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In this paper, we study the asymptotic behavior of the two-dimensional quasi-geostrophic equations with subcritical dissipation.
More precisely, we establish that ‖θ(t)‖X1− 2α vanishes at infinity.

1. Introduction and Statement of Main Results

In this paper, we consider the initial value problem for the
2D quasi-geostrophic equations with subcritical dissipation
(QG)α:

(QG)α

ztθ + u · ∇θ + kΛ2αθ � 0, x ∈ R2, t> 0,

u � R⊥θ � − R2θ,R1θ( 􏼁,

θ(0, x) � θ0(x),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where 1/2< α≤ 1 is a real number and k> 0 is a dissipative
coefficient. Λ is the operator defined by the fractional power
of − Δ:

Λ � (− Δ)1/2,

􏽣Λg �
􏽤

(− Δ)1/2g � |ξ|􏽢g,
(2)

and more generally
􏽤Λ2αg � 􏽤(− Δ)αg � |ξ|

2α
􏽢g, (3)

where 􏽢g(ξ) denotes the Fourier transform of g. θ(x, t) is an
unknown scalar function representing potential tempera-
ture, and u � (u1, u2) is the divergence free velocity which is
determined by the Riesz transformation of θ in the following
way:

u1 � − R2θ � − z2(− Δ)− 1/2θ,

u2 � − R1θ � − z1(− Δ)− 1/2θ.
(4)

Let us fix k � 1 for the rest of the paper.
)e 2D quasi-geostrophic fluid is an important model in

geophysical fluid dynamics, which are special cases of the
general quasi-geostrophic approximations for atmospheric
and oceanic fluid flow with the small local Rossby number
which ensures the validity of the geostrophic balance be-
tween the pressure gradient and the Coriolis force (see [1]).
Furthermore, this quasi-geostrophic fluid motion equation
shares many features with fundamental fluid motion
equations. When k � 0, this equation is comparable to the
vorticity formulation of the Euler equations (see [2]). (QG)α
with α � 1/2 shares similar features with the three-dimen-
sional Navier–Stokes equations. )us, α � 1/2 is therefore
referred as the critical case, while the cases α � 1/2 and α �

1/2 are subcritical and supercritical, respectively.
)e existence of a global weak solution was established

by several researchers. )e reader is referred to [3–7] and
their references. Furthermore, in the subcritical case,
Constantin and Wu [8] proved that every sufficiently
smooth initial data give rise to a unique global smooth
solution. For the critical case, α � 1/2, Constantin et al. [9]
proved that there exists of a unique global classical solution
for any small initial data in L∞. )e hypothesis requiring
smallness in L∞ was removed by Caffarelli and Vasseur [10]
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and Dong and Du [5]. In [7], the authors proved persistence
of a global solution in C∞ for to any C∞ periodic initial
data. Chae and Lee [6] established the global existence and
uniqueness of solution for any small initial data in the Besov
space _B

2− 2α
2,1 .

)e global existence for the quasi-geostrophic equation
has been studied in the previous work of Benameur and
Benhamed [3]. )e authors have introduced new spaces
X1− 2α(R2) defined as follows:

X
1− 2α

R
2

􏼐 􏼑 � f ∈ S′ R2
􏼐 􏼑; ξ↦|ξ|

1− 2α 􏽢f(ξ)􏼐 􏼑 ∈ L
1
R

2
􏼐 􏼑􏽮 􏽯,

1
2
< α≤ 1,

(5)

which is equipped with the norm

‖f‖X1− 2α � 􏽚
R2

|ξ|
1− 2α

|􏽢f(ξ)|dξ. (6)

More precisely, their result is as follows..

Theorem 1. Let θ0 ∈ X1− 2α(R2). -ere is a time T> 0 and
unique solution θ ∈ C([0, T],X1− 2α(R2)) of (QG)α; more-
over, θ ∈ L1([0, T],X1(R2)).

If ‖θ0‖X1− 2α < 1/4, then the solution is global and

‖θ(t)‖X1− 2α + 1 − 4 θ0
����

����X1− 2α􏼐 􏼑 􏽚
t

0
‖θ(s)‖X1ds≤ θ0

����
����X1− 2α ,

∀t≥ 0.

