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In this paper, we present a new reduction algorithm for solving system of linear differential-algebraic equations with power series
coeflicients. In the proposed algorithm, we transform the given system of differential-algebraic equations into another simple
equivalent system using the elementary algebraic techniques. This algorithm would help to implement the manual calculations in
commercial packages such as Mathematica, Maple, MATLAB, Singular, and Scilab. Maple implementation of the proposed

algorithm is discussed, and sample computations are presented to illustrate the proposed algorithm.

1. Introduction

In many applications of science and engineering, for ex-
ample, simulation of electric circuits [1-4], mechanical
systems [5, 6], and chemical reactions subject to invariants
[7-13], the systems of differential-algebraic equations
(DAESs) arise naturally, and these systems of DAEs consist of
algebraic equations and differential operations. Many en-
gineers and scientists have studied the system of DAEs from
a theoretical as well as a numerical point of view and created
many new approaches to solve the system of linear differ-
ential-algebraic equations; see, for example, [14-25].

In this paper, we are concerned with a linear system of
differential-algebraic equations of the following form:

o (x) 0u(x) + B(x)u(x) = f(x), (1)

where x is a complex variable, &/ (x) and 9B (x) are m x n
matrices with analytic functions entries, f(x) is an m-di-
mensional column matrix with analytic functions entries,
u (x) is an n-dimensional unknown column matrix which is
going to be determined, and 0 = (d/dx) is a differential
operator. In this paper, we focus on creating a new reduction
algorithm using elementary algebraic techniques as well as
the implementation of the proposed algorithm in Maple.
Using this algorithm, we can transform a given system of

DAEs into another equivalent system, where we can solve
the reduced system easily.

The rest of the paper is organized as follows: in Section 2,
we present a new reduction algorithm to solve the given
system of DAEs with certain examples to illustrate the
proposed reduction algorithm and Section 3 discusses the
Maple implementation of the proposed algorithm with
sample computations.

2. A New Reduction Algorithm

Let K be a subfield of the field of complex numbers C. Note
that (Q<IK<C). We denote the ring of formal power series by
K[[x]] in the variable x and K((x)) denotes its quotient
field, that is, K ((x)) = K[[x]][x']. The ring of differential
operators is denoted by K[[x]][d] with coefficients in
K[ [x]], that is, the set of finite sums ) a,-ai with a; € K[[x]]
is equipped with the addition and the multiplication defined
by

09 =9", ijeN,

af:fa+%,

(2)

where f € K[[x]]. Recall the system of DAEs in equation
1):
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o (x) 0u(x) + B(x)u(z) = f(x), (3)

where & (x), B (x) € K[[x]]™", f(x)e K[[x]]", and
u(x) € K[[x]]". The corresponding matrix differential op-
erator of system (3) is L =90+ % € K[[x]][0]™". We
recall the basic concepts of the matrix differential operators;
see [23, 26-29] for further details.

Definition 1. A matrix differential operator T € K[[x]]
[0]™" is said to be unimodular matrix if there exists V € K
[[x]1[0]™" such that VT =TV =1,

Definition 2. Two matrix differential operators L,L € K
[[x]]1[0]™" are said to be equivalent if there exist two
unimodular matrices S e K[[x]][o]™™ and
T € K[[x]][8]™" such that L = SLT.

The following section presents a new reduction algo-
rithm using elementary algebraic techniques.

2.1. Reduction Algorithm. The following lemma is one of the
essential steps to create a new reduction algorithm. It shows
that any matrix of formal power series centered at origin can
be transformed into a block matrix.

Lemma 1 (see [23, 26, 29]). Let o € K[[x]]"". Then there
exist two unimodular matrices S, T € K[[x]]"™" such that

11
sw:(d >,52¢T=(gi” 0),

0
" o

SAT = ,
0 0

where &/ denote the i-th row and j-th column block of
matrix &, o' € K[[x]]™" is a block matrix, and r is the
rank of matrix &.

