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In this paper, we present a dynamical method for computing the syzygy module of multivariate Laurent polynomials with
coeflicients in a Dedekind ring (with zero divisors) by reducing the computation over Laurent polynomial rings to calculations
over a polynomial ring via an appropriate isomorphism.

1. Introduction

Our goal is to give a dynamical method for computing a
finite basis for the syzygy module of finitely many multi-
varjate Laurent polynomials with coefficients in a Dedekind
ring R. More precisely, given nonzero polynomials f,
oo foeR[xfL o xF], we will compute s,...,s, €
R[xil, ... x*1]™!  generating the syzygy module
Syz(fis-- o f) = 1{'(wy,...,w) € R[x}!, .., x 1]
suchthatw, f, +--- + w,f, = 0}. The technique consists in
reducing the computation over the Laurent polynomial ring
R[xf!,...,x*'] to a problem over a polynomial ring
R[x,,...,x,, y] via an appropriate isomorphism. One ad-
vantage of this indirect approach is that we can use tech-
niques over polynomial rings more eflicient than the
corresponding methods in Laurent polynomial rings. Such
kind of algorithm can be used in signal processing for the
computation of the inverse FIR filter of a given multidi-
mensional FIR filter. Our approach is inspired by the theory
developed in the papers [1-13] and outlined in the next
section.

2. Computing Dynamically a Basis for
Syzygies of Polynomials over Dedekind Rings

Let S be a multiplicative subset of a ring R; then, the lo-
calization of R at S is the ring S™!R = {(x/s),x € R,s € S}

and the elements of S are forced to be invertible. If x € R, the
localization of R at the multiplicative subset . (x) generated
by x will be denoted by R,.. Moreover, by induction, for each
X5 Xg € R, we define Rxl.x2 ..... X = (Rxl.x2 ..... xk,l)xk'

Now, let R be a Dedekind ring and consider
fio--o fs € Rlxp, .0, x,]\{0}. First of all, we need to
present a dynamical process [6] for computing a basis for
Syz(f1,. .., f,). This method works like the case where the
basic ring is a Noetherian valuation ring [11]. The Noe-
therian hypothesis is added so that a dynamical Grobner
basis G = {($1,G,), - .., (S, Gp)} for the ideal (f;,..., f;)
of R[x,,...,x,] can be computed. The only difference is
when one has to handle two incomparable (under division)
elements a, b in R. In this situation, one should first compute
u, v, w € R such that

ub = va, "
<[wb =(1-ua.

Henceforth, one opens two branches: the computations
are pursued in R, and Ry,z={(x/y),xeR
and3z € Rsuchthat y = 1 + zu}. Note that contrary to
[11], the localization R, instead of R,_,, is used in order to
avoid redundancies. The Dedekind ring R is forced to behave
like a valuation ring and this situation will produce a binary
tree in which leaves correspond to localizations S7IR,
1 < j <k, of R at comaximal multiplicative subsets S;, . . ., S.
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The fact that a basis for Syz(f,,..., f,) can be computed at
each leaf together with Lemma 1 will yield the desired one.

Let H;= {hj,l,...,hj’Pj} denote a basis for
Syz(fi,---» fo) over (S;'R)[x,...,x,], 1<j<k. There
exists a d; € §; such that d;h;; € R[x,,...,x,], for each
1<i<pj; and {d]hjl,.. d]h]p is a generator for
Syz(f,,...,f,) over (Sle)[xl,...,xn]. As explained in

Theorem II.3.6 [10], we have the following concrete local-
global principle for coherent modules.

Lemma 1. (syzygy, coherent modules). Let A be a ring,
Siy- .S, be comaximal monoids, M be a A—module, and
a=(ap,...,a,) €M™

(1) The syzygy module NCA™ of the vector whose ele-
ments a; are seen as vectors in M is finitely genemted
if and only if each syzygy module N; € A{' of the a;’s
vector (a; are seen as vector in M) zsﬁmtely genemted

(2) M is coherent if and only if each My is coherent.

(3) The ring A is coherent if and only if each Ag is
coherent.

Proof.

