T
k gk+1 +

ξk+1yk − sk( 􏼁
T
gk+1

sT
k yk

y
T
k sk,

yT
k sk

gT
k − Hkgk( 􏼁

y
T
k Hk+1gk+1 � − y

T
k gk+1 + ξk+1y

T
k gk+1 − s

T
k gk+1.

(14)

Since dk � − Hkgk and yT
k Hk+1 � sT

k , we get
yT

k sk

gT
k dk

s
T
k gk+1 � − y

T
k gk+1 + ξk+1y

T
k gk+1 − s

T
k gk+1. (15)

Since sk � αkdk,
αkyT

k sk

gT
k sk

s
T
k gk+1 � − y

T
k gk+1 + ξk+1y

T
k gk+1 − s

T
k gk+1,

ξk+1 �
αkyT

k sk

gT
k skyT

k gk+1
s

T
k gk+1 + 1 +

sT
k gk+1

yT
k gk+1

.

(16)

If we use exact line search, then the new scalar ξk+1 is
equal to one.

*e new direction is defined by the following equation:

dk+1 � − gk+1 +
αkyT

k sk/gT
k skyT

k gk+1( 􏼁sT
k gk+1 + 1 + sT

k gk+1/yT
k gk+1( 􏼁yk − sk( 􏼁

T
gk+1

sT
k yk

sk. (17)

Theorem 1. Let the line search αk in (2) satisfies the strong
Wolfe condition, then the new search direction given by (17) is
a sufficient descent direction.

Proof. Under some algebraic operations, the direction of
(17) can be written as follows:

dk+1 � − gk+1 +
αksT

k gk+1

gT
k sk

+
yT

k gk+1

sT
k yk

􏼠 􏼡sk. (18)

Now, multiplying both sides of (18) by (gk+1/‖gk+1‖
2),

then we get
dT

k+1gk+1

gk+1
����

����
2 + 1 �

αksT
k gk+1

gT
k sk

+
yT
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sT
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􏼠 􏼡
sT
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����

����
2,

dT
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����
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2
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2
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2
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2
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gk+1
����

����
2.

(19)

Since sT
k gk+1 ≤ sT

k yk and yT
k gk+1 ≤ ‖yk‖·‖gk+1‖, we get

dT
k+1gk+1

gk+1
����

����
2 + 1≤

αk sT
k yk( 􏼁

2

gk+1
����

����
2
gT

k sk

+
yk

����
���� gk+1
����

����

sT
k yk

sT
k yk

gk+1
����

����
2

dT
k+1gk+1

gk+1
����

����
2 + 1≤

αk sT
k yk( 􏼁

2

gk+1
����

����
2
gT

k sk

+
yk

����
����

gk+1
����

����
.

(20)

Since (1/sT
k gk)≤ (sT

k yk/ − (1 − αk)),

dT
k+1gk+1

gk+1
����

����
2 + 1≤

αk sT
k yk( 􏼁

2

gk+1
����

����
2

sT
k yk/ − 1 − αk( 􏼁􏼐 􏼑

+
yk

����
����
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����

����
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gk+1
����

����
2 + 1≤ −

αk sT
k yk( 􏼁 1 − αk( 􏼁

gk+1
����

����
2 +

yk

����
����

gk+1
����

����

dT
k+1gk+1

gk+1
����

����
2 + 1≤
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����
����
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����

����
.

(21)
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Let 􏽥υ � (‖yk‖/‖gk+1‖) (where 􏽥υ is the positive constant),
then

dT
k+1gk+1

gk+1
����

����
2 + 1≤ 􏽥υ,

d
T
k+1gk+1 ≤ − (1 − 􏽥υ) gk+1

����
����
2
.

(22)

□

3. Global Convergence

In this section, the subsequent assumption is usually used in
proving the global conjugate gradient methods.

Assumption 1 (see [15])

(i) *e level set S � x : f(x)≤f(x0)􏼈 􏼉 is bounded, that
is, there exists a constant z> 0, such as
‖x‖≤ z,∀x ∈ S.

(ii) In neighborhood N of S, the function f is continu-
ously differentiable and its gradient is Lipschitz
continuous, i.e., there exists a constant L> 0 such
that

‖g(x) − g(y)‖≤ L‖x − y‖, ∀x, y ∈ N. (23)

Below the assumptions (i) and (ii) on f, we can deduce
that there exists c> 0 such as the following equations:

‖∇f(x)‖≤ c. (24)

(g(x) − g(y))(x − y)≥ μ‖x − y‖
2
, ∀x, y ∈ S, μ> 0.

(25)

Lemma 1 (see [16]). Assume that Assumption 1 holds and
suppose that, for any conjugate gradient method, dk+1 is a
descent direction and the step size αk satisfies conditions (5)
and (7) if

􏽘
k≥ 1

1

dk+1
����

����
2 �∞. (26)

9en

Lim
k⟶∞

inf gk

����
����􏼐 􏼑 � 0. (27)

Theorem 2. Suppose that Assumption 1 holds, and the di-
rection dk+1 defined by (17) is descent and αk is computed
using (5) and (7), then

Lim
k⟶∞

inf gk

����
����􏼐 􏼑 � 0. (28)

Proof. By using some algebraic operations of (17) and taking
the absolute value, we get

dk+1
����

����≤ gk+1
����

���� +
αksT

k gk+1

gT
k sk

+
yT

k gk+1

sT
k yk

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
sk

����
����,

βk �
αksT

k gk+1

gT
k sk

+
yT

k gk+1

sT
k yk

,

βk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

αksT
k gk+1

gT
k sk

+
yT

k gk+1

sT
k yk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

βk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

αksT
k gk+1

gT
k sk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

yT
k gk+1

sT
k yk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(29)