(7)

We will recall further that the paper titled “Behavior of
solutions of 2D quasi-geostrophic equations” by Constantin
andWu [8] (published in the SIAM Journal of Mathematical
Analysis 30, 1999) has several results along the same lines. In
particular, it includes the following result.

Theorem 2. Let 0< α≤ 1/2 and θ0 ∈ L1(R2)∩L2(R2). -en,
there exists a weak solution θ of the (QG)α equation with
initial data θ0 such that

‖θ(., t)‖L2 R2( ) ≤C(1 + t)
− (1/2α)

, (8)

Proof. where C is a constant depending on L1 and L2 norms
of θ0.

)e decay of L2 and Sobolev norms and asymptotic
behaviour of solutions to the quasi-geostrophic equations
have also been addressed in many articles (see, for example,
[5, 11–22]

Global-in-time well-posedness, time-decay, and as-
ymptotic behavior of solutions are core properties in
understanding how fluid mechanics models work. In fact,
there is a rich literature about those properties for fluid
dynamics PDEs via several approaches and different
frameworks. In this direction, there are studies in
frameworks containing singular data and invariant under
the scaling (critical spaces), where the smallness

conditions are taken in the weak norms of the critical
spaces (e.g., see the review book [23, 24]). Of particular
interest is the analysis of PDEs in critical frameworks
whose structure is based on the Fourier transform.
Navier–Stokes and quasi-geostrophic equations have been
studied in several spaces such as PMa [13, 25, 26],
Fourier–Besov FB2− (3/q)

q,r [7, 27, 28], Lei–Lin spaces Xσ

[3, 29], and Fourier–Besov–MorreyFNs
p,μ,r [11, 30]. In the

case q � 1, Fourier–Besov spaces FBs
q,r(R

n) were intro-
duced by Iwabuchi [31] in the context of parabolic-elliptic
Keller–Segel system. Later, Iwabuchi and Takada [7] used
critical FB− 1

1,2

.

-spaces in order to obtain a global well-
posedness class (uniformly with respect to the angular
velocity) for the Navier–Stokes–Coriolis system. Taking in
particular Ω � 0, they also obtained a global well-pos-
edness result for the 3D Navier–Stokes equations with
small initial data in _FB− 1

1,2. Konieczny and Yoneda [28]
also showed global well-posedness and asymptotic sta-
bility of small solutions for 3D Navier–Stokes equations
(and Navier–Stokes–Coriolis) in critical Fourier–Besov
spaces FB2− (3/q)

p,∞ , with 1<p≤∞. Extensions of those
results to critical Fourier–Besov–Morrey spaces FNs

p,μ,r

(larger than _FBs
p,r) were obtained in [30, 32] for

Navier–Stokes equations (and Navier–Stokes–Coriolis)
and active scalar equations with fractional dissipation
(− Δ)α (including the 2D quasi-geostrophic equation
(QG)α), respectively.

)e main goal of this paper is to study the 2D quasi-
geostrophic equation in the framework of critical Lei–Lin
spaces Xσ with σ � 1 − 2α and 2/3< α≤ 1. We show that
solution θ presents the asymptotic property
‖θ(t)‖X1− 2α⟶ 0 as t⟶ 0 provided that ‖θ(t)‖X1− 2α < 1/4.
For that, we use standard interpolation in the Fourier space,
energy estimates in L2, and Young’s inequality of convo-
lutions, among others. Our main result is the following. □

Theorem 3. Let 2/3< α< 1, ‖θ0‖X1− 2α < 1/4 and
θ ∈ C(R+,X1− 2α(R2)) be a global solution of (QG)α given by
-eorem 1. -en,

lim
t⟶∞

‖θ(t)‖x
1− 2α

� 0. (9)

Remark 1. Remark that our main result is not implied by
)eorem 2 of Constantin- Wu, because our works concern the
asymptotic behavior of solution in the Lei-Lin space who be-
longs to a class whose definition of the norm is based on Fourier
transform, but it is not contained in L2 while that the result of
)eorem 2 concerns the study in the space L1∩L2. )e proof
techniques (for )eorem 3 and Lemma 1) appeal to fairly
standard interpolation in the Fourier space (which creates the
need for α> 2/3 instead of the more natural α> 1/2), energy-
type L2 estimates for θn that exploit the natural appearance of
the X− 1-norm from Young’s inequality of convolutions, and
two uses of ()eorem 3) (proved in the earlier work).

