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We discuss Fisher’s fixed point theorem for mappings defined on a generalized metric space endowed with a graph. +is work
should be seen as a generalization of the classical Fisher fixed point theorem. It extends some recent works on the enlargement of
Banach Contraction Principle to generalized metric spaces with graph. An example is given to illustrate our result.

1. Introduction and Preliminaries

Currently, fixed point theory is a very active area of research
because of its applications in multiple fields. It concerns the
results which indicate that, under certain conditions, self-
mapping on a set admits a fixed point. Among all the results
in metric fixed point theory, the Banach Contraction
Principle [1] is the most celebrated one due to its simplicity
and ease of application in major areas of mathematics.
Subsequently, many authors extend and generalize this
principle in different directions. In 1981, Fisher [2] proved
the following related fixed-point theorem involving two
mappings on two complete metric spaces as follows.

Theorem 1. Let (X, d) and (Y, δ) be complete metric spaces.
If T is a mapping from X into Y and S is a mapping from Y into
X, satisfying the following conditions,

δ(Tx, TSy)≤ cmax d(x, Sy), δ(y, Tx), δ(y, TSy)􏼈 􏼉,

d(Sy, STx)≤ cmax δ(y, Tx), d(x, Sy), d(x, STx)􏼈 􏼉,
􏼨

(1)

for all x in X and y in Y where 0≤ c< 1, then ST has a unique
fixed point z in X and TS has a unique fixed point w in Y.
Furthermore, Tz � w and Sw � z.

In 2017, Chaira et al. [3] extend the Fisher theorem in the
setting of partially ordered generalized metric spaces.

+e concept of standard metric space is a fundamental
tool in topology, functional analysis, and nonlinear
analysis. In recent years, several generalizations of stan-
dard metric space have appeared. In 1993, Czerwik [4]
introduced the concept of a b-metric space. Since then,
several works have dealt with fixed point theory in such
spaces. In 2000, Hitzler and Seda [5] introduced the
notion of dislocated metric spaces in which self-distance
of a point need not be equal to zero. Such spaces play a
very important role in topology and logical programming
(see [6]). In this work, we present a new generalized
metric space introduced by Jleli and Samet in [7] and that
recovers a large class of topological spaces including
standard metric spaces, b-metric spaces, dislocated metric
spaces, and modular spaces with the Fatou property. Also,
several interesting results about the existence and the
uniqueness of the fixed point were proved in the setting of
this generalized metric space (see [3, 7–13]).

An interesting approach in the theory of the fixed point
in some general structures was recently given by Jachymski
[14] in the setting of metric spaces endowed with a graph and
Samet and Turinici [15] in the setting of metric spaces
endowed with an arbitrary binary relation.
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In this work, inspired by the ideas given in [14–18], we
investigate Fisher fixed-point theorem in generalized metric
spaces with a graph. As corollary, we obtain Fisher fixed-point
theorem in the setting of standard metric spaces endowed with
a graph. An example is provided to illustrate our result.

In the following, we describe themathematical background
materials which are necessary for establishing the results in this
paper. A directed graph or digraph G is determined by a
nonempty set V(G) of its vertices and the set E(G) ⊂ V(G) ×

V(G) of its arcs. Let Δ denote the diagonal of the Cartesian
product V(G) × V(G). A digraph is said to be reflexive if the
set E(G) of its arcs contains all loops, i.e., Δ ⊂ E(G). G is said
to be transitive whenever for any x, y, z ∈ V(G):

[(x, y) ∈ E(G) and (y, z) ∈ E(G)] implies (x, z) ∈ E(G).

(2)

We say that a vertex x in V(G) is isolated if for any vertex
y inV(G) such that x≠y, and we have neither (x, y) ∈ E(G)

nor (y, x) ∈ E(G).
By G− 1 we denote the converse of a digraphG, that is, the

digraph obtained from G by reversing the direction of arcs.
+us, we have

E G
− 1

􏼐 􏼑 � (x, y) ∈ V(G) × V(G): (y, x) ∈ E(G)􏼈 􏼉. (3)

Also, 􏽥G denotes the undirected graph obtained from G
by ignoring direction of the edges. +us, we have

E(􏽥G) � E(G)∪E G
− 1

􏼐 􏼑. (4)

Given a digraph G � (V, E), a (di)path of G is a sequence
(a0, a1, . . . , an) with (ai, ai+1) ∈ E(G), for each i ∈ N. A fi-
nite path (a0, a1, . . . , an) is said to have length n, for n ∈ N. A
closed directed path of length n> 1 from x to y, i.e., x � y, is
called a directed cycle. An acyclic digraph is a digraph that
has no directed cycle. A digraph is connected if there is a
finite (di)path joining any two of its vertices and it is weakly
connected if 􏽥G is connected.