Since sT
k gk+1 ≤ sT

k yk and yT
k gk+1 ≤ ‖yk‖ · ‖gk+1‖, we get

βk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

αksT
k yk

gT
k sk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

yT
k

����
���� gk+1
����

����

sT
k yk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (30)

Since dT
k � − gk,

βk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

αksT
k yk

αk gk

����
����

+
‖y‖k gk+1

����
����

sT
k yk

. (31)

Since μ‖sk‖≤ sT
k yk ≤L‖sk‖, we get

βk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

L sk

����
����

gk

����
����

+
‖y‖k gk+1

����
����

μk sk

����
����

� 􏽥ϑ, dk+1
����

����≤ gk+1
����

���� + 􏽥ϑ sk

����
���� � ϕ

􏽘
k≥1

1

dk+1
����

����
2 ≥

1
ϕ

􏽘
k≥1

1 �∞,

(32)

that is, Limk⟶∞‖gk‖ � 0, the proof is complete. □

4. Standard Bat Algorithm

*e bat algorithm proposed by Yang [17] is an intelligent
optimization algorithm inspired by the echolocation be-
havior of bats. When flying and hunting, bats emit some
short, ultrasonic pulses to the environment and list to their
echoes. Studies show that the information from the echoes
will enable bats to build a precise image of their sur-
roundings and determine precisely the distance, shapes, and
prey’s location. *e capability of such echolocation of
microbats is fascinating, as these bats can find their prey and
discriminate against different types of insects even in
complete darkness [17]. *e earlier studies showed that BA
can solve unconstrained optimization problems with much
more efficiency and robustness compared to GA and PSO
[18, 19].

*e used idealized rules in bat algorithm are as follows:

(a) All bats use echolocation to sense distance and the
location of a bat xi is encoded as a solution to an
optimization problem under consideration.

(b) Bats fly randomly with velocity vi at position xiwith a
varying frequency (from a minimum fmin to a
maximum frequency fmax) or a varying wavelength λ
and loudness A to search for prey. *ey can auto-
matically adjust the wavelengths (or frequencies) of
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their emitted pulses and the rate of pulse emission r
depending on the proximity of the target.

(c) Loudness varies from a large positive value A0 to a
minimum constant value Amin [17].

For each bat (i), its position (xi) and velocity (vi) in a d-
dimensional search space should be defined. xi and vi should
be subsequently updated during the iterations. *e rules for
updating the position and velocities of a virtual bat (i) are
given as in [17]:

fk � fmin + fmax − fmin( 􏼁rand, (33)

v
t+1
k � v

t
k + x

∗
− x

t
k􏼐 􏼑fk, (34)

x
t+1
k � x

t
k + v

t+1
K , (35)

where rand ∈ [0, 1] is a random vector drawn from a uniform
distribution. Here, x∗ is the current global best location
(solution) which is located after comparing all solutions
among all the n bats. A new solution for each bat is generated
locally using random walk given by

X
new

� x
old

+ ε〈Ak+1〉, (36)

where ε ∈ [− 1, 1] is a random number, while 〈At+1
k 〉 is the

average loudness of all the bats at this time step.
*e loudness Ak and the rate of pulses emission rk are

updated as the iterations proceed. *e loudness decreases and
the pulse rate increases as the bat gets closer to its prey. *e
equation for updating the loudness and the pulse rate is given by

A
t+1
k � ϖAt

k, (37)

r
t+1

� r01 − exp(− η), (38)

where 0<ϖ< 1 and η> 0 are constants. As t⟶∞, we have
At

k⟶ 0 and rt
k⟶ r0k.

*e initial loudness A0 can typically be A0 ∈ [1, 2], while
the initial emission rate r0 ∈ [0, 1].

*e basic steps of the standard bat algorithm are
summarized in the pseudocode as shown in Algorithm 1.

5. Enhanced Bat Algorithm

*is paper attempts to improve the bat algorithm from a
different perspective from the previous improvements by
hybridizing the bat method using optimization methods, by
using the optimal size of the cubic step and the optimal
search direction for the synchronous gradient feature of the
optimal search direction for echo detection. First, local
movements can be improved by controlling the optimum
step sizes, while the second bat movement should be directed
by other bats and the best local moves toward optimal
movement. More specifically, two different adjustments will
be made to improve the efficiency of the bat algorithm.

5.1. 9e First Modification (Optimal Step Size). *e first
modification concerns local search mechanisms: in standard
bats, they are allowed tomove from their current locations to

new random locations using local random walk. In modified
bats, they are allowed to switch from their current locations
to new locations optimally using local optimal walking, as we
adjust this step to the optimal size using one of the opti-
mization methods called optimal step size (αk) when the step
length is calculated by performing a line search [1].

5.2. 9e Second Modification Using New Spectral Conjugate
Gradient Method. A bat emits two pulses in two different
directions, one to the direction of the bat with the best
position (the best solution is steepest descent) and the other
to the direction of the new conjugate gradient bat. From the
echoes, the bat can know if the food exists around these two
bats or not. *e best position is determined by the objective
fitness, while, around the optimally selected bat, it depends
on its fitness value. If it has a better fitness value as the actual
bat, then the food is considered to exist; otherwise, there is
not a food source in the neighborhood. If the food is
confirmed to exist around the two bats (Choice 1), the
current bat moves to a direction at the surrounding
neighborhood of the two bats where the food is supposed to
be plenty. If not (Choice 2), it moves toward the best bat.

*e mathematical formulas of the bats’ movements are
thus given by

xk+1 � xk + αk − gk( 􏼁, for k � 0,

xk+1 � xk + αk − gk+1 + βkdk( 􏼁, for k≥ 1.
(39)

*e directions of the movement generated by equation
(17) are directed towards the bat with the best position. *is
mechanism allows the BA to exploit more around the best
position; however, if the best bat is not near the global
optimality, there is a risk that the solutions generated by
such moves could be trapped in local optima. *e new
proposed movement in equation (17) has the ability to di-
versify the movement directions which can enhance the
exploration capability, especially at the different repetition
stages especially at the initial stages of iterations, and can
thus avoid premature convergence. Furthermore, when it
approaches the end of the iteration process, the bats tend to
get around the best bats with stronger exploitability which in
turn can reduce the distances between them and thus en-
hance the speed of convergence which gives stability to the
algorithm. *e new algorithm CG-BAT is illustrated by
presenting the algorithm and flowchart as follows.

