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In the present study, an attempt is made to explore the flow field inside the differentially heated lid-driven square cavity. *e
governing equations along with boundary conditions are solved numerically. *e simulated results (100≤Re≤ 1000 and
0.001≤Ri≤ 10) are validated with previous results in the literature. *e convection differencing schemes, namely, UPWIND,
QUICK, SUPERBEE, and SFCD, are discussed and are used to simulate the flow using the MPI code. It is observed that the
computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Plots
demonstrate the influences of Re and Ri in terms of the contours of the fluid streamlines, isotherms, energy streamlines, and field
synergy principle.

1. Introduction

Without external forces such as exterior wind or fans, fluids
flow because of density variations. *ese variations of
density inside the enclosures are due to natural and forced
convections.*ere is a general practice in evaluating the vital
role of each of the convection type for determining the
dominant convection type. Laminar natural and mixed
convection in enclosures was broadly analysed both nu-
merically and experimentally with major attention in wide
number of engineering and technical applications. Analysis
indicates that Richardson number (Ri) characterizes mixed
convection flow, where Gr and Re represent the strength of
the natural and forced convection flow effects, respectively.
*e limiting case Ri⟶ 0 and Ri⟶∞ correspond to the
forced and natural convection flows, respectively. For the
past recent decades, lot of experimental and theoretical
analysis on laminar free convection in the enclosures is
performed.

When Pr≥ 1 and Pr≤ 1, Koseff and Street [1] studied and
performed a scale analysis of free and forced convection flow
over a vertical wall, and he presented the benchmark results
for the transformation from the forced convection dominant

flow to natural convection dominant flow and carried out
the results which are not the same for fluids. Koseff and
Street [2, 3] performed a number of experiments in a cavity
filled with water and calculated the heat flux at distinct places
over the hot floor for the range of Gr and Re and showed that
the heat transfer rate is a weak function for the range of Gr
with 2200≤Re≤ 12000. Mixed convection problem with lid-
driven flows within an enclosure finds a wide range of
applications in various fields of engineering and science such
as flow and heat transfer in solar ponds [4], dynamics of
lakes [5], thermal-hydraulics of nuclear reactors, and float
glass production [6]. *e lid-driven cavity problem has been
extensively used as a benchmark case for the evaluation of
numerical solution algorithms. Moallemi and Jang [7]
analysed the effects of Prandtl number (Pr) on a laminar
mixed convection heat transfer in a lid-driven cavity. *ey
performed the numerical simulations for two-dimensional
laminar flow (100≤Re≤ 2200) and studied the effects of
small to moderate Prandtl numbers (0.01≤Pr≤ 50) on the
flow and heat transfer characteristics in a square cavity for
various values of Richardson number (Ri). *e temperature
and flow fields in the cavity show the strong influence of
Prandtl number, Pr. *e local and average Nusselt numbers
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are also reported for various values of Re, Ri, and Pr. Oztop
and Dagtekin [8] studied steady-state two-dimensional
mixed convection problem in a vertical two-sided lid-driven
differentially heated square cavity. *e left and right moving
walls were maintained at different constant temperatures
while the upper and bottom walls were thermally insulated.
*ree cases were considered depending on the direction of
moving walls and the Richardson number, Ri.*ey observed
that both the Richardson number and the direction of
moving walls affect the fluid flow and heat transfer in the
cavity. For Ri≤ 1, the influence of moving walls on the heat
transfer is the same when the walls move in the opposite
direction regardless of which side moves upwards, and the
influence is less when both the sides move upwards.

In FVM, the convection term is discretized-based central
differencing (CD), which is of a second-order accurate.
However, the combination of the explicit time integration
and CD creates unconditionally unstable solutions. In order
to attain stability, differencing schemes of a first-order ac-
curate have been introduced. *e unsatisfactory behaviour
of the first-order schemes with respect to the boundedness
and the combined spatial and temporal discretization, in-
troduces an unnecessary dependence of the solution on the
time-step used to create it. Hence, it is important to obtain
bounded numerical solutions while solving the transport
equations. *us, a good differencing scheme must balance
between boundedness and accuracy.