If G is such that E(G) is symmetric and x is a vertex in G,
then the subgraph Gx consisting of all edges and vertices,
which are contained in some path beginning at x, is called
the component of G containing x. In this case,
V(Gx) � [x]G, where [x]G is the equivalence class of the
following relation R defined on V(G) by the rule yRz if there
is a path in G from y to z. Clearly, Gx is connected. We say
that two vertices x and y in V(G) are connected if y ∈ [x]G

or x ∈ [y]G.
+e basic concepts related to a graph may be found in

any textbook on graph theory, see for example [19, 20].

Definition 1. A sequence xn􏼈 􏼉 in V(G) is said to be

(i) G-increasing, if xn+1 ∈ [xn]G, for all n ∈ N;

(ii) G-decreasing, if xn ∈ [xn+1]G, for all n ∈ N;

(iii) G-monotone, if it is either G-increasing or
G-decreasing

Let X be a nonempty set andD: X × X⟶ [0, +∞] be a
given mapping. For every x ∈ X, let us define the set

C(D, X, x) � 􏼈 xn􏼈 􏼉 ⊂ X: limn⟶∞D(xn, x) � 0􏼉. +e
mapping D is called a generalized metric on X if it satisfies
the following conditions [7]:

(D1) for every (x, y) ∈ X × X, D(x, y) � 0⟹x � y.
(D2) for every (x, y) ∈ X × X, D(x, y) � D(y, x).
(D3) there exists C> 0 such that if (x, y) ∈ X × X and
xn􏼈 􏼉 ∈ C(D, X, x), then

D(x, y)≤C lim sup
n⟶∞

D xn, y( 􏼁. (5)

In this case, we say that the pair (X,D) is a generalized
metric space. Obviously, if the set C(D, X, x) is empty for
every x ∈ X, then (X,D) is a generalized metric space if and
only if (D1) and (D2) are satisfied. A sequence xn􏼈 􏼉 in a
generalized metric space (X,D) is said to be D-convergent
to x ∈ X if xn􏼈 􏼉 ∈ C(D, X, x). Note that if the set
C(D, X, x) is not empty for some x ∈ X, then D(x, x) � 0.
A sequence xn􏼈 􏼉 is said to be a D-Cauchy sequence if
limm,n⟶∞D(xn, xm) � 0. Note that in a generalized metric
space, a sequence has at most one limit and aD-convergent
sequence may not be D-Cauchy sequence (see [16]).
Moreover, (X,D) is said to be D-complete if every
D-Cauchy sequence in X is D-convergent to some element
in X.

Definition 2. We say that (X,D, G) is G-regular if any G-
increasing sequence (resp. G-decreasing sequence) xn􏼈 􏼉

which D-converges to some x ∈ V(G), we have x ∈ [xn]G

(resp. xn ∈ [x]G), for any n ∈ N.

2. Main Results

Let (X,D) and (Y,Δ) be two generalized metric spaces such
that X is endowed with a digraph G. Consider a nonde-
creasing function α: [0, +∞)⟶ [0, 1) such that
lim supt⟶0+α(t)< inf 1, (1/C){ } with C as the positive real
appeared in the condition (D3) in the definition of the
generalized metric D.

Let T: X⟶ Y and S: Y⟶ X be two mappings and
denote, for any x0 ∈ X,

δ S, T, x0,D,Δ( 􏼁 � sup D (ST)
i
x0, (ST)

j
x0􏼐 􏼑,􏽮

Δ T(ST)
i
x0, T(ST)

j
x0􏼐 􏼑: i, j ∈ N􏽯.