5.2.1. CG-BAT Algorithm. In this section, we develop the
movement of bat algorithm to reach the goal by using the
new direction which is defined in equation (17).

(1) objective function f(x) � (x1, x2, . . . , xd)T

(2) initialize the bat population xk and
vk � dk � − ∇f(x) � − gk for k� 1, . . ., n

(3) Define pulse frequency fk at xk.
(4) Initialize pulse rates rk and the loudness Ak.
(5) While (t≤ tmax).
(6) Adjust frequency equation (1)
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(7) Update locations/solutions equation (2)
(8) Update velocities equation (3)
(9) if (dT

k∇f(xk)≤ 0)

(10) Generate new searchmovement using equation (17)
(11) end if.
(12) Generate new solution by a flying optimally step

length using equation (39).
(13) if (f(xk)<f(x∗)).
(14) Accept the new solutions
(15) Increase rk equation (37)
(16) Reduce Ak equation (38)
(17) end if
(18) Rank the bats and find the current best x∗

(19) end while
(20) Output results for postprocessing

5.2.2. CG-BAT Flowchart. In this section, we describe the
movement of CG-BAT algorithm to reach the goal by using
the flowchart of new search direction which is defined in
equation (17) (Figure 1).

6. Experimental Results and Comparisons

To prove the efficiency performance of all newly proposed
algorithms, two comparison experiments have been con-
ducted. *e first is a comparison between the new spectral
conjugate gradient and the standard algorithms in this field,
and the second experiment is a comparison between the new
bat algorithm (CG-BAT) and cuckoo search, firefly search,
and practical swarm.

6.1. Experimental Results and Comparisons in New CG. In
this section, we have reported some numerical experiments
that are performed on a set of 30 unconstrained optimization
test problems to analyze the efficiency of ξk+1. Detail of these
test problems, with their given initial points. *e termina-
tion criterion used in our experiments is
‖gk‖≤ 10− 6, where 􏽢δ � 0.001 and 􏽢σ � 0.1. In our compari-
sons below, we employ the following algorithms:

(i) SS: scalar in spectral in Birgin and Mart́ınez algo-
rithm with the Wolfe line search

(ii) HS: Hestenes–Stiefel algorithm with the Wolfe line
search

(iii) New: new algorithm using equation (17) with the
Wolfe line search

Table 1 shows the numerical computations of these
newly proposed CG algorithms against other well-known
CG-algorithms to check their performance and we have used
the following well-known measures or tools used normally
for this type of comparison of CG algorithms:

NOI� the total number of iterations
NOF� the total number of function evaluation
TIME� the total CPU time required for the processor
to execute the CG algorithm and reach the minimum
value of the required function minimization

To evaluate the modified conjugate gradient technique,
this technique is analyzed and tested in some numerical tests
(see [20]) and to demonstrate the performance of those
methods, we applied Dolan and Moré [21], a new tool to
analyze the efficiency of algorithms.

*ey introduced the notion of a performance profile as
means to evaluate and compare the performance of the set of

(1) define objective function f(x) � (x1, x2, · · · , xd)T

(2) initialize the bat population xk and for k� 1, · · ·, n
(3) Define pulse frequency fk at xk.
(4) Initialize pulse rates rk and the loudness Ak.
(5) While (t≤ tmax).
(6) Adjust frequency equation (33)
(7) Update velocities equation (34)
(8) Update locations/solutions equation (35)
(9) if (rand> rk)
(10) Select a solution among the best solutions
(11) Generate a local solution around the selected best solution equation (36)
(12) end if
(13) Generate a new solution by flying randomly
(14) if (rand<Ak & F(xk)< F(x∗))
(15) Accept the new solutions
(16) Increase rk equation (37)
(17) Reduce Ak equation (38)
(18) end if
(19) Rank the bats and find the current best x∗

(20) end while
(21) Output results for post-processing

ALGORITHM 1: *e standard bat algorithm.
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solvers S on a test set P. Assuming that there exist ns solvers
and np problems, for each problem p and solvers, they
defined

tp,s � computing time (the number of function evalua-
tions or others) required to solve problem p by solver s

Requiring a baseline for comparisons, they compared the
performance on problem p by solver s with the best per-
formance by any solver on this problem, based on the
performance ratio:

rp,s �
tp,s

min tp,s : s ∈ S􏼐 􏼑
. (40)

Suppose that a parameter rM ≥ rP for all p, s is chosen,
and rp,s � rM if and only if solver s does not solve problem p
(Figure 2).

Figure 3 shows the Dolan–More performance profile for
these methods, which are subject to the frequency of a
suitable performance compared to the basic methods.

Figure 4 shows us through the Dolan–More performance
profile for these methods, which are measured by the CPU
time, which makes us deduce from the three forms pre-
sented. *e new method is very suitable for solving issues of
many dimensions.

6.2. Experimental Results and Comparisons in CG-BAT.
To validate the performance of the proposed optimally di-
rectional bat algorithm, we have carried out various nu-
merical experiments that have been then tested using several
standard and nonstandard benchmarks from the CEC’2005
benchmark suite, which can be summarized as two com-
parison experiments. *e first one is a comparison between
the new directional bat algorithm and the standard algo-
rithms including the bat algorithm on the classical bench-
mark functions, cuckoo search, firefly search, and practical
swarm and the second one is a comparison has been per-
formed against some advanced optimization algorithms

Start

Restart criteria

No

No

Generate initial population with random velocity and position

Evaluate each bat in the population and find the current best

Calculate the frequency, velocity, and position for the ith bat

Compute optimal step size

No

Yes

Generate descent direction

Yes

No

Improvement? & not
too loud?