Suppose that L € K[[x]][0]™" is a given matrix dif-
ferential operator. Using Lemma 1, we can construct two
unimodular matrix differential operators S, and T, by
finding the basis of left null space and right null space of the
matrix differential operator L, such that

(4)

L, =S8LT, =90+ %, (5)
1 11
where o, = ('Qi) 8) and A, = (‘%:) 8) Now using

Lemma 1 to matrix o/, of (5), we can get an unimodular
matrix S, such that

L2 = SZLI = leza + !%2) (6)

~ 11

where o, = S,9, = ( Q{) 8 ) and &' is invertible matrix,

0
matrix %, of (6), we can construct an unimodular matrix T,
such that

~ 11
and %, =85,%, = (gg 8) Again, using Lemma 1 to

Ly =L, T, = A0 + B, (7)
" o
11 0 0
(‘%; 8) If we denote S =S,S, and T =T,T,, then we

where o5 =9,T, = and %B;=3B,T,=

have two unimodular matrix differential operators
SeGL,, (K[[x]]) and T € GL, (K[[x]]) such that the given
system is in reduced form as follows:

L=2d0+3, (8)

=11

where L = SLT has the form < L0 ) and " is invertible
~11
matrix differential operator; o has the form ( Q{) 8 ); and

~ 11

% has the form ( 93;) 8 ) Note that the ranks of &' and

@H may not be the same, but the ranks of 357“ and ggll are
the same only when the coefficient matrices &/ and % have
the same rank. We generalize the above reduction algorithm
in the following theorem.

Theorem 1. Let L = o D + B € K[[x]][0]"™" be a matrix
differential operator. Then we can construct two unimodular
matricesS € GL,, (K[[x]]) and T € GL, (K[ [x]]) such that the
given system L = of 0 + B € K[[x]][0]™" is in reduced form:

L=dA0+ 3, 9

I‘:ll

where L = SLT has the form ( 0 8 ) and T'" is invertible

~ 11
matrix differential operator; o has the form ( 522 g ); and

=11
B has the form (gg 0 )
0 0

Proof. Using Lemma 1 to L, we can construct two unim-
odular matrices S € GL,,, (K[[x]]) and T € GL,, (K[[x]]). If
we use the substitution u(x) = Tv(x) in (3) and left mul-
tiplying the resultant equation with S, we have the following
reduced form:

SLTv(x) = ST 0v(x) + SBTv(x) = Sf (x),

- - - - (10)
orLv=dov+RBv=f,
where I =SLT € K[[x]][0]"™", o =SoT € K[[x]]"™",
B =SABT € K[[x]]™", and f = Sf e K[[x]]™.
Indeed, (i) if rank (L) < rank (&) and rank (L) < rank
(), then the reduced system of DAEs (10) has the following
form:

Lv=dov+RBv =T, (11)

N Z“a " 0 Vi\ _ zl
where L= " 12 ¢ |,v= v, |, f= iZ .
0 00 V3 E

Hence, the system of DAEs in (3) is decomposed into two
systems as follows:
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"o, + T,
=21 =22 (12)
L' vi+L" v,

with some necessary conditions on the right-hand side
expressed by f; = 0.

(ii) If rank (L) =rank (&) =rank (£), then the reduced
DAS (10) has the following form:

Lv=dov+RBv =T, (13)
11 B =

where L= L 0),=(" f = ). Hence, the
0 0 V) fa

system of DAEs in (3) is decomposed as fuvl = f, with
some necessary conditions on the right-hand side expressed

by f,=0.
In the following section, we present certain examples to
illustrate the proposed method presented in Theorem 1. [

2.2. Examples

Example 1. Consider a matrix differential operator of DAS.

L=odo+%
0 x 1-x11 1 0 010
1 0 0 10 0O 0 -100
=1 x 1-x2 1 [0+]0 0 0 00
l1x-1 1 0 2 0x+1 0 10
1 —x x-10 -1 0 0 0 00
1 x0 (1-x)0 0+1 0
0 0 -1 0 0
=| o x0 (1-x)0 20 0
0 (x-1o0+x+1 0 1 20
0 -x0 (x-1)o 0 -0
(14)

Using Lemma 1 to L, one can construct two unimodular
matrices S; and T, (obtained using a basis of left null space
and right null space of L) as follows:

leftnullspaceofL=<az_—a1 0 % 0 1>>
(x+1)d 0 (x+1)d "
x+1-(x+1 1-3 x+1)0-x-1
ight null fL=
right nufl space o ( 2x-10+1 (x-1)o+1  (2x-1)0+1 1)

Now the unimodular matrices S, and T, are

1 0 0 00

%5}
s
I
(=)
(=)
—
(=)
(=)

x+1-(x+1)0 (16)

1000
(2x-1)0+1

1-30

0100 —mMm ———
(2x-1)0+1

0010 0

(x+1)0-x-1

0001
(2x-1)0+1

0000 1

Thus, multiplying operator L on the left and right by S,
and T, yields the operator