(6)

Theorem 2. Let T: X⟶ Y and S: Y⟶ X be two map-
pings satisfying the following conditions:

(1) Let
D(Sy, STx)≤ α(Δ(y, Tx))max D(x, Sy),Δ(y, Tx),D(x, STx)􏼈 􏼉,

Δ(Tx, TSy) ≤ α(D(x, Sy))max D(x, Sy),Δ(y, Tx),Δ(y, TSy)􏼈 􏼉,
􏼨

(7)

for any x in X and y in Y such that x and Sy are
connected.
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(2) (X,D, G) is D-complete and G-regular.
(3) :ere exists an element x0 ∈ X such that

δ(S, T, x0,D,Δ)<∞ and (ST)i+1x0 ∈ [(ST)ix0]G,

for all i ∈ N.

+en, the sequence (ST)nx0􏼈 􏼉D-converges to some x∗ in
X. If D(x∗, STx∗)<∞, then there exists y∗ ∈ Y such that
y∗ � Tx∗ and Sy∗ � x∗; then, STx∗ � x∗ and TSy∗ � y∗.
Moreover, D(x∗, x∗) � 0 and Δ(y∗, y∗) � 0.

Proof. Step 1. Suppose that there exists an element x0 ∈ X

such that δ(S, T, x0,D,Δ)<∞ and

(ST)
i+1

x0 ∈ (ST)
i
x0􏽨 􏽩

G
, for all i ∈ N. (8)

Consider the two sequences xn􏼈 􏼉 ⊂ X and yn􏼈 􏼉 ⊂ Y

defined by

xn+1 � STxn,

yn � Txn,

for all n ∈ N.

(9)

In (7), by taking x � xp and y � yq, where p and q inN,
we obtain

D Syq, STxp􏼐 􏼑≤ α Δ yq, Txp􏼐 􏼑􏼐 􏼑max D xp, Syq􏼐 􏼑,Δ yq, Txp􏼐 􏼑,D xp, STxp􏼐 􏼑􏽮 􏽯,

Δ Txp, TSyq􏼐 􏼑≤ α D xp, Syq􏼐 􏼑􏼐 􏼑max D xp, Syq􏼐 􏼑,Δ yq, Txp􏼐 􏼑,Δ yq, TSyq􏼐 􏼑􏽮 􏽯,

⎧⎪⎨

⎪⎩
(10)

since xp and Syq � xq+1 are connected.
+us,

D xq+1, xp+1􏼐 􏼑≤ α Δ yq, yp􏼐 􏼑􏼐 􏼑max D xp, xq+1􏼐 􏼑,Δ yq, yp􏼐 􏼑,D xp, xp+1􏼐 􏼑􏽮 􏽯,

Δ yp, yq+1􏼐 􏼑≤ α D xp, xq+1􏼐 􏼑􏼐 􏼑max D xp, xq+1􏼐 􏼑,Δ yq, yp􏼐 􏼑,Δ yq, yq+1􏼐 􏼑􏽮 􏽯.

⎧⎪⎨

⎪⎩
(11)

In (11), by taking p � q � n, we obtain

D xn+1, xn+1( 􏼁≤ α Δ yn, yn( 􏼁( 􏼁max D xn, xn+1( 􏼁,Δ yn, yn( 􏼁􏼈 􏼉,

Δ yn, yn+1( 􏼁≤ α D xn, xn+1( 􏼁( 􏼁max D xn, xn+1( 􏼁,Δ yn, yn( 􏼁􏼈 􏼉,
􏼨 (12)

and by taking p − 1 � q � n, we obtain

D xn+1, xn+2( 􏼁≤ α Δ yn, yn+1( 􏼁( 􏼁max D xn+1, xn+1( 􏼁,Δ yn, yn+1( 􏼁􏼈 􏼉,

Δ yn+1, yn+1( 􏼁≤ α D xn+1, xn+1( 􏼁( 􏼁max D xn+1, xn+1( 􏼁,Δ yn, yn+1( 􏼁􏼈 􏼉.
􏼨 (13)

For any n in N, let

dn � D xn, xn( 􏼁,

dn
′ � D xn, xn+1( 􏼁,

sn � Δ yn, yn( 􏼁,

sn
′ � Δ yn, yn+1( 􏼁.