(1) Let S be a monoid in A and N' be the syzygy module
of the vector whose elements a; are considered in
M. We will prove that Ng = N'. It is clear that
Ng € N'. Conversely, ifzgil (xj/sj)a; = 0in Mg, let

and u; =[5, such that

—OlnMSandZ] psxuja; = 0in M for

us denote u =]];s;

Z;'il x]

seSs. We have = (Voo V) = (sx3Uy, ..,
u,,) € N and ((xl/sl), oo (x,ls,,) = (Usu)y

in Ag.
(2) Let a=(ay,...,a,) e M" and NCA™ be the

module of relations for a. For all monoids S, N is the
module of relations for a in Mj.

(3) Is a particular case of 2. O

,a,,) € RIxFh o x 2™ and

Theorem 1. Let a = (ay,...
a=ula,,...,a,,), where u= x]fl Lxisa polynomial in
R[x,,...,x,] such that a = (a,,...,d,,) € R[x,,...,x,]".
The syzygy module N of a over R[xi', ..., x2'] is the same

than the syzygy module of a over R[xy,...,x,].

Proof. Let us denote by NCR[xi',...,x*']" the syzygy

module of a over R[x{!,...,x*'] and N' CR[x,,...,x,]"
that of @ in R[xy,...,x,].

iy lxa —0 over  R[x;,...,x,], then
Y % (@ /u) Z _, x;a; =0, so we have N/CN.

Conversely if Z 1x ;=0 over R[x{!,...,x; '], we
can suppose that X; e R[xl, ... x,]™ (the set of generators
of a over R[x{!,...,x*']" can be supposed with only el-
ements  of R[xl, ...»X,]) and we can write
Y xua; =Y x;a; = 0. Finally, N = N'. O

3. Syzygies of Laurent Polynomials over
Dedekind Ring

Now, we can give a method for computing a set of generators
for the syzygy module, Syz(f,,..., f,), over the Laurent

polynomial ring R[x{',...,x*!]. For this, we need the
following.
Lemma 2 (see [14]). Let I be the ideal of R[x,,...,x,, y]
generated by x, ...x,y — 1; then,
+ + R[x,..-,x>)/]
R[xf!, . x|z —t2 2w 2] 2)
[, x] : (

Proof. Let ¢ be an R- algebra homomorphism defined from

R[xy,...,x,, y] to R[xL, ..., x 1] by
¢(x;) = x;,
: O O (3)
d(y)=x, ...x,

and extended to R[xy,...,x,, y] as follows: for a € R and

g €Rlxy, ..., x,, 9],
¢(af)=ad(f)
¢(f+9)=9¢(f)+¢(9) (4)
¢(f9) = (f)e(g).

Considering such isomorphism, our problem is reduced
to a computation over the polynomial ring R[x, ..., x,, y].
More precisely, we are going to rely on such isomorphism
between R[x{!,...,x*!] and (R[x,,...,x,, y]/I) to obtain
an algorithm computing syzygy basis in R[x;"!, ..., x!].

The previous isomorphism is well defined, as it does not
depend on the way elements of R[x,,...,x,,y]/I and
R[x{!,...,x!] are represented. First, every Laurent poly-
nomial can be written as a polynomial in the variables
Xpee XX ...x,Y, and to get an element of R[x|,

..»X,, y] from a Laurent polynomial by this isomorphism,

we have to consider the relation x,...x,y =1 on I.

Note that if t = x{' ... x;" with e; € Z being a term of
Rlx/!,...,x "] and e = -min{0,e,,...,e,}, we have

¢ () = x0T X e R Xy, X ) (5)

n

Conversely, each element of R[x,,...,x,, y]/I is the
image of a polynomial in R[x,,...,x,, y] through the ca-
nonical (surjective) homomorphism of R-algebras:

R[xpr. .2 %, 9] _)M (6)

,X,, y] into 7 = f (mod (I)).