1 x0 (I1-x)0 o+1 : 0
0 0 -1 0 0
0 x0 (I-x)0 20 : 0
L, =S,LT, = ,
0 (x—-1)0+x+1 0 1 10
0 0 0 0 0
(17)
where
0 x l1l-x 1 0
1 0 0 1 0
oM o 1 x l-x 2 0
A, = = ,
0 0 1 x-1 1 0 0




2" 0
0 0

5-(%0)-

1 0 0 1 0
0 0 -1 0 0
0 0 0 0 0
0 x+1 0 1 0
0 0 0 0 0
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Now, using Lemma 1 to matrix &/, we can construct an
unimodular matrix S,, using a basis of left null space of &/,

as follows:

where

Ly=SL,=94,0+%, =

0 x 1-x 1
1 0 0 1
1 x-1 1 0
0 0 0 0
0 0 0 0
1 0 o 1
0 0 -1 0

0 x+1 0 1
-1 0 1 -1

0 0 0 0

Ly=L,T,=d0+%,=

o o oo )

1 0000
0 1000
0 0010 (19)
“1-1100
0 0001
0
0
0
o I (20)
0

Again, using Lemma 1 to matrix 9%, of the matrix

S, =
(18)
We have
1 x0 (I1-x)0 0+1
0 0 -1 5]
0 (x—-1)0+x+1 0 1
-1 0 1 -1
0 0 0 0
0
0
0 1
0 0
0
T,=]o0
0
0
(21) We have
1 x0 (1-x)o Tox
0 0 -1 0
0 (x-1p+x+1 o X9
1+x
-1 0 1 0
0 0 0 0

differential operator L,, we can construct an unimodular
matrix T, using a basis of right null space of %, as follows:

00 -1 0
-1
10 —
x+1
01 0 0 (22)
00 1 0
00 0 1
0
0
0
, (23)
0
0
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where
1
0 x 1- 0
x+1
1 0 0 0 0
~11 -2
" o 1 x-1 1 =X : 9
Ay =o,T, = = 1+x ,
0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 -1 0 0
2" o 0 x+1 0 1 0
%3:95’2T2: =
0 0 -1 0 1 0 0
0 0 0 0 0
(24)

If we denote S = §,S; and T = T, T,, then we have two
unimodular matrix differential operators:
1 0 0 00
0 1 0 0O

S=s,5,=| 0 0 0 10

20 0 o+1 01
0-1 1-0
x+1-(x+1)0 (25)
10 -1 —
0 (2x-1)0+1
01 -1 1-30
x+1 (2x-1)0+1
T=Th=1 501 o 0
000 (x+1)0-x-1
(2x-1)0+1
000 O 1

We have that the given system is in reduced form as
follows:

L=dA0+RB
1 x0 (1-x)0 — 0
x
0 0 -1 0 0
-2
9 (x—1)d+x+1 0 X0 .
— 1+x ,
-1 0 1 0 0
0 0 0 0 0
(26)
. ' o
where L = SLT has the form( 0 0) and
1 x0 (1-x)o 9
1+x
0 0 -1 0
=11
L = > (27)
-2x0
0 (x—-1)o+x+1 d
1+x
-1 0 1 0

is invertible matrix differential operator.

Example 2. Consider a matrix differential operator as given
below:

d (1+x)o 1 o0+1
1 -x0 0 -1
L:
0+1 0 o+1 0o
-0+1 (-2x-1)0 0-1 -0-2
(28)
1 x+1 0 1 001 1
0 —-X 10 10 0 -1
= 0+

1 1 1 1 101 O

-1 -2x-11 -1 10 -1 -2

Applying the proposed algorithm in Theorem 1 to matrix
differential operator (28) similar to example 1, one can
construct two unimodular matrix differential operators S
and T as
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1 0 00
0 1 00
S= >
-1-110
1 -101
1-x0 x0+0+x
10
x0+x+1 x0+x+1 (29)
o1 20+1 -1
T = 0(x0+x+1) 0(x0+x+1)
00 0 1
00 1 0

such that the given system is in reduced form as follows:

0 (I1+x)0 00

- 1 -x0 00

L= , (30)
0 0 00
0 0 00

=11

where L = SLT has the form ( LO g ) and

- J (1+x)0
Lu:(l —x; )) (31)

is invertible matrix differential operator.