(14)

It follows from inequalities (12) and (13) that

dn+1 ≤ α sn( 􏼁max dn
′ , sn􏼈 􏼉,

sn
′ ≤ α dn
′( 􏼁max dn

′ , sn􏼈 􏼉,

dn+1′ ≤ α sn
′( 􏼁max dn+1, sn

′􏼈 􏼉,

sn+1 ≤ α dn+1( 􏼁max dn+1, sn
′􏼈 􏼉.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)
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Now for any n in N, let kn � max α(dn
′ ), α(sn)􏼈 􏼉 and

tn � max α(dn+1), α(sn
′ )􏼈 􏼉. System (15) becomes

dn+1 ≤ knan,

sn
′ ≤ knan,

dn+1′ ≤ tnbn,

sn+1 ≤ tnbn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where an � max dn
′ , sn􏼈 􏼉 and bn � max dn+1, sn

′􏼈 􏼉.
Consequently,

max dn+1, sn
′􏼈 􏼉≤ knan,

max dn+1′ , sn+1􏼈 􏼉≤ tnbn.

⎧⎨

⎩ (17)

+at is, bn ≤ knan and an+1 ≤ tnbn, and so an+1 ≤ knan.
Let δn􏼈 􏼉 be the sequence defined by
δn � δ(S, T, (ST)nx0,D,Δ), for any n ∈ N. Since the

function α is nondecreasing, dn
′ ≤ δ0 and sn ≤ δ0, for any

n ∈ N,
kn ≤ α δ0( 􏼁 and so an+1 ≤ α δ0( 􏼁an, for any n ∈ N,

(18)

which implies that the sequences an􏼈 􏼉 and bn􏼈 􏼉 con-
verge to 0. +is yields
lim

n⟶∞
D xn, xn( 􏼁 � lim

n⟶∞
D xn, xn+1( 􏼁

� lim
n⟶∞
Δ yn, yn( 􏼁 � lim

n⟶∞
Δ yn, yn+1( 􏼁 � 0.

(19)

Step 2. Let us show that xn􏼈 􏼉 is a D-Cauchy sequence.
Let us fix i and j in N.
For any n ∈ N, x � xn− 1+j and Sy � xn+i are connected
and by using the first inequality in (7), we have

D (ST)
n+i

x0, (ST)
n+j

x0􏼐 􏼑 � D xn+i, xn+j􏼐 􏼑

≤ α Δ yn+i− 1, yn+j− 1􏼐 􏼑􏼐 􏼑max D xn+j− 1, xn+i􏼐 􏼑,Δ yn+i− 1, yn+j− 1􏼐 􏼑D xn+j− 1, xn+j􏼐 􏼑􏽮 􏽯,

≤ α Δ yn+i− 1, yn+j− 1􏼐 􏼑􏼐 􏼑δn− 1.

(20)

For any n in N, x � xn+i and Sy � xn+j are connected
and by using the second inequality in (7), we have

Δ T(ST)
n+i

x0, T(ST)
n+j

x0􏼐 􏼑 � Δ yn+i, yn+j􏼐 􏼑

≤ α D xn+i, xn+j􏼐 􏼑􏼐 􏼑max D xn+i, xn+j􏼐 􏼑,Δ yn+i, yn− 1+j􏼐 􏼑Δ yn− 1+j, yn+j􏼐 􏼑􏽮 􏽯,

≤ α D xn+i, xn+j􏼐 􏼑􏼐 􏼑δn− 1.

(21)

+us, δn ≤ αnδn− 1, where αn � sup α(D(xn+i,􏼈

xn+j)), α(Δ(yn+i− 1, yn+j− 1)) : i, j ∈ N}.

Since the function α is nondecreasing and
D(xn+i, xn+j)≤ δ0, Δ(yn+i− 1, yn+j− 1)≤ δ0, for any i,
j ∈ N, we get αn ≤ α(δ0). +us,
δn ≤ α(δ0)δn− 1, and then δn ≤ (α(δ0))

nδ0, for all n ∈ N.

which implies that the sequence δn􏼈 􏼉 is convergent to 0.
Furthermore, for all n, m ∈ N, we have

D xn, xn+m( 􏼁 � D (ST)
n
x0, (ST)

n+m
x0( 􏼁≤ δn. (22)

+us, limn,m⟶∞D(xn, xn+m) � 0, and hence, xn􏼈 􏼉 is a
D-Cauchy sequence. Since X is D-complete, there
exists x∗ ∈ X such that limn⟶∞D(xn, x∗) � 0.
Step 3. Let y∗ � Tx∗. Since xn􏼈 􏼉 is a G-increasing se-
quence and (X,D, G) is G-regular, x∗ ∈ [xn]G, for any
n ∈ N. +us, x∗ and Syn− 1 � xn are connected.
In (7), by taking x � x∗ and y � yn− 1, we obtain

Δ Tx
∗
, TSyn− 1( 􏼁≤ α D x

∗
, Syn− 1( 􏼁( 􏼁max D x

∗
, Syn− 1( 􏼁,􏼈

Δ yn− 1, Tx
∗

( 􏼁,Δ yn− 1, TSyn− 1( 􏼁􏼉.