Given f € R[x,,...,x,, ], we obtain f by replacing x;
by X; and y by ¥, bearing in mind that X, ---X,.y = 1. Each
f €R[xy,...,x,, y]/I can be expressed as algebraic com-
bination of %, . . ., X,,, 7, with coefficients in R. By taking this
expression of f without the bars over variables, we get a
polynomial p € R[xy,...,x,, y] such that p = f. Also, each
g with f as image can be written as g = p+ (x,...x,y —
1)q where g € R[x,, ..., x,, y].

which converts f € R[x,...
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By the isomorphism between R[xj',...,x'] and
R[x,,...,x,, y]/I, we get the image of f replacing X; by x;
and ¥ by x7' -+ x, 1 O
Theorem 2. Let {sy,...,s,} be a set of generators for
Syz(fir--s froXy ... X,y — 1); then, {5,,...,5,,} is a set of
generators for Syz(fi,..., f,)-

Proof. Since g, f, +---+q,f, =0 is equivalent to q, f, +
et g frtq(x.oox,y-1)=0 with
q € R[x,,...,x,, y], the R[x,, ..., x,, y]-homomorphism

Syz(fise s froxy . x,y—1) — Syz(?l,...,ﬁ), )
s=(qp--9-9)+—35= (G>---»q,)

is surjective. We conclude that if {s,...,s,} is a set of
generators  for  Syz(f,...,f,,x;...x,y—1), then
{s1,...,5,,} is a set of generators for Syz(f,,...,f,). 0O

4. Illustrative Examples

Example 1. Let I be the ideal of Z[x*!, y*!] generated by
fi=10y""+1,
fo=6x"y+3x 'y, (8)
fi=12x—y+6x >y > -10.

To compute a set of generators for Syz(f,, f,, f3), we
rely on the isomorphism between Z[x*',y*'] and
Z|x, y,t]/{xyt — 1). It is equivalent to compute a set of
generators for Syz(g,, g,, g;) with

g, = 10%t + 1,
G, = 6% + 31, (9)
G = 12x -y + 61 — 10.

First of all, let us compute in Z [x, y, t] a set of generators
tor Syz(g,, g, 93> 94) With

g, = 10xt + 1,

9o = 6x2y+3t, (10)
g3 = 12x—y+6t2—10,

gy =xyt—1.

Let us use the lexicographic order with x >t > y as mo-
nomial order to compute a dynamical Grobner basis for | =
(91> 92 93 94) in Z[x, y,t]. As the leading coefficients of g,
and g, are not comparable under division in Z and
lem (10, 6) = 2, we can open two following leaves to proceed:

z

¢ N (11)

Zs 2

In Zs, S(g1,9,) = (3/5)xyg, —tg, = (3/5)xy—
3t? := g.. Since the leading coefficients of g, and g5 are not
comparable, we need to open two new leaves as

ZS
VAR (12)
Z5.3 ZS.Z

In Zs;, Gs3={y+10,2x+t%,1-5°} is a special
Grobner basis for J at the leaf Z; 5. And over Z; 5 [x, y,t], we
have Syz(g1> 95, 93, 94) as

s 2x +t?
2xy + yt? yt2+2 s
ty + 10t t2y + 102 1 >
Em— ——t-Cxt
3 15 3
0 0
-10£* + 2xy —10£% + 2 + 2xyt + 20xt §x+4x2t (13)
3xyt? — 3t y —xyt+1
—xyt+1 =2t 0
0 1 0
-30xt* + 6x7y -10 + 12x 10xt + 1

In Zs,, we find Gs,=/{y+10,6x+3t% (3/5)
-3t3,10xt + 1} as a special Grébner basis for J at the leaf

Zs,, and we have the following Syz(g,, g,, g3, gs) over
Zs,[x, y,t]:
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3 3
10 5
6xy + 3yt? -6 -3yt3
—t+10xt> ~ty - 10t 2y + 10£2
0 0
0
-30t% + 6xy —6 + 30t — 6xyt — 60xt
—Zx - 6x°t
(14)
6 3,
—x+—t
5 5
3xyt? -3t y —xyt+1
—t—2xt’ —xyt+1 -2t 0
0 1 0
0
-30xt* + 6x*y -10 + 12x 10xt + 1
6
—x + 12x7t
In Z;, we proceed as above, and we will open two leaves: G, = {y +10,2x + t*,1 — 5t°} is a special Grobner basis
z, for J at the leaf Z,,, and we get Syz(g,, g,> g3 g4) as
<N (15)
Z3.2 Z3.5
xy 4o —5yt* + 10 x_ip
773 2
2 2
~ty — 10t 5t7y + 50t 1 5 ,
- 3 St+xt
6 , 1 6 3 ,
0 0 0
3
s pxy /) \50E-10-10xyt-100xt )\ _ 1o, (16)
3xyt? - 3t y —xyt + 1
—xyt+1 -2t 0
0 1 0
—30xt? + 6x%y -10 + 12x 10xt + 1

Note that G55 = Gs 5.