)e remaining part of the paper is organized as follows.
)e main results are given in Section 1. We explain the
framework in Section 2.)e long time behaviour ()eorem 3)
is established in Section 3.
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2. Preliminary

Let us recall that in [29], Lei and Lin introduced a new space,
named Lei–Lin space X− 1, which belongs to a class whose
definition of norm is based on the Fourier transform but is
not contained in L2. In [3], Benameur and Benhamed de-
fined the spaces that are useful for the study of well-pos-
edness of PDEs of parabolic, elliptic, and dispersive types.
More precisely, for σ ∈ R, we define

X
σ
R

2
􏼐 􏼑 � f ∈ S′ R2

􏼐 􏼑; 􏽢f ∈ L
1
loc R

2
􏼐 􏼑and ξ↦|ξ|

σ 􏽢f(ξ)􏼐 􏼑􏽮

∈ L
1
R

2
􏼐 􏼑􏽯,

(10)

equipped with the norm

‖f‖χσ � 􏽚
R2

|ξ|
σ
|􏽢f(ξ)|dξ. (11)

To prove )eorem 3, we need the following lemma.

Lemma 1. For 2/3< α< 1, _H
α
(R2)⟶ X1− 2α(R2). More

precisely, if f ∈ _H
α
(R2)∩L2(R2). -en, we have

‖f‖X1− 2α ≤C‖f‖
((3α− 2)/α)

L2 ‖f‖
((2− 2α)/α)
_H
α . (12)

Proof. For λ> 0, put ‖f‖X1− 2α � Aλ + Bλ, where

Aλ � 􏽚
|ξ|<λ

|ξ|
1− 2α

|􏽢f(ξ)|dξ,

Bλ � 􏽚
|ξ|<λ

|ξ|
1− 2α

|􏽢f(ξ)|dξ.

(13)

Let us start by controlling the first term; using Cau-
chy–Schwarz inequality, we get

Aλ � 􏽚
|ξ|<λ

|ξ|
1− 2α

×|􏽢f(ξ)|dξ

≤ 􏽚
|ξ|<λ

|􏽢f(ξ)|dξ􏼠 􏼡

1/2

􏽚
|ξ|<λ

|ξ|
2− 4αdξ􏼠 􏼡

1/2

≤
���
4π

√
‖f‖L2 􏽚

λ

0
r
3− 4αdr􏼠 􏼡

1/2

≤
������
4π

4 − 4α

􏽲

‖f‖L2 λ4− 4α
􏼐 􏼑

1/2
.

(14)

)erefore,

Aλ ≤
������
4π

4 − 4α

􏽲

λ2− 2α
‖f‖L2 . (15)

A similar calculation to the foregoing yields

Bλ � 􏽚
|ξ|>λ

|ξ|
α
|􏽢f(ξ)| ×|ξ|

1− 3αdξ

≤ 􏽚
|ξ|>λ

|ξ|
2α

|􏽢f(ξ)|dξ􏼠 􏼡

1/2

􏽚
|ξ|>λ

|ξ|
2− 6αdξ􏼠 􏼡

1/2

≤
���
4π

√
‖f‖ _H

α 􏽚
∞

λ
r
3− 6αdr􏼒 􏼓

1/2

≤
������
4π

6α − 4

􏽲

λ2− 3α
‖f‖ _H

α .

(16)

)en,

Bλ ≤
������
4π

6α − 4

􏽲

λ2− 3α
‖f‖ _H

α . (17)

Combining (15) and (17), we get

‖f‖X1− 2α ≤
������
4π

4 − 4α

􏽲

λ2− 2α
‖f‖L2 +

������
4π

6α − 4

􏽲

λ2− 3α
‖f‖ _H

α .