(23)

4 International Journal of Mathematics and Mathematical Sciences



As lim supt⟶0+α(t)< 1, there exists k ∈ [0, 1) and
N ∈ N such that for all n≥N, we have
α(D(x∗, Syn− 1))≤ k. +us,
Δ y
∗
, yn( 􏼁≤ kmax D x

∗
, xn( 􏼁,Δ yn− 1, y

∗
( 􏼁,Δ yn− 1, yn( 􏼁􏼈 􏼉. (24)

Since limn⟶∞D(xn, x∗) � limn⟶∞Δ(yn− 1, yn) � 0,

we get lim supn⟶∞Δ(y∗, yn)≤ k lim supn⟶∞
Δ(y∗, yn− 1) and so lim supn⟶∞Δ(y∗, yn) � 0.

As lim supt⟶0+α(t)< inf 1, (1/C){ }, there exists
k′ ∈ [0, inf 1, (1/C){ }) and N′ ∈ N such that for all
n≥N′, we have α(Δ(yn− 1, y∗))≤ k′. Since
limn⟶∞D(xn, x∗) � 0,

D x
∗
, Sy
∗

( 􏼁≤C lim sup
n⟶∞

D xn, Sy
∗

( 􏼁

� C lim sup
n⟶∞

D Syn− 1, STx
∗

( 􏼁

≤C lim sup
n⟶∞

α Δ yn− 1, y
∗

( 􏼁( 􏼁max D xn, x
∗

( 􏼁,􏼈

Δ yn− 1, y
∗

( 􏼁,D x
∗
, Sy
∗

( 􏼁􏼉

≤C k′D x
∗
, Sy
∗

( 􏼁.

(25)

We conclude thatD(x∗, Sy∗) � 0, since C k′ < 1. +en,
x∗ � Sy∗, and so STx∗ � x∗ and TSy∗ � y∗.
Since xn􏼈 􏼉 ∈ C(D, X, x∗) and yn􏼈 􏼉 ∈ C(D, Y, y∗),

D x
∗
, x
∗

( 􏼁 � 0,

Δ y
∗
, y
∗

( 􏼁 � 0.
(26)

□

Remark 1. In +eorem 2, we can replace the condition
(ST)i+1x0 ∈ [(ST)ix0]G by (ST)ix0 ∈ [(ST)i+1x0]G, for any i
in N.

For the uniqueness of the pair (x∗, y∗), we establish the
following.

Proposition 1. Suppose that there exists another pair
(x′, y′), satisfying Tx′ � y′ and Sy′ � x′.

If D(x′, x′)<∞ and Δ(y′, y′)<∞, then D(x′, x′) � 0
and Δ(y′, y′) � 0. Moreover, if x∗ and x′ are connected,
D(x∗, x′)<∞ and Δ(y∗, y′)<∞ then (x′, y′) � (x∗, y∗).

Proof. By taking x � x′ and y � y′ in (7), we have

D x′, x′( 􏼁 � D Sy′, STx′( 􏼁≤ α Δ y′, Tx′( 􏼁( 􏼁max D x′, Sy′( 􏼁,Δ y′, Tx′( 􏼁,D x′, STx′( 􏼁􏼈 􏼉,

Δ y′, y′( 􏼁 � Δ Tx′, TSy′( 􏼁≤ α D x′, Sy′( 􏼁( 􏼁max D x′, Sy′( 􏼁,Δ y′, Tx′( 􏼁,Δ y′, TSy′( 􏼁􏼈 􏼉.

⎧⎨

⎩ (27)

+at is,
D x′, x′( 􏼁≤ α Δ y′, y′( 􏼁( 􏼁Δ y′, y′( 􏼁,

Δ y′, y′( 􏼁≤ α D x′, x′( 􏼁( 􏼁D x′, x′( 􏼁.