Finally, Syz(g,, 9> 95> ga) over Z[x, y,t] is
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15(yt +2) 3y(2x +1%) —6x + 312
—5t2(y + 10) ~t(y +10) (1 + 10xt)
0 ’ 0 ’ 0 ’
—10> + 2 + 2xyt + 20xt -30t% + 6xy —6x (1 + 10xt)
(17)
¥ 3xyt? — 3t —xyt+1
=2t —xyt+1 0
1 ’ 0 ’ 0
-10 + 12x -30xt? + 6x%y 10xt + 1
Note that X3¢ =1. Hence, a set of generators for
Syz(91, 9, 93) is
15(3 +2) 39(2% + ) 6% + 37 y
52 (y+10) || E@+10) || (1 +10x0) || —2¢ (18)
0 0 0 1
Therefore, a set of generators for Syz(f,, f,, f3) is
15y~ 2x73 + 30 6xy +3x 2y ! —6x—3x" %y ? ¥
—5x 2y 1 —50x"2y 2 |, | —x'-10x"1y! xly b+10xty 2 || —2x7ly7! (19)
0 0 0 1
G, = (8+40)xy - xZ + 15%,
Finally, a set of generators of Syz(f,, f,,f;) over _ L
Z[x*, y*1] is g =3xy+1, (22)

6xy +3x 2y ! y
—x 1 —10x"1y7! —2x" 1yt (20)
0 1

Now, let us see an example where the basic ring is not
principal.

Example 2. Let us consider the ring Z[6][y*!,z*!], where

6% = 5 is its ideal I generated by
fi=B8+40)z ' -y ' +15y7 127",
fo=1+3z"1, (21)

f3=04+20)y+9.

To compute a set of generators for Syz(f, f,, f3), we
rely on the isomorphism between Z[6][y*!,z*'] and
Z[0][x, y,z]/{xyz — 1). It is equivalent to compute a set of

generators for Syz(g,, g,, g;) with

g =(4+20y+9.

First of all, let us compute in Z[0][x, y,z] a set of
generators for Syz(g,, g,> 3> g4) with

g1 = (8+40)xy — xz + 15x,

g, =3xy+1, (23)
gz =4+20)y+9,
gy =xyz -1

Using the lexicographic order with x> y >z as mono-
mial order, we proceed as above by computing a dynamical
Grobner basis for J = (gy, g5, g3 94) in Z[x, y,z].

Let us denote by a and b the leading coeflicients of g, and
gs» respectively. Since a :== 3 and b := 4 + 20 are not com-
parable, we have to find u, v, w € Z[0] such that

ub = va,
{ (24)
wb = (1 -u)a.
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With the solution of this system given by In Z[0] 4,26
u=>5+20,v =60, and w = -3, we can open two leaves:
Z0]
VAR (25)

Z[04129 Z10)5120

3 27
$(92 95) =92_4+2693 = 4+29x+ 1= gs,

S(gZ’ g4) =zZ9, — 3tg4 =z+3:= Je

9 9 95
$(92 95) = 11209 M= 57 0

(g 9s) = 29, — 3xygs = 2 - 9xy g 50,9, > - xgg —50, (26)
S( ) 27 X 243 X 1 N 9 Js 0
Y — = X — = —
g3’g5 (4+26)2 g3 ygS (4+29)2 y 4+29g3 4+26g5 4

S(gs»9s) =295 — (4 +20)ygs =92 —3(4 +20)y = =395 + 99, 929 0,9, e, -9, 2,0,

27 g
S(9s> 9s) = 295 + mxgs =-395+ gs —BM% 0.