(18)

Optimizing ‖f‖X1− 2α , it suffices to choose
λ � (‖f‖ _H

α /‖f‖L2)
1/α, to obtain (12). □

3. Proof of the Main Theorem

)e main aim of this section is to study the asymptotic
behavior of the global solutions given by )eorem 1. )e
proof is inspired from [33].

First, we Take θ0 ∈ X1− 2α.
Let ε> 0, such that ε≤ 1/8. For n ∈ N, put

An � ξ ∈ R2
; |ξ|≤ n and 􏽢θ0(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ n􏼚 􏼛. (19)

We have F− 1(11An
.
􏽢θ0) converges in X1− 2α to θ0. )en,

there is n0 ∈ N such that

θ0 − F
− 1 11An

􏽢θ0􏼒 􏼓

������

������
X1− 2α
≤ ε/4, ∀n≥ n0. (20)

Let n≥ n0 be a fixed integer. Put

θ0n � F
− 1 11An

.
􏽢θ0􏼒 􏼓,

w
0
n � θ0 − θ0n.

(21)

)en,

w
0
n

����
����X1− 2α ≤ (ε/4),

θ0n ∈ X
1− 2α

R
2

􏼐 􏼑∩L2
R

2
􏼐 􏼑.

(22)

Consider the system

QGα( 􏼁n

ztwn +(− Δ)αwn + uwn
· ∇wn � 0, x ∈ R2, t> 0,

wn(0, x) � w0
n(x).

⎧⎨

⎩

(23)

For all n≥ n0, we have

w
0
n

����
����X1− 2α ≤

ε
4
. (24)
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Use )eorem 1; then, there exists a unique global so-
lution wn ∈ C(R+,X1− 2α(R2))∩L1(R+,X1(R2)).

Furthermore,

wn(t)
����

����X1− 2α + 1 − 4 w
0
n

����
����X1− 2α􏼐 􏼑 􏽚

t

0
wn(s)

����
����X1ds≤ w

0
n

����
����X1− 2α , ∀t≥ 0.

(25)

Moreover,

ztθ +(− Δ)αθ + u · ∇θ � 0,

θ(0) � θ0 ∈ X1− 2α.
􏼨 (26)

Put θ � θ − wn􏽼√√􏽻􏽺√√􏽽
θn

+wn. )en, θn is a solution of the

following system:
ztθn +(− Δ)αθn + uθn

· ∇θn + uθn
· ∇wn + uwn

· ∇θn � 0,

θn(0) � θ0n ∈ X
1− 2α∩L2.

⎧⎨

⎩

(27)

By taking the inner product in L2(R2) with θn, we get

1
2
d
dt

θn

����
����
2
L2 + θn

����
����
2
_H
α ≤ 〈uθn

· ∇wn, θn〉L2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (28)

)en,
1
2
d
dt

θn

����
����
2
L2 + θn

����
����
2
_H
α ≤ 〈uθn

· ∇wn, θn〉L2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ uθn
· ∇wn

�����

�����L2 θn

����
����L2

≤C F uθn
· ∇wn􏼐 􏼑

�����

�����L2 θn

����
����L2

≤C F uθn
􏼐 􏼑∗F ∇wn( 􏼁

�����

�����L2 θn

����
����L2.

(29)

By Young’s inequality, we obtain
1
2
d
dt

θn

����
����
2
L2 + θn

����
����
2
_H
α ≤C F uθn

􏼐 􏼑
�����

�����L2 F ∇wn( 􏼁
����

����L1 θn

����
����L2

≤Cn F ∇wn( 􏼁
����

����L1 θn

����
����
2
L2 .

(30)

)erefore,
1
2

d

dt
θn

����
����
2
L2 + θn

����
����
2
_H
α ≤Cn wn

����
����X1 θn

����
����
2
L2 . (31)

Integrating with respect to time, we obtain

θn

����
����
2
L2 + 2􏽚

t

0
θn

����
����
2
_H
α ≤ θ0n

����
����
2
L2 + Cn 􏽚

t

0
wn

����
����X1 θn

����
����
2
L2 . (32)

By Gronwall’s lemma, we get

θn

����
����
2
L2 ≤ θ0n

����
����
2
L2 exp Cn 􏽚

t

0
wn

����
����X1􏼠 􏼡

≤Cn θ0n
����

����
2
L2 .