Apart from the issues of accuracy and boundedness,
which are essential for accurate calculations, modern dif-
ferencing schemes are also required to be convergent and
computationally inexpensive. *e issue of computational
cost includes both the additional face-by-face operations
required to determine the weighting factors in the total
variation diminishing (TVD) and normalised variable dia-
gram (NVD) schemes and the additional effort required to
get solutions for steady-state problems. With the develop-
ment of NVD, the accuracy and boundedness of differencing
schemes have been improved at the expense of convergence.
For this reason, still there is a need to analyse the convection
discretisation schemes. In this paper, numerical examples
are given using the high-order convection differencing
schemes, namely, Upwind Difference, QUICK, SUPERBEE
from a family of TVD schemes, and SFCD from a family of
NVD schemes. *ey are compared with respect to their
accuracy and computational time. *e SIMPLE algorithm is
used to deal with the pressure-velocity coupling. *e
Gauss–Seidel method of iterative procedure is used to solve
the system of algebraic equations. *e gird-independent
nonuniform mesh is used such that the near wall eddies are
captured accurately. *e results are validated with those
results available in the literature and also shown that the
distributed memory parallel processors support greater
potential CPU speedup.

To describe flow field and thermal field characteristics
from the enormous output data, apart from the traditional
plotting tools such as isotherms and streamlines, Hooman
[9] introduced and developed a new visualization tool
known as the energy flux vectors.*ese vectors represent the
flow of energy and are tangent to heatlines; also the new

technique of convection heat transfer called field synergy
principle by Guo et al. [10, 11] is employed in the present
study.

In Section 2, the problem description and the corre-
sponding closed form of the mathematical model are
elaborated. *e numerical method to solve the equations is
outlined. *e results are validated with the experimental/
numerical methods available in the literature. Section 3 deals
with the results and its discussion. Finally, the conclusions of
the present model are listed.

2. Problem Description and
Governing Equations

*e considered square enclosure, along with bottom wall
and the half-height of the vertical right and vertical left walls,
is differentially heated. For the considered enclosure, the
gradient of temperature ΔT�TH − TC> 0, and top wall is
assumed to be adiabatic as shown in Figure 1.

*e conservation of mass, momentum, and energy
equations are as follows:

∇ · V � 0, (1)

(V · ∇)V � −∇P +
1
Re
∇2V + RiT∗, (2)

(V · ∇)T∗ �
1
Re
∇2T∗, (3)

the equations are subjected to the boundary conditions as
V� (1, 0) at Y� 1 andV� 0 at Y� 0 and alsoV� 0 at X� 0, 1.
T∗ � 1 whenY � 0 (0≤X≤ 1) and also T∗ � 1 when X � 0,

1(0≤Y≤ 0.5). Also T∗ � 0 when X � 0, 1 (0.5≤Y< 1) and
zT∗/zY � 0 at Y� 1.

In the above equations (1)–(3), V, T∗, and P denote the
field variable’s velocity, temperature, and pressures, re-
spectively. *e control variables are Ra and Pr. *e above
equations are solved by using the open-source software
OpenFOAM. *e second-order upwind numerical method
was used for the calculation of derivatives. *e conjugate
gradient scheme is used for accelerating the convergence.
*e convection differencing schemes, namely, UPWIND,
QUICK, SUPERBEE, and SFCD, are used to discretize the
convection term and are detailed as follows.

In the SUPERBEE method, the field variable Φ is
expressed as a sum of the first-order bounded differencing
scheme (UD) and a “limited” higher-order correction (HO) as

Φf � (Φ)UD + Ψ(r) (Φ)HO − (Φ)UD􏼂 􏼃, (4)

where (Φ)HO denotes the face value (f) of F for the selected
higher-order scheme and Ψ represents the flux limiter
function, which is given as

r �
ΦC − ΦU

ΦD − ΦC

. (5)