Example 3. Consider the following system of differential-
algebraic equations to verify that the reduced system and the
given system of DAEs have the same solution:

Ul +uy+uy =0,
Uy + 22Uy + Uy = X, (32)
2u) + 2uj + 2u; = 0.
The solution of the given system (32) is u; = ¢;,u, = (x?
12) + (c,e”*/2) = (¢, x/2) + ¢; and u; = c,e”*. In particular,
if we take u; = 0, then the solution becomes u; = 0,u, = (x?
12) + (c,e*/2) + ¢, and uy = cje™ ™.
The operator notation Lu = f of the given system (14) is
given by
0 0 0d+1 u, 0
1 20 1 w, |=| x| (33)
20 0 20+1/ \u,

0 0 od+1

where L = < 1 20 1 > Now, apply the proposed
20 0 20+1

algorithm to matrix differential operator L to get a reduced

operator L with two unimodular matrix differential oper-
ators S and T. We get

000

amll
1]

1200 |,
000
100
s=[ 0 10|

10_£
0

T = 1
01 —
20°

00 1

System (33) is reduced to L(z(x)) = } (x), where u(x) =
T (z(x))and f (x) = S(f (x)). On simplification, we can get
z(x) =T "(u(x)) and f(x) = S(f (x)).

Therefore, we have

Lz(x) = F (0 =L(T"" (u(x))) = S(f (x))

Lo 1+0\ '
000 0 u,
1
= 1200 01 L U,
20
000 U,
00 1
1 00 0
= 010 X
—201/\o (35)
+E)+1
U +—u
200 oo 0
= 1200 M =| x
229
0 00 0
U
Ouy + (0 + 1)u, 0
=| u+20u,+u; | =| x
0 0
Now the reduced system of DAEs is
U +uy+u; =0,
1 3t Us (36)

! —
U +2uy +u; = Xx.
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Solution of the reduced system (36), for u; =0, is u; =
0,uy = (x*/2) + (c;e”*/2) + ¢, and u; = cie” ™.

One can observe that the solution of the given system of
DAEs (32) and the reduced system of DAEs (36) have the
same solution. We can also observe that solving the reduced
system (36) (contains two equations only) is simple com-
pared to solving the given system (32) (contains three
equations).

3. Maple Implementation

In this section, we discuss the Maple implementation of the
algorithm by creating different data types. Using the Maple
package, one can obtain the two unimodular matrix dif-
ferential operators S, T and the reduced matrix differential
operator of the given system. In Maple implementation, x is
complex variable and § = (d/dx) is the differential
operator.

Input: o/ and %, the coefficient matrices of a given
matrix differential operator L = o/ 0 + 3.

Output: L, S, and T, the reduced matrix differential
operator L of a given matrix differential operator L and
two unimodular matrix differential operators S and T

3.1. Pseudocode

(1) A, B« coef ficient matricies
(2) m «— row dimensionof L

(3) n columndimensionof L
(4) r—rankof A

(5) k —rankof B

(6) NS_Ls —leftnull spaceof L

(7) S, «identity matrix with LNS_Ls as bottom
block matrix

(8) NS_Lt —right null spaceof L

(9) T, «identity matrix with NS_
Lt as right block matrix

(10) L, «S,.L.T,
(11) A,, B, « coef ficient matriciesof L,
(12) NS_A, < leftnull spaceof A,

(13) S, «—identity matrix with LNS_A,
as bottom block matrix

(14) L, < S,.I,
(15) A,, B, « coef ficient matricieso f L,
(16) NS_B, «right null spaceof B,

(17) T, « identity matrix with NS_
B, asright block matrix

(18) Ly < L;.T,
(19) S S,.5;
(20) T« T,.T,

3.2. Maple Code. Using the procedure ArrangeZeroLines,
we can replace the zero rows at the bottom and zero columns
at right side of the matrix.

