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Bovine tuberculosis (bTB) is a bacterial and zoonotic disease which is transmitted through consumption of unpasteurized milk
and uncooked meat and inhalation of aerosols. In this paper, a deterministic mathematical model is formulated to study the
transmission dynamics of bTB in humans and animals. �e basic reproduction number R0 is computed to determine the behavior
of the disease. Stability analysis shows that there is a possibility for disease-free equilibrium and endemic equilibrium to coexist
when R0 �1. To determine parameters which drive the dynamics of bTB, we performed sensitivity analysis.�e analysis shows that
the rate at which dairy products are produced, the rate of transmission of bTB from animal to animal, and the rates at which
human acquires bTB from infectious dairy products and animals drive the transmission of bTB. However, the disease decreases as
the rate of consumption of dairy products decreases. To control bTB, education campaign, inspection of dairy products, treatment
of infected humans, and quarantine of infected animals are recommended.

1. Introduction

Tuberculosis (TB) is a global health problem which is among
the top ten diseases which are leading in causing death for
many people [1]. World Health Organization (WHO) has
conducted several meetings to discuss strategies on how to
end TB but the disease is still claiming lives. According to
WHO report of 2018, TB kills 1.3 million people among HIV
negative, and there was an addition of 300, 000 people with
HIV positive who died with TB. It is estimated that annually
10 million people get ill with TB of which 5.8 million are
men, 3.2 million are women, and 1.0 million are children [1].
Africa is reported to have highest number of cases, followed
by India, China, and Indonesia with percentage 72%, 27%,
9%, and 8%, respectively [1]. Although TB is a worldwide
health problem, other forms of TB such as zoonotic tu-
berculosis are still neglected.

Bovine tuberculosis (bTB) is a bacterial and zoonotic
disease, which was originally transmitted to cattle from wild
animals especially buffalo and badger, and then spread to
other domestic animals like cows, goats, pigs, horses, and

sheep [2]. �e disease has a great negative economic impact
due to slaughtering of infectious animals when they acquire
bTB [3]. Also, bTB causes human health problems which
sometimes cost lives. It can lead to loss of self-employment
for some workers, especially those who depend on livestock
keeping as their main source of income [4]. Bovine tuber-
culosis is transmitted to humans through three main ways,
which are, consumption of unpasteurized milk, eating un-
cooked meat, and inhalation of aerosols [5, 6]. In animals,
bTB is transmitted when there is close interaction between
uninfected animal and infectious animals [7] and con-
sumption of infectious milk especially during breastfeeding
and inhalation of aerosols [8].

It is estimated that about 147,000 new cases of bTB in
humans were reported, whereby 12,000 people die annually
due this disease [2]. In Tanzania, the disease prevalence
varies from region to region depending on the number of
livestock in a particular place and it ranges from 0.2%–13.3%
[6, 9].�e problem of not having surveillance data makes the
estimation to be poor and difficult [3]. Places where bTB
exist, includes Northern Tanzania (Arusha, Kilimanjaro, and
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Manyara), dairy farms in Kibaha, and some areas in
Morogoro districts [3, 6].

Early diagnosis of bTB helps to know the dynamics of the
disease and identify ways of controlling the transmission
factors before it becomes endemic. Various tools and
methods are used to diagnose bTB and some of them include
Polymerase chain reaction (PCR) and gene sequencing of
culture isolate which is an expensive tool [10, 11], post
mortem examination which focused on lymph nodes [12],
and single itradermal comparative cervical test (SICCT) [13].
From external examination it shows that there is high
possibility of carcasses from slaughtered cattle to contain
bTB pathogens [14].

Various organizations such as WHO, OIE, and FAO
joined together to fight against transmission of bTB in order
to eradicate the disease [2]. �ough different approaches
such as “one health approach, together we can save lives, and
secure livelihoods” are used, bTB is still a problem especially
in some African countries. �ough spread of bTB has been
controlled by treating livestock using various medicines,
such as pyrazinamide medicine, unfortunately, bTB is still
resistant to pyrazinamide medicine because it is used to treat
patients with pulmonary TB [2]. Many studies have ignored
the role of dairy products in the spread of bTB. �is study
aims to find the parameters which drive the dynamics of bTB
and explore the role played by dairy products in the
transmission dynamics of bTB.