Have all bats been
met?

Yes

Yes

Stopping criterion?

Stop

Apply optimal walk

Generate a new
search direction

(modified direction)

Update the population
and the best solution,

decrease loudness, and
increase pulse rate

Figure 1: Flowchart of CG-BAT.

International Journal of Mathematics and Mathematical Sciences 7



such as Dolan and Moré [19], a new tool to analyze the
efficiency of algorithms.

6.2.1. Benchmarking and Parameter Settings. *irty popular
benchmark functions are shown in Tables 2–4.We have been
used to verify the performance of the new bat algorithm
(CG-BAT), compared with that of standard BA, FA, CS, and
PSO. *e description and the setting parameters of these
algorithms are as follows:

(1) CG-BAT: an extensive analysis was performed to
carry out parameter settings of BA; for best practice,
we recommend the following settings: r0 � 0.1,
r∞� 0.7, A0 � 0.9, A∞� 0.6, fmin � 0 and fmax � 2,
‖gk‖≤ 10− 6, 􏽢δ � 0.001, 􏽢σ � 0.1, and 0≺ αk ≤ 1.

(2) BA: the standard bat algorithm was implemented as
it is described in [17] with r0 � 0.1, A0 � 0.9,
α� c � 0.9, fmin � 0, and fmax � 2.

(3) FA: the firefly algorithm where A0 � 0.9 is the in-
tensity at the source point described in [15].

(4) CS: the cuckoo search via Lèvy flights described in
[22] is considered with the probability of the dis-
covery of alien egg spa� 0.25.

(5) PSO: a classical particle swarm optimization [23, 24]
model has been considered. *e parameter settings
are c1 � 1.5 and c2 �1.2 and the inertia coefficient w is
a monotonically decreasing function from 0.9 to 0.4.

For a fair comparison, the common parameters are
considered the same. *e population size was set to N� 50,
and the number of function evaluations is the same as 15000,
without counting the initial evaluations, though all algo-
rithms were initialized randomly in the similar manner.
*erefore, we set tmax � 500 except for CS. Due to the fact
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Figure 3: Performance profiles of the number of iterations.

Table 1: Comparisons of the new algorithm against SS and HS
algorithms for a total of 30 test problems.

Prob. New algorithm
NOI/NOF/TIME

SS
NOI/NOF/TIME

HS
NOI/NOF/TIME

1 100/253/0.14 324/6035/3.30 515/9706/2.69
2 406/886/2.03 413/890/1.99 399/876/2.15
3 823/2149/1.13 856/2120/1.07 826/2199/1.97
4 115/300/0.14 118/301/0.17 122/315/0.19
5 100/387/0.13 275/5485/2.14 168/1920/0.80
6 586/990/1.60 6577/18678/4.66 6858/20495/6.74
7 31/85/0.15 43/111/0.22 41/102/0.17
8 1029/2605/1.40 1044/2766/1.55 1028/2976/1.66
9 2377/4871/2.30 3588/7178/7.30 3674/7475/8.88

10 466/861/2.55 18785/503439/
7.63 19344/517136/9.20

11 186/433/1.01 8659/270930/5.84 8250/256101/6.70
12 114/303/0.15 319/3882/1.70 280/2797/5.84
13 79/220/0.10 75/242/0.12 74/244/0.11
14 60/130/0.40 125/2139/7.13 161/2834/3.44
15 455/985/0.52 459/963/0.67 469/999/0.66
16 55/122/0.01 60/130/0.11 66/137/0.09
17 60/150/0.12 78/168/0.17 77/170/0.15
18 763/1587/0.89 699/1487/0.73 792/1697/0.92
19 64/148/0.22 122/1900/2.34 79/180/0.39
20 111/350/0.30 118/338/0.48 112/320/0.42
21 804/3213/1.55 430/1899/4.83 571/5294/5.79
22 62/265/0.41 74/356/0.77 2074/2223/9.59

23 4422/9553/1.23 20000/167265/
5.95 19343/128760/5.22

24 61/211/0.32 564/15343/3.83 459/13555/3.39
25 449/1081/0.50 484/1111/0.75 541/1145/0.67
26 58/155/0.09 57/158/0.06 68/329/0.15
27 83/200/0.12 81/191/0.08 80/191/0.10
28 434/1129/0.65 495/1085/0.60 493/1077/0.63
29 530/1264/0.63 939/2239/1.09 953/2233/1.22

30 567/1430/0.90 19014/581435/
2.76 18134/543276/2.13

Total 15420/35425/
23.18

67795/66455/
156.89

146559/894217/
176.58
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Figure 2: Performance profiles of the number of function
evaluations.
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Figure 4: Performance profiles of the CPU.

Table 2: Comparison between CG-BAT and classical algorithm on benchmark functions (F1∼F10).