⎧⎨

⎩ (28)

+erefore, we have

1 − α Δ y′, y′( 􏼁( 􏼁 α D x′, x′( 􏼁( 􏼁( 􏼁D x′, x′( 􏼁≤ 0,

1 − α Δ y′, y′( 􏼁( 􏼁 α D x′, x′( 􏼁( 􏼁( 􏼁Δ y′, y′( 􏼁≤ 0.

⎧⎨

⎩ (29)

+en, D(x′, x′) � 0 and Δ(y′, y′) � 0.
Since Sy∗ and x′ are connected, by taking x � x′ and

y � y∗ in (7), we obtain

D Sy∗, STx′( 􏼁≤ α Δ y∗, Tx′( 􏼁( 􏼁max D x′, Sy∗( 􏼁,Δ y∗, Tx′( 􏼁,D x′, STx′( 􏼁􏼈 􏼉,

Δ Tx′, TSy∗( 􏼁≤ α D x′, Sy∗( 􏼁( 􏼁max D x′, Sy∗( 􏼁,Δ y∗, Tx′( 􏼁,Δ y∗, TSy∗( 􏼁􏼈 􏼉.

⎧⎨

⎩ (30)

+at is,
D x∗, x′( 􏼁≤ α Δ y∗, y′( 􏼁( 􏼁max D x′, x∗( 􏼁,Δ y∗, y′( 􏼁􏼈 􏼉,

Δ y′, y∗( 􏼁≤ α D x′, x∗( 􏼁( 􏼁max D x′, x∗( 􏼁,Δ y∗, y′( 􏼁􏼈 􏼉.

⎧⎨

⎩

(31)

Hence,

D x∗, x′( 􏼁≤ α Δ y∗, y′( 􏼁( 􏼁Δ y∗, y′( 􏼁,

Δ y′, y∗( 􏼁≤ α D x′, x∗( 􏼁( 􏼁D x′, x∗( 􏼁.

⎧⎨

⎩ (32)
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+erefore, we have D(x′, x∗) � 0 and Δ(y∗, y′) � 0,
which implies that (x′, y′) � (x∗, y∗). □

Example 1. Let X � [1, 3] and Y � [1, 2] and two mappings
T: X⟶ Y and S: Y⟶ X be defined as follows:

Tx �
x + 1
2

, for any x ∈ X,

Sy � y + 1, for any y ∈ Y.

(33)

Let α: [0, +∞)⟶ [0, 1) such that α(t) � (2
�
2

√
/3).

Consider the two mappings D: X × X⟶ [0;∞] and
Δ: Y × Y⟶ [0;∞] defined as follows:

D(a, b) �
1
a

−
1
b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

Δ(c, d) �
1
�
2

√
1
c

−
1
d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(34)

We can show thatD and Δ are generalized metrics on X
and Y, respectively, with constant C≥ 1.

Consider the graph G on X such that V(G) � X and

E(G) � (x, x): x ∈ X{ }∪ 3 −
1
2n

, 3􏼒 􏼓: n ∈ N􏼚 􏼛∪ 3 −
1
2n

, 3 −
1

2n+1􏼒 􏼓: n ∈ N􏼚 􏼛. (35)

We prove that, for any (x, y) ∈ X × Y, such that x and Sy

are connected, we have

D(Sy, STx)≤ α(Δ(y, Tx))max D(x, Sy),Δ(y, Tx),D(x, STx)􏼈 􏼉,

Δ(Tx, TSy)≤ α(D(x, Sy))max D(x, Sy),Δ(y, Tx),Δ(y, TSy)􏼈 􏼉.
􏼨 (36)

+ere are five cases.

Case 1. For y ∈ [1, 2] and x � Sy ∈ [2, 3], we have

D(Sy, STx) �
1
x

−
2

x + 3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2
3

1
x − 1

−
2

x + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2

�
2

√

3
Δ(y, Tx),

Δ(Tx, TSy) � Δ(Tx, Tx) � 0.

(37)

Case 2. For x � 3 − (1/2n), for any n ∈ N and y � 2, we have

D(Sy, STx) �
1

3 − 2− (n+1)
−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2

�
2

√

3
1

3 − 2− n
−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

�
2

√

3
D(x, Sy),

Δ(Tx, TSy) �
1
�
2

√
1

2 − 2− (n+1)
−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2

�
2

√

3
1

3 − 2− n
−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

�
2

√

3
D(x, Sy).

(38)

Case 3. For x � 3 and y � 2 − (1/2n), for any n ∈ N, we have

D(Sy, STx) �
1

3 − 2− n
−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2
3

1
2 − 2− n

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

�
2

√

3
Δ(y, Tx),

Δ(Tx, TSy) �
1
�
2

√
1

2 − 2− (n+1)
−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2
3

1
2 − 2− n

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2

�
2

√

3
Δ(y, Tx).