Thus,{(4 +20)y + 9, (—27/4+20)x + 1,z + 31 is a spe- And we have on Z,,4[x, y,2],Sy2(g,, g2 93> 94) s
cial Grobner basis for | at the leaf # (4 +20)" " Z = Z 4.,
0 0
0 1
_(4+20)y+9 12 + 60 + 27xz4 + 20
4+20 -4yz - 20yz -9z xz
’ > -3xz - 9x > (27)
1+ 3xy 243 420 ~2x
4+20
12y + 60y + 27 _81x+ 12+ 60 -3x
0 4+20
In Z[0]s,,9, as 2 and 3 are not comparable under di-
vision in Z[0]s,,p, in order to pursue the computations, we Z[6]
need to open two new leaves: VRN
2[0)4129 Z[0)5:26 (29)
Z[0]5,29 7 N\
VAR (28) Z[0) (512005 Z16l(5420)2

Z2[0)(5420)5 ZI6](5:20)2

The final evaluation tree is given by

In  Z[0] (512920 We get {z+3,(=6+36/2)x+1,
(26/5 + 20)y + 1} as a special Grobner basis for
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((8+4a)xy — xz+15x,3xy + 1, (4+20)y +9,xyz — 1),

at the leaf . (5+26,2)"'7[0] = Z[6] (5+2002- And over
Z[0] < (5420)2[%, ¥, 21,.8y2(91> 925 935 94) 18

(30)

1

5xz + 20xz — 90x — 360x — 360xy + 270x*y + 1080x*y + 1080x*y?
5+20

-18x7y?

—-3x

0

(2-0)(—60 + 45x + 18x0 + 6xyz0 + 18x y0)
2(5+206)

(0-2)(x*yz +3x%y)
2(5+26)

(2 -0)(45x + 18x0 — 60)
2

0

(2 -60)(180xy* + 6xyz0 — 60y + 18xy0 + 60xy*z — 15 + 45xy + 15xyz)

2(5 +26)

(0—2) (5x%y*z +20x?y*z + 15x%y* + 60x*y?)
2(5+26)

(2-0)(-60y — 15— 66)
2(5+26)

0

(1 -46) (-906x?y* + 180x? y* — 45x% y — 18060x2 y)
4(5+20)°

(1-460)(5x%y +20x*y + 15x° y* + 60x°y?)
4(5+20)

0

0

—45 - 1860 — 180y + 135xy + 540xy + 540x y*
5+20

1-9x%y?

0

(31)
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In Z[0] (54203 we get {z +3,3x — (20/5 + 26), (26/5+ at the leaf . (5+26,3)"'7[6] = Z[6] (5+203- And on
20)y + 1} as a special Grobner basis for Z10] (512003 [%, ¥, 2).8y2 (91> 92> 93> 94) 18

((8+4a)xy — xz +15x,3xy + 1, (4 +20)y + 9,xyz — 1),
(32)

1

5xz + 20xz — 90x — 360x — 360xy + 270x*y + 1086x*y + 1086x?y?
5+ 20
-18x7y?
-3x
0
0
20— 15x — 6x0 — 2xyz0 — 6xy0
5120 —45 — 1860 — 1860y + 135xy + 540xy + 540xy>
5+260
xtyz +3x%y ' ’
3 1-9x%y?
—15x — 6x0 + 20 0
5+260

(33)

180xy* + 6xyz0 — 60y + 18xy0 — 60xy*z — 15 + 45xy + 15xyz
5+20

—x2y’z - 3x2y?

—60y — 15— 60
5+20
0
60x2y? + 15x%y + 60x y
5+20
2y~ 323y
3
0

Hence, over Z[0][x,y,z], a generating set of
Syz(g1> 92> 93 94) is
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0 0 1 0
-4y -20y -9 —4yz - 20yz -9z xz 12+ 60+ 27xz
1+3xy ’ z+3 T o2x | —3xz - 9x '
0 12y + 60y + 27 -3x -8lx + 12 + 60
5+206
5xz + 20xz — 90x — 360x — 360xy + 270x%y + 1086x%y + 1086x2y?
—(90 + 360)x° ’
—(15 + 60)x
0
—60 + 45x + 18x0(1 + y) + 6xyz0
, (34)
—(5+20) (x*yz + 3x%y)
45x + 18x6 - 60
0
180xy* + 6xyz0 — 60 — 60y + 18xy0 + 60xy*z — 15 + 45xy + 15xyz
—5x%y?z — 20x*y*z — 15x% y* — 60x*y? ’
-60y — 15 - 60
0
—-900x? y* + 180x? y* — 45x%y — 1800x%y
(5+20) (5x%y +20x*y + 15x°y* + 60x°y?)
0
Note that we have X ¥z = 1, and over Z [0] [ y*!, z*'], the
generation is reduced to Syz(f,, f,, f3) as
1 5+20
l 0 5+29_90+369_£@+270+1089+1089
y || -4yz-20yz-9z |, y yz z yz? y*z? (35)
2 z+3 ~90 - 360
yz yz3