CG-BAT BA FA CS PSO

F1

Best 1.927E− 03 3.052E − 01 2.481E+ 01 2.340E+ 02 2.340E+ 02
Median 1.408E− 02 5.480E+ 04 4.120E+ 01 4.357E+ 02 3.330E+ 02
Worst 2.233E+ 00 6.569E+ 04 8.028E+ 01 6.119E+ 02 4.140E+ 02
Mean 2.256E− 01 4.920E+ 04 4.411E+ 01 4.153E+ 02 1.340E+ 02
SD 4.869E− 01 1.859E+ 04 1.259E+ 01 9.518E+ 01 2.000E+ 02

F2

Best 2.011E+ 06 3.313E+ 09 9.080E+ 08 3.229E+ 17 5.140E+ 12
Median 1.171E+ 09 1.294E+ 15 1.177E+ 11 7.654E+ 19 6.3157E+ 12
Worst 5.713E+ 10 5.893E+ 50 1.553E+ 12 2.433E+ 22 6.9119E+ 12
Mean 2.363E+ 12 4.310E+ 49 3.051E+ 11 2.263E+ 21 4.153E+ 12
SD 1.261E+ 12 1.461E+ 50 4.102E+ 11 5.976E+ 21 9.518E+ 11

F3

Best 1.634E+ 00 8.563E+ 00 9.877E+ 01 1.062E+ 03 3.229E+ 07
Median 3.115E+ 01 2.996E+ 05 1.618E+ 02 1.996E+ 03 7.654E+ 09
Worst 1.256E+ 02 4.370E+ 05 3.850E+ 02 3.409E+ 03 9.433E+ 12
Mean 1.461E+ 01 2.612E+ 05 1.742E+ 02 2.138E+ 03 2.263E+ 01
SD 7.456E+ 00 1.348E+ 05 6.173E+ 01 5.493E+ 02 5.976E+ 01

F4

Best 5.049E− 03 3.210E+ 02 9.989E − 03 3.026E+ 10 1.082E+ 03
Median 8.544E− 02 5.949E+ 02 8.997E − 02 4.448E+ 10 1.886E+ 03
Worst 5.630E− 01 6.848E+ 02 2.136E+ 00 6.797E+ 00 3.809E+ 03
Mean 1.405E− 01 5.816E+ 02 2.303E − 01 4.567E+ 00 2.138E+ 03
SD 1.481E − 01 7.884E+ 01 4.210E − 01 9.934E − 01 9.493E+ 02

F5

Best 2.685E+ 03 2.967E+ 06 −3.276E− 03 2.831E+ 07 3.026E+ 10
Median 2.553E+ 04 2.529E+ 06 3.007E− 03 4.084E+ 07 4.248E+ 10
Worst 3.907E+ 04 3.495E+ 06 2.215E− 04 8.620E+ 07 6.497E+ 10
Mean 2.423E+ 04 5.436E+ 06 4.901E− 03 4.242E+ 04 4.567E+ 10
SD 6.590E+ 04 6.360E+ 05 6.627E+ 03 1.118E+ 04 9.934E+ 10

F6

Best 1.812E+ 00 2.420E+ 02 2.998E+ 01 1.129E+ 02 2.931E+ 07
Median 3.8097E+ 00 3.074E+ 02 1.575E+ 02 1.378E+ 02 4.984E+ 07
Worst 8.1481E+ 00 3.670E+ 02 2.047E+ 02 1.644E+ 02 8.920E+ 07
Mean 1.6193E+ 00 3.086E+ 02 1.551E+ 02 1.366E+ 02 4.242E+ 04
SD 1.0623E+ 01 3.603E+ 01 3.368E+ 01 1.349E+ 01 1.228E+ 04

F7

Best 1.5168E+ 00 3.024E− 01 1.053E+ 00 2.414E+ 00 1.339E+ 02
Median 4.2901E+ 00 6.876E− 01 1.928E+ 00 4.5175E+ 00 1.378E+ 02
Worst 9.2997E+ 00 1.135E− 02 3.388E+ 00 8.1813E+ 00 1.554E+ 02
Mean 4.2716E+ 00 7.176E− 01 2.017E+ 00 5.153E+ 00 1.366E+ 02
SD 1.5826E+ 00 2.927E− 01 5.223E − 01 1.865E+ 00 1.349E+ 01
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Table 2: Continued.

CG-BAT BA FA CS PSO

F8

Best 0.214E+ 00 2.096E+ 01 2.302E+ 00 8.391E+ 00 2.414E+ 00
Median 1.681E+ 00 2.196E+ 01 3.191E+ 00 1.400E+ 01 2.988E+ 01
Worst 2.881E+ 00 5.996E+ 01 3.648E+ 00 1.750E+ 01 9.575E+ 02
Mean 5.899E+ 00 6.996E+ 01 3.191E+ 00 1.209E+ 01 2.047E+ 02
SD 1.730E+ 00 7.062E − 04 2.904E − 01 1.753E+ 00 1.451E+ 02

F9

Best 2.895E+ 03 7.685E+ 03 4.745E+ 03 4.522E− 03 3.368E+ 01
Median 4.492E+ 03 8.365E+ 03 5.370E+ 03 5.045E− 03 1.753E+ 02
Worst 5.646E+ 03 1.017E+ 04 6.006E+ 03 5.426E− 03 1.928E+ 03
Mean 4.357E+ 03 8.940E+ 03 5.407E+ 03 5.056E− 03 3.398E+ 00
SD 6.414E+ 02 1.242E+ 03 3.363E+ 02 1.747E− 02 2.667E+ 00

F10

Best 2.911E− 03 3.336E+ 01 4.637E+ 02 6.691E+ 02 5.223E+ 01
Median 1.038E− 02 2.473E+ 02 6.892E+ 02 9.105E+ 02 2.311E+ 02
Worst 2.011E− 01 2.944E+ 03 1.304E+ 03 2.290E+ 03 3.188E+ 03
Mean 2.645E− 02 4.916E+ 02 7.193E+ 02 1.073E+ 03 3.648E+ 00
SD 2.926E− 02 6.275E+ 02 2.121E+ 02 3.967E+ 02 3.191E+ 00

Table 3: Comparison between CG-BAT and classical algorithm on benchmark functions (F11∼F20).