Studies such as Agusto et al. [15], Liu et al. [16], Mathews
et al. [11], and Phepa [17] developedmathematical models to
study the transmission dynamics of bTB and its control
strategies. Most of these studies did not consider the impacts
of dairy products in the transmission of bTB although the
products are among the factors which drive the transmission
of bTB since they are consumed by large number of people
worldwide [18, 19]. �ese products are among the factors
which lead in the spread of bTB as some of the findings
reported the products to contain Ramos et al. [20]. �is
study uses a mathematical model to study transmission
dynamics of bTB in human beings and livestock by con-
sidering dairy products as a risk factor for the transmission
of bTB.

�is work is organized as follows: materials and methods
are presented in the Section 2 followed by model analysis,
sensitivity analysis, and numerical simulation, and it is
concluded with conclusion and recommendation.

2. Materials and Methods

2.1. Model Formulation. �e model is formulated by
modifying the tuberculosis model for human and cows in
Urumqi, Xinjiang, China which was developed by Liu et al.
[16]. �e model divides cow population into three groups:
Susceptible Sc, Infected Ic, and Quarantine Qc (SIQ) and
human population into four groups: Susceptible Sh, Exposed
Eh, Infected Ih, and Recovery Rh (SEIR).

Our current model includes animal and human pop-
ulations. Human population is divided into susceptible SH,
exposed EH, and infected IH (SEI) and animal population is
divided into susceptible Sa, exposed Ea, and infected Ia

compartments. �e variable D represents diary products
which are produced by infected animals. �e proposed
model does not include recovery class because it is assumed
that there is no natural recovery [21].

Susceptible humans are recruited through birth and
migration at a rate ΛH, and they acquire bovine tuberculosis
latent infection following contacts with infectious human
and animals and after consuming dairy products from in-
fectious animals at a rate

λH �
β1IH + β2Ia + β3D( 􏼁

NH

. (1)

Exposed compartment EH increases the following latent
infection of susceptible humans SH at a rate λH and it de-
creases due to progression to infectious stage at a rate cH.
Infectious humans IH increase at a rate cH and diminish due
to disease-induced mortality at a rate αH. All human
compartments suffer natural mortality at a rate μH.

Susceptible animals Sa are recruited through birth and
migration at a rate Λa and acquire bovine tuberculosis latent
infection following contacts with infectious humans and
animals and after consuming dairy products at a rate

λa �
β4IH + β5Ia + β6D

Na

. (2)

Exposed animals Ea increase following latent infection of
susceptible animals Sa at a rate λa. However, they decrease
due to progression to the infectious stage at a rate ca. In-
fectious animals Ia increase at a rate ca and diminish due to
disease-induced mortality at a rate αa. All animal com-
partments suffer natural mortality at a rate μa.

Dairy products are produced by infectious animals at a
rate ρ and leak out at a rate ω, and susceptible humans
consumed dairy products at a rate β3 and susceptible animals
at a rate β6.

In the model we assume that all humans and animals are
susceptible to the disease. Susceptible human SH contacts
bTB when they consume dairy products D such as milk and
meat from infected animals; when they inhale aerosols from
infected animals and human and have direct contact with
dairy product from infected animals through scratches [5].
Susceptible animal acquires infection when they interact
with infectious animals and humans, through breastfeeding
from infectious animals and inhalation of aerosols. �ere is
constant natural death to both animals and human beings.
�ere is no natural recovery for infected individuals.

Figure 1 demonstrates the interaction of state variables;
Tables 1 and 2 describe state variables and parameters,
respectively.

2.2. Model Equations. From Figure 1, we have the following
system of differential equations:

dSH

dt
� ΛH −

β1IH + β2Ia + β3D
NH

􏼠 􏼡SH − μHSH, (3a)

dEH

dt
�

β1IH + β2Ia + β3D
NH

􏼠 􏼡SH − cH + μH( 􏼁EH, (3b)
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dIH

dt
� cHEH − μH + αH( 􏼁IH, (3c)

dSa

dt
� Λa −

β4IH + β5Ia + β6D
Na

􏼠 􏼡Sa − μaSa, (3d)

dEa

dt
�

β4IH + β5Ia + β6D
Na

􏼠 􏼡Sa − ca + μa( 􏼁Ea, (3e)

dIa

dt
� caEa − μa + αa( 􏼁Ia, (3f)

dD

dt
� ρIa − ωD, (3g)

subject to their initial conditions: SH(0) � 0, EH(0) � 0, IH(0)
� 0, Sa(0) � 0, Ea(0) � 0, Ia(0) � 0, and D(0) � 0.

3. Model Analysis

To determine whether the model is mathematically and
epidemiologically meaningful, we find invariant region and
test positivity of solutions. �e model is biologically and
mathematically meaningful, when its solutions are positive
and bounded.