In fact the trick in Lemma 2 can be used for computing ~ Example 3. Let I=(F;=8Y '+ X 2Y 2 F, =10XY ?
syzygies of a finite system in any module M[1/u] over = —2X 2Y~%) in Z[X*',Y*!]. The problem of computing a

A[1l/u] when A is a coherent A—module. Here, M = A= generator for the syzygy module of I can be reduced to find a

Rlx,...,x,] and u = x; ... x,. generator for the Syzygy module of
Note that a generator set for the syzygy module of  (f; =8X’Y +1, f, =10X>-2) in Z[X,Y].

(fi»---» fs) over the Laurent polynomial ring (f1> f>) is obtained by multiplying (F}, F,) by X*Y?.

R[x{!,...,x'] can be directly computed in R[x,,...,x,] Let us consider the lexicographic order with X >Y.

by multiplying (f,,..., f,) by a polynomial such that the As 8A10 =2, 8 =2 x4, and 10 = 2 x 5, we have to open

new vector obtained is in R[x,,...,x,], by virtue of The-  two leaves: Z, and Z..

oreml. The syzygy module does not change and the problem In Z,, S(f1,f2)= 5/DXf,-Yf,=(5/4)X+2Y =:

is reduced to a computation of a generator set for the syzygy ~ f;. The leading coeflicients of f, and f; are comparable
module in R[x,,...,x,].
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under division. As 8A(5/4) = 2A5 =1, we open in Z, two In Z,,:
new leaves Z,, and Z,-.

S(f1>f3) = (5/32)f, = XY f5 =<332> —2XY? = f,
S(Fu ) =Y +4Xf,=(5)Fs 220,

S f) = Y1451, =((F)x-Y) 1 L2

S(fa fa) =Y f3+(58)fy =27 +(%) = fs
0=, 5, ({2 Chr ) o

S(fo fs) =Y fy - 5% fs =< §>x2+<5)xy—yz>f3 ELN

64 8
5 f f 5 f
S(f3)f5) = Y3f3 ‘<§>Xf5 _3’st - O)S(f4’f5) =Yfy+Xfs :<a)f3 —
S0,G, = {f1, f2 f3 f4 f5}isaspecial Grobner basis for We obtain
(f1> f2) over Z4,[X,Y].
5 25
Y2 -ZXY -5X°Y” + —X*Y
2-10X° 8 8
Syz(F) = , ,overZ,,[X,Y].
1+8X? 1 5 5
Y7 - S XY +4X7Y° - —X3Y2>
2 16 2
In Z,5[X,Y], we obtain G, = {1 + 8X%,10X° -2, (5/4) Also,
X +2Y,1- (64/5)XY?,2Y3 + (25/256)} as special Grébner
basis for (f,, f,) over Z,[X,Y].
5 25
\ Y2 -SXY -5X°Y + XY
2-10X 8 8
Syz(F) = , ,overZ,s[X,Y].
1+8X%Y 5 1 5
— XY + Y2 +4X7Y - 2XY?
16 2 2
We find G;={1+8X%10X>-2,X+ (8/5)Y,1- Also,
(64/5)XY?%,—(512/25)Y> — 1} as special Grobner basis for
(f1> f>) over Zs[X,Y].
8 64, 4 64,
3 - XY -—Y" -8XY+—-XY2
2-10X 5 25 5
Syz(F) = , ,overZ;[X,Y].
1+8X%Y 4 32, 256, 5 32

ZXY - =y - XY+ XY

5 25 25 5

(36)

(37)

(38)

(39)
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Finally, we obtain

—~10x3
Syz(f1, f2) = <( 2= 10

The two approaches used give similar results. In the

approach used in the last example, there is one less poly-
nomial than using the isomorphism approach, but the
calculations remain similar and relation x, ... x,, = 1 allows
simplifications with the isomorphism approach.
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