*e nodal points U, C, and D are selected based on the
direction of flow on the face f. In this method, the limiter
function Ψ(r)�max [0, min (2r, 1), min (r, 2)].
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*e self-filtered central differencing (SFCD) scheme
employs the boundedness of the upwind differencing
scheme (UDS) and the accuracy of the central differencing
scheme (CDS).*is scheme removes the unphysical extrema
whenever they would arise. Basically, this filter is locally
shifting towards the UDS in such zones. *us, in this
method, the blending of CDS and UDS will be carried out
with a blending factor c, ranging from 0 to 1 depending on a
computed face e, and is defined as

ΦSFCD
e � ceΦ

CDS
e + 1 − ce( 􏼁ΦUDS

e . (6)

*e convection differencing schemes, namely, UPWIND,
QUICK, SUPERBEE, and SFCD, are compared in terms of
Nu using the MPI code and are tabulated in Table 1.

With respect to the CPU time, it is observed that the
computational cost for all the differencing schemes get
reduced tremendously when the MPI code is imple-
mented. Also, the SFCD scheme gave the Nu results close
to those available in the literature.

3. Results and Discussion

In this section, the flow is simulated in the 2D square cavity
with a moving lid of velocity U0. *e simulated results are
shown with respect to the streamlines and isotherms and
field synergy with respect to the control parameters arising
in the system.

Table 2 represents the comparison of the present results
with those of Iwatsu et al. [12] and Ouertatani et al. [13] in
terms of Nu along the hot wall. It gives good agreement
between the present simulated results and the results from
the literature. It is also observed that for a fixed Ri, when Re
increases Nu also increases. *is shows that conduction
starts to prevail for increasing Re.

3.1. Streamlines. When Ri is small (<1) and Re increases, the
primary central vortex appears to play a major role in the
fluid flow, and it is changing its location from the top to the
bottom due to less buoyancy effects (Figures 2(a)–2(c)). Also
as Re increases, two secondary eddies are observed at the
bottom part of the cavity because of lid movement. When Ri

is increasing from 1 to 10, it is observed that more con-
vection takes place, which results in the emerging eddy size
increasing and forms another secondary vortex
(Figures 2(b)–2(i)).

3.2. Isotherms. Figure 3 shows the isotherms in the cavity for
different Re and Ri. For small Re and with increase of Ri, the
flow starts at the hot bottom wall and forms the horizontal
isotherms because of the existence of the conduction mode.
When Re increases with increase of Ri, the enhanced
convection also leads to the distorted and asymmetric iso-
therms, i.e., the isotherms get distorted at the centre of the
cavity due to convection. It is also observed that more
distortion occurs only in the lower half of the cavity because
of the hot wall effects and also high Re. *ese results clearly
show the prevailing convection mode, and they coincide
with those shown in Figure 3.

3.3.EnergyStreamlines. In the two-dimensional flow, energy
streamline is calculated by solving the Poisson equation of
the form ∇2Φ � (∇ × E)k, where Φ is known as the energy
streamfunction and k denotes the unit vector. *ese lines
include the energy contribution because of surface forces
and energy fluxes. *erefore, the participation of extra
energy fluxes from the energy streamfunction is useful for
examining the quantitative details. Mallinson and Davis [14]
noticed that the energy flux density vectors explore an
imaginary energy flow lines, i.e., like path line trace.
Mahmud and Fraser [15] revealed the ‘free energy
streamline’ as the streamline of a flow which starts at the wall
which is hot, forms rolls that are circular, and later intersects
at the wall which is cold.*is is because of convective energy
participation, and it is negligible in value in comparison with
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Figure 1: Differentially heated lid-driven square cavity.

Table 1: Test comparison of convective differencing schemes for
the flow in 2D cavity when Re� 400 and Ri� 1.

Schemes Nu CPU time with MPI
(s)

CPU time without MPI
(s)

UPWIND 0.548 8459 33836
QUICK 0.954 8157 32680
SUPERBEE 1.235 7951 31804
SFCD 1.498 5784 23136

Table 2: Representation of the validation of Nu for different Re and
Ri.