3.1. Invariant Region. Invariant region shows the feasibility
of the model solutions. To study the feasibility of the model
solutions, we denote humans and animal populations by NH
and Na, respectively.

Beginning with human population, we have

NH � SH + EH + IH,

dNH

dt
� ΛH − μHNH − αHIH.

(4)

Solving (4), we obtain

NH(0)≤
ΛH

μH

+ NH(0) −
ΛH

μH

􏼠 􏼡e
− μHt

. (5)

Analysis of NH consider two cases

whenNH(0)>
ΛH

μH

andwhenNH(0)<
ΛH

μH

. (6)

For all two cases, we have

NH(t)≤
ΛH

μH

≤
ΛH

μH

+ NH(0) −
ΛH

μH

􏼠 􏼡e
− μHt

,

NH(t)≤
ΛH

μH

+ NH(0) −
ΛH

μH

􏼠 􏼡e
− μHt ≤
ΛH

μH

.

(7)

As t⟶∞,

0≤NH ≤
ΛH

μH

. (8)

When we apply the same procedure for animals pop-
ulation, as t⟶∞,

0≤Na ≤
Λa

μa

. (9)

Since Na ≤ (Λa/μa), then Ia ≤ (Λa/μa).
For the case of dairy products, when t⟶∞ we have

D(t)≤
Λa

μa

ρ
ω

􏼒 􏼓. (10)

�erefore, we can see that model (3) is a positive in-
variant in the region

SH

µHSH

µaSa

λHSH

λaSa

γHEH

γaEa

µHEH

µaEa

(µH + αH)IH

(µa + αa)Ia

ΛH

Λa
Sa Ea Ia

EH IH

DρIa ωD

Figure 1: Model flow diagram.

Table 1: Model variables description.

Symbol Description
SH(t) Number of susceptible human at time t
Sa(t) Number of susceptible animal at time t
EH(t) Number of exposed/latent human beings at time t
Ea(t) Number of exposed animals at time t
IH(t) Number of infected human at time t
Ia(t) Number of infected animals at time t
D(t) Dairy products at time t

Table 2: Parameters’ descriptions.

Parameter Descriptions
ΛH Human recruitment rate
μH Human natural death
cH Progression rate from EH to IH
αH Human death rate due to disease induced
β1, β2, β3 Humans infection rate from IH, Ia, and D, respectively
Λa Animal recruitment rate
μa Animal natural death rate
ca Progression rate from Ea to Ia
αa Animals disease induced mortality
ρ Dairy products production rate
ω Rate of decaying for unconsumed dairy products
β4, β5, β6 Animals infection rate from IH, Ia, and D, respectively
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Z � SH, EH, IH, Sa, Ea, Ia, D( 􏼁 ∈ R
7
+ : 0≤NH ≤

ΛH

μH

; 0≤Na ≤
Λa

μa

; 0≤D≤
Λa
μa

ρ
ω

􏼒 􏼓􏼨 􏼩. (11)

3.1.1. Positivity of Solution

Theorem 1. Let the initial variable of model (3) be SH(0) > 0,
EH(0) > 0, IH(0) > 0, Sa(0) > 0, Ea(0) > 0, Ia(0) > 0, and D > 0;
then, the solutions SH > 0, EH > 0, IH > 0, Sa > 0, Ea > 0, Ia, and
D > 0 are positive ∀t > 0.

Proof:. Let us consider equation (3a) of the model system
(3), which is

dSH

dt
� ΛH −

β1IH + β2Ia + β3D
NH

􏼠 􏼡SH − μHSH,

dSH

dt
≥ −

β1IH + β2Ia + β3D
NH

􏼠 􏼡SH − μHSH.

(12)

By separating variables (12) and integrating, we obtain
dSH

SH

≥ −
β1IH + β2Ia + β3D

NH

+ μH􏼠 􏼡dt,

􏽚
dSH

SH

≥ − 􏽚
t

0

β1IH(s) + β2Ia(s) + β3D(s)

NH(s)
+ μH􏼠 􏼡ds,

lnSH ≥ − 􏽚
t

0

β1IH(s) + β2Ia(s) + β3D(s)

NH(s)
+ μH􏼠 􏼡ds + C,

SH ≥Ce
􏽒

t

0
−

β1IH(s)+β2Ia(s)+β3D(s)

NH(s)
+μH􏼐 􏼑ds

.