ArrangeZeroLines := proc (M::Matrix)

local m,n,ZR,L1,DR,m1,ZM,A1,2C,L2,DC,m2,ZM2,
A2;

uses LinearAlgebra;
m,n := op(l, M);
ZR := LinearAlgebra: —ZeroVector[row](n);

L1 := [seq(‘if(LinearAlgebra: —Equal(M[i],ZR),i,-
NULL), i=1.m)];

DR := LinearAlgebra: —DeleteRow(M, L1);

m1l := op([1, 1], DR);

ZM := LinearAlgebra: —ZeroMatrix(m — m1, n);

Al:= convert(linalg[blockmatrix](2, 1, [DR, ZM]),

Matrix);
ZC:= LinearAlgebra: —ZeroVector(m);
L2 = [seq(‘if (LinearAlgebra: —Equal(A1l

[0-.0,i],ZC),,NULL), i=1..n)];

DC := LinearAlgebra: —DeleteColumn(Al, L2);
m2 := op([1, 2], DC);

ZM2 := LinearAlgebra: —ZeroMatrix(m, n — m2);
A2 := linalg[blockmatrix](1, 2, [DC, ZM2]);
return convert(A2, Matrix);

end proc:

The following procedure is DAEs_Reduction: the re-
duced matrix differential operator of a given matrix dif-
ferential operator with two unimodular matrix differential
operators. In this procedure, § = (d/dz) is differential op-
erator and x is complex variable.

DAEs_Reduction := proc (A:Matrix, B::Matrix)

local L,m,n,r,k,Id,transpose_L,NS_Ls,Id_partA,

NS_partA,
S1,NS_LtId_part3,NS_part3,T1,L1na,L1,A1,B1,
transpose_A1,NS_A1,Id_partAl,NS_partA1,S2,1.2na,L.2,

A2,B2,NS_B2,Id_partB2,NS_partB2,T2,L3na,-
L3,A3,B3,S,T;

uses MatrixPolynomialAlgebra;

L := A = delta+B;

m := LinearAlgebra: —-RowDimension(L);

n := LinearAlgebra: —ColumnDimension(L);

r :== MTM: —rank(A);

k := MTM: —rank(B);

Id := LinearAlgebra: —IdentityMatrix(n);
transpose_L := LinearAlgebra: —Transpose(L);
NS_Ls := LinearAlgebra: —NullSpace(transpose_L);
Id_partA := LinearAlgebra: —Transpose

(Matrix(* ~ ‘[LinearAlgebra: —Transpose](‘ ~ °
[convert]
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([seq(Id[i],i=1..m-nops(NS_Ls))],Matrix))));

NS_partA := LinearAlgebra: —Transpose (Matrix(‘ ~
[convert]

([seq(NS_Ls[i], i=1 .. Nops(NS_Ls))], Matrix)));

S1 := convert(linalg: —blockmatrix(2,1,[Id_partA,
NS_partA]),Matrix);
NS_Lt := ¢ ~ ‘[simplify](LinearAlgebra: —NullSpace(L));

Id_part3 := Matrix(‘ ~ ‘[LinearAlgebra: —Transpose]
(‘ ~ [convert]

([seq(Id[i], i=1 .. n-nops(NS_Lt))], Matrix)));
NS_part3 := Matrix(‘ ~ ‘[convert]
([seq(NS_Lt[i], i=1 .. Nops(NS_Lt))], Matrix));

T1 := convert(linalg: —blockmatrix(1,2,[Id_part3,
NS_part3]),Matrix);

Llna := ‘ ~ ‘[simplify](S1.L.T1);

L1 := ArrangeZeroLines(L1na);

Al:= seq(MatrixPolynomial Algebra: —Coeff(L1,delta,i),i =
0.1)[2];

Bl := seq(MatrixPolynomialAlgebra: —Coeff(L1,delta,
i),i=0.1)[1];

transpose_Al:= LinearAlgebra: —Transpose(Al);
NS_Al:= LinearAlgebra: —NullSpace(transpose_A1);
Id_partAl:=LinearAlgebra: —Transpose(Matrix

(“ ~ ‘[LinearAlgebra: —Transpose](‘ ~ ‘[convert]
([seq(Id[i], i=1 .. m-nops(NS_A1))], Matrix))));

NS_partAl := LinearAlgebra: —Transpose(Matrix(‘ ~ ¢
[convert]

([seq(NS_A1[i], i=1 .. Nops(NS_A1))], Matrix)));

S2 := convert(linalg: —blockmatrix(2,1,[Id_partA1,NS_

partAl]),Matrix);

L2na := ‘ ~ ‘[simplify](S2.L1);

L2 := ArrangeZeroLines(L2na);

A2 := seq(MatrixPolynomialAlgebra: —Coeff(L2,delta,
1),i=0.1)[2];

B2 := seq(MatrixPolynomialAlgebra: —Coeft(L2,delta,
),i=0.1)[1];