Re Ri
0.001 1 10

100
Present work 1.825 1.3187 1.085

Iwatsu et al. [12] 1.82 1.33 1.08
Ouertatani et al. [13] 1.836 1.348 1.092

400
Present work 3.88 1.498 1.168

Iwatsu et al. [12] 3.99 1.50 1.17
Ouertatani et al. [13] 3.964 1.528 1.130

1000
Present work 7.11 1.839 1.388

Iwatsu et al. [12] 7.03 180 1.37
Ouertatani et al. [13] 7.284 1.856 1.143
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conductive thermal energy at the locations of modest ve-
locity components. Trapped energy streamline is the
streamline that starts at the hot wall, flows through the fluid,
and forms a closed circular loop because of kinetic and
convective thermal energies dominant over the thermal
energy due to conduction. Figure 4 shows the energy
streamlines for different Re and Ri. It is observed that free
energy streamlines exist only at the boundaries, whereas
trapped energy streamlines are formed at the top of the
cavity. For small Ri and with increase of Re, it is clearly
observed that the primary vortex location is changing from
the top to the bottom and also the size of vortex increases
(Figures 4(a), 4(d), 4(g)). Similar effect continues for high Ri,
and also a single vortex breaks into more vortices due to the
presence of secondary flows (Figures 4(b), 4(e), 4(h) and
Figures 4(c), 4(f ), 4(i)).

3.4. Field Synergy. Field synergy principle can disclose the
character of improved heat transport (Guo et al. [10, 11]),
and it is given by

βf � cos− 1 V · ∇T
|V||∇T|

􏼠 􏼡. (7)

In equation (7), |V|, |∇T|, and cos βf represent the scalar
fields, while V and ∇T represent vector fields. *us, synergy
concludes the strength of the convective heat transfer.

Figure 5 depicts the field synergy angle for different Re and
Ri. Blue colour contour indicates that the field synergy angles
are small where the velocity vector and temperature gradient
are in the same direction. Red colour contour indicates the high
synergy angle where the velocity vector and temperature
gradient are perpendicular. It is observed that the synergy angle
augments as Re and Ri, which leads to the chaotic flow.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2: Simulated streamlines for different Re and Ri values. (Re, Ri)� (a) (100, 0.001), (b) (100, 1), (c) (100, 10), (d) (400, 0.001), (e) (400,
1), (f ) (400, 10), (g) (1000, 0.001), (h) (1000, 1), and (i) (1000, 10).
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Figure 3: Simulated isotherms for different Re and Ri values. (Re, Ri)� (a) (100, 0.001), (b) (100, 1), (c) (100, 10), (d) (400, 0.001), (e) (400, 1),
(f ) (400, 10), (g) (1000, 0.001), (h) (1000, 1), and (i) (1000, 10).

(a) (b) (c)

Figure 4: Continued.
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(d) (e) (f )
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Figure 4: Simulated energy streamlines for different Re and Ri values. (Re, Ri)� (a) (100, 0.001), (b) (100, 1), (c) (100, 10), (d) (400, 0.001), (e)
(400, 1), (f ) (400, 10), (g) (1000, 0.001), (h) (1000, 1), and (i) (1000, 10).
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Figure 5: Continued.
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4. Conclusions

*e self-filtered central differencing (SFCD) scheme is the
combination of the two schemes, namely, the boundedness
of the UDS and the accuracy of CDS. It is in fact a central
difference scheme with a native filter to remove unphysical
extrema whenever they would arise. A parallel computing
MPI code is adapted to run the simulations. From the re-
sults, it is observed that the NVD scheme gave better results
among all the employed convective discretization schemes
irrespective of the mesh structure. In this article, SFCD,
which is a family of NVD, is used. For a mixed convective
differentially heated cavity, when Ri is small (<1) and as Re
increases, the primary vortex appears to play a major role in
the fluid flow, and it is changing its location from the top to
the bottom.When Ri is 10 and 100, the size of emerging eddy
is increasing and forms another secondary vortex as Re
increases. When Re is fixed and with increase of Ri, the
average Nusselt number also increases.
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Figure 5: Simulated field synergy for different Re and Ri values. (Re, Ri)� (a) (100, 0.001), (b) (100, 1), (c) (100, 10), (d) (400, 0.001), (e) (400,
1), (f ) (400, 10), (g) (1000, 0.001), (h) (1000, 1), and (i) (1000, 10).
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