(39)

Case 4. For x � 3 − (1/2n) and y � 2 − (1/2p), for any
n, p ∈ N, such that the following can be obtained.

One can see that
1

3 − α
−

1
3 − β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2
3

1
2 − α

−
1

2 − β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (40)

for any α, β ∈ (0, 1].
By taking α � 2− (n+1) and β � 2− p, we obtain

1
3 − 2− (n+1)

−
1

3 − 2− p

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2
3

1
2 − 2− (n+1)

−
1

2 − 2− p

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (41)

+us,

D(Sy, STx)≤
2

�
2

√

3
Δ(y, Tx). (42)

Furthermore,
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1
�
2

√
1

2 − α
−

1
2 − β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2

�
2

√

3
1

3 − 2α
−

1
3 − 2β

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (43)

for any α, β ∈ (0, 1].
By taking α � 2− (n+1) and β � 2− (p+1), we obtain
1
�
2

√
1

2 − 2− (n+1)
−

1
2 − 2− (p+1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2

�
2

√

3
1

3 − 2− n
−

1
3 − 2− p

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(44)

+us,

Δ(Tx, TSy)≤
2

�
2

√

3
D(x, Sy). (45)

Case 5. For x � 3 − (1/2n) and y � 2 − (1/2p), for any
n, p ∈ N, such that n≥p + 1. In the same way as Case 4, we
obtain

D(Sy, STx)≤
2

�
2

√

3
Δ(y, Tx),

Δ(Tx, TSy)≤
2

�
2

√

3
D(x, Sy).

(46)

Let x0 � 2 ∈ X, we have (ST)nx0 � 3 − (1/2n), for any
n ∈ N. One can see that

δ S, T, x0,D,Δ( 􏼁 � sup D (ST)
i
x0, (ST)

j
x0􏼐 􏼑,Δ T(ST)

i
x0, T(ST)

j
x0􏼐 􏼑: i, j ∈ N􏽮 􏽯

� sup D 3 −
1
2i

, 3 −
1
2j

􏼒 􏼓,Δ 2 −
1

2(i+1)
, 2 −

1
2(j+1)

􏼒 􏼓: i, j ∈ N􏼚 􏼛

<∞,

(47)

and (ST)i+1x0 ∈ [(ST)ix0]G, for all i ∈ N.
Since (X,D, G) is D-complete and G-regular, then all

assumptions of +eorem 2 are satisfied and there exists
(x∗, y∗) � (3, 2) such that Tx∗ � y∗ and Sy∗ � x∗.

Remark 2. +eorem 2 extends themain result of Chaira et al.
in [3] by considering the graph G≤ on X defined by

(x, y) ∈ E G≤( 􏼁, iff x≤y. (48)

+e next corollary gives a version of +eorem 2 in
standard metric spaces endowed with a digraph.

Corollary 1. Let (X, d) and (Y, δ) be two metric spaces such
that X is endowed with a digraph G. Consider a nondecreasing
function α: [0, +∞)⟶ [0, 1), such that

lim sup
t⟶0+

α(t)< 1. (49)

Let T: X⟶ Y and S: Y⟶ X be two mappings sat-
isfying the following conditions:

(1) Let

d(Sy, STx)≤ α(δ(y, Tx))max d(x, Sy), δ(y, Tx), d(x, STx)􏼈 􏼉,

δ(Tx, TSy)≤ α(d(x, Sy))max d(x, Sy), δ(y, Tx), δ(y, TSy)􏼈 􏼉,
􏼨 (50)

for any x in X and y in Y, such that x and Sy are
connected.

(2) (X, d, G) is complete and G-regular.
(3) +ere exists an element x0 ∈ X such that

(ST)i+1x0 ∈ [(ST)ix0]G, for all i ∈ N.

+en, there exists (x∗, y∗) ∈ X × Y, such that Tx∗ � y∗

and Sy∗ � x∗; then, STx∗ � x∗ and TSy∗ � y∗.
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