CG-BAT BA FA CS PSO

F11

Best 7.536E+ 01 2.799E+ 00 1.414E+ 02 1.337E+ 02 2.904E− 05
Median 1.561E+ 02 2.103E+ 01 1.879E+ 02 2.190E+ 02 9.745E− 03
Worst 2.506E+ 02 0.334E+ 02 2.352E+ 02 3.009E+ 02 4.370E− 03
Mean 1.515E+ 02 3.629E+ 01 1.937E+ 02 2.214E+ 02 6.006E− 03
SD 4.105E+ 01 1.971E+ 01 2.433E+ 01 4.094E+ 01 5.407E− 03

F12

Best 9.448E− 03 1.323E+ 00 2.650E+ 01 1.059E+ 02 3.343E+ 02
Median 1.528E− 02 2.187E+ 01 6.164E+ 01 2.200E+ 02 4.437E+ 02
Worst 3.044E− 01 9.385E+ 02 1.438E+ 02 6.159E+ 02 6.492E+ 02
Mean 1.911E− 01 1.181E+ 02 6.790E+ 01 2.611E+ 02 1.304E+ 03
SD 4.917E− 01 2.293E+ 02 2.559E+ 01 1.384E+ 02 7.193E+ 02

F13

Best 2.094E− 00 9.637E+ 01 1.259E+ 01 1.673E+ 02 2.121E+ 02
Median 1.470E− 03 8.037E+ 02 1.123E+ 02 1.444E+ 01 1.484E+ 02
Worst 9.5017E− 02 3.847E+ 02 1.011E+ 02 1.333E+ 02 1.889E+ 02
Mean 1.495E− 01 8.475E+ 00 1.121E+ 01 1.455E+ 01 2.452E+ 02
SD 3.135E+ 00 6.847E − 01 7.085E − 01 7.923E − 01 0.937E+ 02

F14

Best 1.344E+ 00 8.475E+ 00 2.073E+ 03 1.778E+ 02 1.433E+ 01
Median 2.815E+ 01 4.501E+ 01 4.076E+ 03 3.536E+ 02 2.950E+ 01
Worst 1.918E+ 02 7.523E+ 02 9.651E+ 03 7.081E+ 02 6.164E+ 01
Mean 4.898E+ 01 1.695E+ 02 4.532E+ 03 3.554E+ 02 1.438E+ 02
SD 5.028E+ 01 2.220E+ 02 1.861E+ 03 1.311E+ 02 6.790E+ 01

F15

Best 4.499E+ 01 1.382E+ 04 1.283E+ 05 1.542E+ 08 0.559E+ 08
Median 3.283E+ 02 4.133E+ 05 2.388E+ 05 3.709E+ 08 0.259E+ 09
Worst 2.518E+ 03 1.247E+ 07 3.528E+ 05 6.179E+ 08 1.123E+ 10
Mean 4.926E+ 02 1.929E+ 06 2.392E+ 05 3.760E+ 08 1.011E+ 02
SD 5.304E+ 02 3.115E+ 06 6.522E+ 04 1.192E+ 08 1.121E+ 01

F16

Best 3.462E− 02 6.731E+ 00 1.271E+ 01 1.112E+ 01 3.085E+ 01
Median 0.239E+ 01 1.505E+ 01 1.522E+ 01 1.404E+ 01 8.073E+ 03
Worst 2.046E+ 01 2.832E+ 02 1.912E+ 02 1.834E+ 02 9.076E+ 03
Mean 3.716E+ 00 1.647E+ 01 1.528E+ 01 1.452E+ 01 9.651E+ 03
SD 4.409E+ 00 5.854E+ 00 1.682E+ 00 1.746E+ 00 4.532E+ 03

F17

Best 2.719E+ 02 3.067E+ 01 1.483E+ 01 2.157E+ 01 1.551E+ 03
Median 3.085E+ 02 3.181E+ 01 2.232E+ 01 2.788E+ 01 1.743E+ 05
Worst 3.320E+ 02 3.270E+ 01 2.805E+ 01 2.988E+ 01 2.388E+ 06
Mean 3.053E+ 01 3.178E+ 01 2.276E+ 01 2.718E+ 01 3.528E+ 05
SD 1.668E+ 00 4.720E − 01 3.374E+ 00 2.463E+ 00 2.392E+ 05

F18

Best 1.131E+ 02 1.637E+ 02 2.948E+ 02 2.564E+ 02 6.522E+ 04
Median 1.979E+ 02 2.550E+ 02 3.687E+ 02 3.163E+ 02 1.271E+ 11
Worst 2.686E+ 02 4.179E+ 02 4.154E+ 02 3.596E+ 02 1.522E+ 11
Mean 1.959E+ 02 2.651E+ 02 3.627E+ 02 3.168E+ 02 1.912E+ 02
SD 3.767E+ 01 6.899E+ 01 3.236E+ 01 2.533E+ 01 1.528E+ 01
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Table 3: Continued.

CG-BAT BA FA CS PSO

F19

Best 5.054E− 01 5.082E − 01 2.426E+ 01 1.337E+ 02 1.682E+ 00
Median 3.328E− 00 5.697E+ 01 4.450E+ 01 2.190E+ 06 1.993E+ 01
Worst 3.357E− 00 7.542E+ 01 8.646E+ 01 3.377E+ 03 2.762E+ 01
Mean 2.417E− 00 5.172E+ 01 4.591E+ 01 5.082E+ 06 2.805E+ 01
SD 4.826E − 01 1.981E+ 03 1.265E+ 01 8.308E+ 04 7.542E+ 01

F20

Best 2.861E− 00 5.453E+ 00 5.729E+ 00 5.193E+ 01 5.1842E+ 01
Median 4.319E− 00 5.964E+ 00 6.177E+ 00 1.241E+ 02 7.981E+ 03
Worst 5.766E− 00 6.693E+ 00 6.674E+ 00 2.769E+ 03 9.453E+ 00
Mean 1.262E− 00 6.019E+ 00 6.187E+ 00 3.347E+ 00 5.554E+ 00
SD 7.905E − 01 3.268E − 01 2.475E − 01 3.761E+ 00 6.693E+ 00

Table 4: Comparison between CG-BAT and classical algorithm on benchmark functions (F21∼F30).