NS_B2 := * ~ ‘[simplify](LinearAlgebra: —NullSpace
(B2));

Id_partB2 := Matrix(‘ ~ ‘[LinearAlgebra: —Transpose]

(‘ ~ ‘[convert]([seq(Id
[i],i=nops(NS_B2)+1..n)],Matrix)));

NS_partB2 := Matrix(‘ ~ ‘[convert]
([seq(NS_B2[i], i=1..nops(NS_B2))], Matrix));
T2 := LinearAlgebra: —IdentityMatrix(n);
L3na := ‘ ~ [simplify](L2.T2);

L3 := ArrangeZeroLines(L3na);

A3 := seq(MatrixPolynomial Algebra: —Coeff(L3,delta,
i),i=0.1)[2];

B3 := seq(MatrixPolynomialAlgebra: —Coeft(L3,delta,
i),i=0.1)[1];

S = * ~ ‘[simplify] (S2.S1);
T := * ~ [simplify](T1.T2);
return S, T, L3

end proc:

3.3. Sample Computations

Example 4. Consider the following matrix differential op-
erator as given in Example 2:

0 (1+x)o 1 o0+1
1 -x0 0 -1

L= , (37)
o+1 0 o+1 d

-0+1 (-2x-1)0 0-1 —0-2

1 x+1 01
0 -x 10
where oA = 1 | 11 and
-1 -2x-11 -1
001 1
10 0 -1 . . . .
B = Lo1 o | Using Maple implementation, with
10 -1 -2

DAEs_Reduction in the proposed algorithm, we have the
following:

>A := Matrix([[1, x+ 1, 0, 1], [0, —x, 1, 0], [1, 1, 1, 1],
[_1$ —2x- la 1) _1]])
>B = Matrix([[O, 0) 1) 1]» [1) 0) 0) _1]» [1) 0) l) 0]’ [1,

O)_1> _2]])

rt x+1 0 1
0 -x 10

A= N
1 1 11
L-1 2x-11 -1

(38)

roo 1 1
10 0 -1

B:= .
101 0
L1 0 -1 -2

>S, T, Lred := DAEs_Reduction(A, B).
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1 0 00
0 1 00
1-110]f
[ 1 -1 01
r ox—1 Ox+0+x 7
10
Ox+x+1 ox+x+1
o1 20+1 -1
0(0x+x+1) 8(Ox+x+1) | (39)
00 0 1
LO O 1 0 i

ré 6(1+x) 00

1 -6x 00
o o oo
lo 0 00

From Maple implementation, we have that two unim-
odular matrices differential operators S, T are

1 0 00
0 1 00
S= ,
-1 -110
1 -101
10 1-x0 x0+0+x
x0+x+1 x0+x+1 (40)
01 20+1 -1
T= o(x0+x+1) 0(x0+x+1) |,
00 0 1
00 1 0

and the reduced matrix differential operator of the given
DAS (37) is

9 (1+x)d 00

|1 —x3 oo

L= (41)
0O 0 00
0 0 00

One can also verify in Maple that L = SLT as follows:

>L := Matrix([[delta, delta * (1 +x), 1, delta + 1],

[1, —delta * x, delta, —1], [delta+1, delta, delta+1,
delta],

[—delta + 1, —delta * (1 + 2 * x), delta—1, —delta —2]]);

0 6(1+x) 1 §+1
1 -0x é -1
(42)
6+1 é d+1 6
-0+1 -6(1+2x) 6-1 -6-2
>simplify ~ (S.L.T);
6 6(1+x) 00
1 -6x 00
. (43)
0 0 00
0 0 00

4. Conclusion

In this paper, we discussed a new reduction algorithm to
solve a given system of linear differential-algebraic equations
with power series coeflicients. With the proposed algorithm,
one can transform the given matrix differential operator into
another simple equivalent matrix differential operator using
the elementary algebraic techniques. Certain examples are
presented to illustrate the algorithm. The implemented
Maple package is discussed and sample computations are
presented.

Data Availability

The datasets generated and analyzed during the current
study are included within the article.

Additional Points

In this paper, the authors presented a new reduction al-
gorithm to solve a system of linear DAEs with power series
coefficients. In this algorithm, they transform the given
matrix differential operator to simple equivalent matrix
differential operator using the elementary algebraic tech-
niques. Several examples are presented to illustrate the al-
gorithm and also the Maple package is discussed with sample
computations.
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