(33)

Combining (32) and (33), we obtain

θn

����
����
2
L2 + 2􏽚

t

0
θn

����
����
2
_H
α ≤ θ0n

����
����
2
L2 + C0 θ0n

����
����
2
L2 􏽚
∞

0
wn

����
����X1

≤Mn.

(34)

Applying Lemma 1 to θn, we infer

θn

����
����X1− 2α ≤C θn

����
����

((3α− 2)/α)

L2 θn

����
����

((2− 2α)/α)

_H
α . (35)

)en,

θn

����
����

(α/(1− α))

X1− 2α ≤C θn

����
����

((3α− 2)/(1− α))

L2 θn

����
����
2
_H
α . (36)

From (33) it follows that

θn

����
����

(α/(1− α))

X1− 2α ≤C θn

����
����
2
_H
α . (37)

)erefore, by integrating in time between 0 and ∞, we
get

􏽚
∞

0
θn

����
����

(α/(1− α))

X1− 2α ≤C0 􏽚
∞

0
θn

����
����
2
_H
α . (38)

Indeed consider the following subset of [0,∞[:

Pε � t≥ 0; θn(t)
����

����X1− 2α R
2

􏼐 􏼑≥
ε
4

􏼚 􏼛. (39)

We have

θn(t)
����

����X1− 2α R
2

􏼐 􏼑≥ 1Pε(t)
ε
4
. (40)

)en, for all 1/2< α≤ 1,

θn(t)
����

����
(α/(1− α))

X1− 2α R
2

􏼐 􏼑≥ 1Pε
(t)

ε
4

􏼒 􏼓
(α/(1− α))

. (41)

)us,

􏽚
∞

0
θn(t)

����
����

(α/(1− α))

X1− 2α R2( )dt≥ λ1 Pε( 􏼁
ε
4

􏼒 􏼓
(α/(1− α))

. (42)

Using the inequality (38), we get λ1(Pε)<∞ and
[0,∞[∖Pε ≠∅.

)erefore, there exists t0 ∈ [0,∞[∖Pε. Particularly,

θn t0( 􏼁
����

����X1− 2α R
2

􏼐 􏼑<
ε
4
. (43)

Now, put

θ t0( 􏼁 � θ t0( 􏼁 − wn t0( 􏼁
􏽼√√√√√√􏽻􏽺√√√√√√􏽽

+wn t0( 􏼁

� θn t0( 􏼁 + wn t0( 􏼁.
(44)

)us, by (24), we obtain

θ t0( 􏼁
����

����X1− 2α ≤ θ t0( 􏼁
����

����X1− 2α + wn t0( 􏼁
����

����X1− 2α

≤
ε
4

+ w
0
n

����
����X1− 2α

≤
ε
4

+
ε
4
.

(45)

)erefore,

θ t0( 􏼁
����

����X1− 2α ≤
ε
2
≤ ε. (46)

Let us consider the following equation:
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ztc +(− Δ)αc + uc · ∇c � 0, x ∈ R2, t> 0,

c(0, x) � c0 � θ t0( 􏼁.

⎧⎨

⎩ (47)

Using inequality (46) and)eorem 1, we infer that there
exists a unique solution
c ∈ C(R+,X1− 2α(R2))∩L1(R+,X1(R2)) of (QG)α such
that

‖c‖X1− 2c + 1 − 4 c
0����
����X1− 2α􏼐 􏼑 􏽚

t

0
‖c‖X1 ≤ c

0����
����X1− 2α , ∀t≥ 0.

(48)

)e existence and uniqueness of a solution to the quasi-
geostrophic equation gives ∀t≥ 0 c(t) � θ(t0 + t). )en,

θ t0 + t( 􏼁
����

����X1− 2α � ‖c(t)‖X1− 2α

≤ c
0����
����X1− 2α ≤ ε.

(49)

)us, )eorem 3 is proved.
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