CG-BAT BA FA CS PSO

F21

Best 1.118E+ 03 5.517E+ 00 5.919E+ 03 5.919E− 03 6.019E+ 00
Median 2.554E+ 03 6.560E+ 02 9.621E+ 03 9.621E− 03 3.268E − 01
Worst 5.626E+ 03 7.964E+ 03 1.568E+ 04 1.568E− 02 5.517E+ 00
Mean 2.852E+ 03 1.678E+ 03 9.618E+ 01 9.618E− 03 6.560E+ 02
SD 1.105E+ 03 2.032E+ 03 2.226E+ 07 2.226E− 03 7.964E+ 03

F22

Best 1.009E+ 01 1.488E+ 02 2.573E+ 05 2.573E+ 03 1.678E+ 03
Median 1.585E+ 01 1.245E+ 03 7.580E+ 06 7.580E+ 03 2.032E+ 03
Worst 1.824E+ 01 2.330E+ 04 8.664E+ 07 8.664E+ 04 1.488E+ 02
Mean 1.046E+ 01 1.049E+ 02 3.533E+ 04 3.533E+ 04 1.245E+ 03
SD 3.837E+ 05 4.971E+ 04 7.697E+ 04 1.697E+ 05 2.330E+ 04

F23

Best 5.828E+ 03 8.280E+ 01 4.124E− 04 4.124E+ 04 1.049E+ 02
Median 2.383E+ 04 5.373E+ 03 5.220E− 04 5.220E+ 04 4.971E+ 04
Worst 5.416E+ 04 3.294E+ 04 7.472E− 04 7.472E+ 04 8.280E+ 01
Mean 2.562E+ 04 8.130E+ 03 5.336E− 04 5.336E+ 04 5.373E+ 03
SD 7.676E+ 03 8.472E+ 03 8.132E− 03 8.132E+ 03 3.294E+ 04

F24

Best 0.041E− 03 1.080E − 01 4.375E+ 01 4.375E+ 01 8.130E+ 03
Median 1.258E− 02 1.507E+ 01 8.306E+ 01 8.306E+ 01 8.472E+ 03
Worst 2.684E− 02 5.574E+ 01 1.201E+ 02 1.201E+ 02 1.080E − 01
Mean 8.481E− 01 1.900E+ 01 8.040E+ 01 8.040E+ 01 1.507E+ 01
SD 1.717E− 01 1.828E+ 01 1.588E+ 01 1.588E+ 01 5.574E+ 01

F25

Best 7.078E− 07 0.326E+ 03 5.169E+ 04 5.169E+ 03 1.900E+ 01
Median 8.827E− 06 2.920E+ 03 8.395E+ 05 8.395E+ 05 1.828E+ 01
Worst 2.223E− 05 7.001E+ 05 1.329E+ 06 1.329E+ 06 0.326E+ 03
Mean 6.204E− 05 3.194E+ 05 8.815E+ 05 8.815E+ 05 2.920E+ 03
SD 2.312E− 05 1.916E+ 05 1.932E+ 05 1.932E+ 05 7.001E+ 05

F26

Best 1.707E+ 02 2.994E+ 01 1.330E+ 02 1.330E+ 02 3.194E+ 15
Median 2.517E+ 02 5.895E+ 01 1.625E+ 02 1.625E+ 02 1.916E+ 15
Worst 3.456E+ 02 9.913E+ 01 1.845E+ 02 1.845E+ 02 2.994E+ 61
Mean 2.599E+ 02 5.746E+ 01 1.580E+ 02 1.580E+ 02 5.885E+ 01
SD 3.756E+ 01 1.825E+ 01 1.558E+ 01 1.558E+ 01 9.913E+ 01

F27

Best 2.126E+ 01 1.093E+ 00 1.366E+ 01 1.366E+ 01 5.746E+ 04
Median 3.604E+ 01 4.073E+ 00 2.384E+ 01 2.384E+ 01 1.825E+ 05
Worst 8.057E+ 01 9.562E+ 00 3.540E+ 01 3.540E+ 01 1.993E+ 06
Mean 3.979E+ 01 5.675E+ 00 2.417E+ 01 2.417E+ 01 4.373E+ 00
SD 1.681E+ 01 3.920E+ 00 5.004E+ 00 5.004E+ 00 9.772E+ 00

F28

Best 1.252E− 03 2.595E+ 00 1.338E+ 01 1.338E+ 01 8.335E+ 05
Median 1.462E− 02 5.744E+ 00 1.559E+ 01 1.559E+ 01 1.329E+ 06
Worst 1.737E− 01 1.145E+ 01 1.640E+ 01 1.640E+ 01 8.995E+ 09
Mean 1.474E+ 01 5.920E+ 00 1.540E+ 01 1.540E+ 01 1.932E+ 05
SD 1.235E+ 00 2.453E+ 00 7.839E − 01 7.839E − 01 1.220E+ 02

F29

Best 7.293E+ 03 2.736E+ 04 2.281E+ 04 7.281E+ 03 1.895E+ 09
Median 8.803E+ 03 4.228E+ 04 3.698E+ 04 8.698E+ 03 1.888E+ 09
Worst 9.480E+ 03 5.993E+ 04 4.624E+ 04 9.624E+ 03 2.580E+ 09
Mean 3.722E+ 03 4.208E+ 03 8.712E+ 03 8.712E+ 03 1.998E+ 01
SD 5.060E+ 02 7.320E+ 02 5.463E+ 02 5.463E+ 02 1.336E+ 01
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that the CS algorithm uses a number of 2N function eval-
uations at each iteration, we adjust tmax for this case to 250.
*e dimensionality of all benchmark functions is D� 30.

6.2.2. 9e First Experiment. For meaningful statistical
analysis, each algorithm was run 51 times using a different
initial population at each turn. *e global minimum ob-
tained after each trial was recorded for further statistical
analysis. Subsequently, the mean value of the global mini-
mum, the standard deviation (SD), the best solution, the
median, and the worst solution values have been computed
and are presented in Tables 2–4. From the results presented
in Tables 2–4, the new directional bat algorithm achieved
better results for 20 functions (F1, F2, F3, F4, F8, F10, F12,
F13, F14, F15, F16, F18, F19, F20, F22, F23, F24, F25, F28,
and F29), while the BA obtained better results for 3 functions
(F7, F26, and F27). *e FA has better scores for 2 functions
(F5 and F17). CS obtained best results for F9, F21, and F30
and PSO for F11. We can show that the following mono-
tonically decreasing function is more suitable and gives
stability to the algorithm.

6.2.3. 9e Second Experiment (Nonparametric Statistical
Tests). In this section, to evaluate CG-BAT performance,
nonparametric statistical tests were carried out. We per-
formed Friedman’s test and pairwise comparisons. Table 5
shows the descriptive statistics for the five algorithms, which
gives the number of values studied, the mean and the
standard deviation, and the highest value of the values for
each method and the lowest value for it. Note that CG-BAT
has the least arithmetic mean of 72929.28687 and the
standard deviation of 372879.0388, which is lower than the
rest of the algorithms, with the lowest and greatest value for
the method.

Table 6 presents the Friedman rank test. For this test, an
algorithm is considered better if it has a low rank. From the
results, CG-BAT has the lowest rank for the two tests, which
means that it is the best performing algorithm from the
comparison. In addition, the last two rows present the test

statistic and p value. *e statistic is distributed according to
the chi-square distribution with 4 degrees of freedom. *e
lower p value of the different tests suggests the existence of
significant differences among the considered algorithms at
α� 0.01 level of significance.

To highlight the differences between CG-BAT with each
of the other algorithms, Table 7 presents the pairwise
comparison results using the Friedman test. *e control
method is CG-BAT. *e analysis of the Friedman rank test
shows significant differences between CG-BAT and four
algorithms (BA, FA, CS, and PSO) according to the p values
of chi-square statistic which all are less than α� 0.05 level of
significance, and since CG-BAT algorithm for all pairwise
comparisons has a minimum rank (1.28 with BA, 1.24 with
FA, 1.24 with CS, and 1.10 with PSO), the results reveal that
CG-BAT algorithm is significantly superior to BA, FA, CS,
and PSO algorithms.

6.2.4. 9e 9ird Experiment (Convergence Curve Analysis).
*e convergence curve is an important indicator for the
performance of the algorithm, through which we can see the
convergence speed and the ability of the new algorithm
optimum. In order to evaluate the modified CG-BAT, this
technique is analyzed and tested in some numerical tests,
and to illustrate the performance of these methods, we
applied Dolan and Moré [21] to analyze the efficiency of the
algorithm. Performance profiles based on mean perfor-
mance, standard deviation (SD), and best solution are shown
in Figures 5–7.

Table 4: Continued.

CG-BAT BA FA CS PSO

F30

Best 8.437E+ 04 1.048E+ 02 8.566E+ 03 1.566E+ 01 1.384E+ 02
Median 1.588E+ 05 2.756E+ 03 5.394E+ 04 2.394E+ 01 1.540E+ 03
Worst 2.346E+ 05 4.793E+ 04 2.811E+ 05 3.811E+ 01 2.417E+ 01
Mean 1.597E+ 05 5.961E+ 03 8.159E+ 04 8.159E+ 01 9.090E+ 03
SD 4.048E+ 04 9.588E+ 03 6.481E+ 04 6.481E+ 04 4.237E+ 01

Table 5: Descriptive statistics for the five algorithms.

Algorithm N Mean Std. deviation Minimum Maximum
CG-BAT 29 72929.28687 372879.0388 0.0000007080 2010000.000
BA 29 114242087.4 614631784.1 0.1080000000 3310000000
FA 29 31326970.45 168608177.7 − 0.003280000 908000000.0
CS 29 1.11379E+ 16 5.99796E+ 16 0.0045200000 3.23000E+ 17
PSO 29 1.14457E+ 12 2.55784E+ 12 22.60000000 9.43000E+ 12

Table 6: Friedman rank test (Experiment 1).

Algorithm Friedman
CG-BAT 1.86
BA 2.42
FA 3.00
CS 3.29
PSO 4.43
Statistic 44.139
p value 0.000
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7. Conclusions

In this study, we have submitted new spectral CG methods.
A crucial property of proposed CGmethods is that it secures
sufficient descent directions. Under mild conditions, we
have demonstrated that the new algorithms are globally
convergent for each uniformly convex and general functions
using the strong Wolfe line search conditions. *e pre-
liminary numerical results show that new algorithms per-
form very well and also an improved version of the standard
bat algorithm, called the new directional bat algorithm (CG-
BAT), has been proposed and presented. Two modifications
have been embedded to the BA to increase its exploitation
and exploration capabilities and consequently have signif-
icantly enhanced the BA performance. *ree sets of ex-
periments have been carried out to prove the superiority of
the proposed CG-BA). *e performance is compared by
using thirty test functions, under seven optimization algo-
rithms (SS, HS, New, CG-BAT, BA, CS, FA, and PSO). *e
comparison results show that the enhanced algorithms (New
and CG-BAT) are better than the original algorithms and
have relatively stable performance in both the optimization
ability and the convergence speed.

Table 7: Pairwise comparison results over all algorithms with CG-BAT as a control method at α� 0.05 (Experiment 1).

Procedure Algorithm Rank Chi-square statistic p value

Friedman

BA 1.72 5.828 0.016
FA 1.76 7.759 0.005
CS 1.76 7.759 0.005
PSO 1.90 18.241 0.000
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