(13)

At initial condition, we obtain

SH ≥ SH(0)e
􏽒

t

0
−

β1IH(s)+β2Ia(s)+β3D(s)

NH(s)
+μH􏼐 􏼑ds

. (14)

Following the same approach for the remaining variables
(3b)–(3g) of the model system (3), we obtain

EH ≥EH(0)e
− cH+μH( )t

,

IH ≥Ce
μH+αH( )t

,

Sa ≥ Sa(0)e
􏽒

t

0
−

β4IH(s)+β5Ia(s)+β6D(s)

Na(s)
+μa􏼐 􏼑ds

,

Ea ≥Ea(0)e
− ca+μa( )t

,

Ia ≥ Ia(0)e
− μa+αa( )t

,

D≥D(0)e
−ωt

.

(15)

Since

SH > 0, EH > 0, IH > 0, Sa > 0, Ea > 0, Ia > 0 andD> 0,

(16)

then the model solutions are positive ∀t > 0.
Model (3) is mathematically and epidemiologically

meaningful; therefore, we can consider the flow generated by
the model for analysis. □

3.2. Disease-Free Equilibrium (DFE). �e disease-free
equilibrium point is the state when there is no disease in the
population. When there is no bTB in human and animal
populations, the disease-free equilibrium is given by

DF0 � SH, EH, IH, Sa, Ea, Ia, D( 􏼁 �
ΛH

μH

, 0, 0,
Λa

μa

, 0, 0, 0􏼠 􏼡.

(17)

3.2.1. �e Basic Reproduction Number R0. �e basic re-
production number refers to the average number of new
cases that a single infectious individual causes when in-
troduced into an entirely susceptible population [22]. It
determines whether the disease persists or clears out in the
population.When the basic reproduction number R0 < 1, the
disease clears out in the population and it persists if the basic
reproduction number R0 > 1. �is is because when an in-
fectious individual is introduced into an entirely susceptible
population, he/she infects more than one individual, hence
the disease persists [23, 24].

To compute the basic reproduction number R0, we use
the next generation matrix method where new infections
and transfer terms are considered [22, 24]. If bTB new
infectious and transfer terms are denoted by Fi and Vi,
respectively, then the basic reproduction number R0 is given
as the maximum eigenvalue. �at is,

R0 � ρ FV−1
􏼐 􏼑, (18)

where

F �
zFi

zXj

DF0􏼐 􏼑 andV �
zVi

zXj

DF
0

􏼐 􏼑. (19)

From the model system (3), the basic reproduction
number R0 is given by
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R0 �
β1cH/ μH + cH( 􏼁 μH + αH( 􏼁 + ca ωβ5 + ρβ6( 􏼁/ ca + μa( 􏼁 μa + αa( 􏼁ω( 􏼁

2

+

������������������������������������������������������������

β1cH/ μH + cH( 􏼁 μH + αH( 􏼁 − ca ωβ5 + ρβ6( 􏼁/ ca + μa( 􏼁 μa + αa( 􏼁ω( 􏼁
2

+ 4ce
4

􏽳

,

where ce �
cHca ωβ2 + ρβ3( 􏼁

cH + μH( 􏼁 αH + μH( 􏼁 ca + μa( 􏼁ω
.

(20)

�e terms 1/(cH + μH) and 1/(ca + μa) in (20) are the
average periods an individual human and animal spends in
their corresponding exposed classes, 1/(αH + μH) and
1/(αa + μa) are the average periods an infectious human and
animal spend in their infectious classes,
β1cH/(cH + μH)(αH + μH) and β4cH/(cH + μH)(αH + μH)

are the proportions of infected humans that develop bTB
and move from exposed class to infectious class after
contacting infectious humans and animals, respectively,
(ωβ5 + ρβ6)ca/(ca + μa)(αa + μa)ω is the sum of propor-
tions of infected animals that progress from exposed class to
infectious class after coming into contact with infectious
animals and after consuming infectious dairy products, and
cHca(ωβ2 + ρβ3)/(cH + μH)(αH + μH)(ca + μa)(αa + μa)ω
is the sum of proportions of infected humans who develop
bTB by contacting infectious animals and after consuming
infectious dairy products.

3.3. Sensitivity Analysis of Basic Reproduction Number (R0).
Sensitivity analysis of R0 helps to understand the effect of
each parameter on the model output and their influence in
the spread of disease in the population [25, 26]. We perform
sensitivity analysis of R0 by using normalized forward
sensitivity analysis index as used by Chitnis et al. [27] and
Silva and Torres [26]. A normalized forward sensitivity index
of variable β with respect to basic reproduction number R0 is
defined as

ΥR0
β �

zR0

zβ
×

β
R0

. (21)

Using estimated parameters and from related literature,
sensitivity index of each parameter with respect to basic
reproduction number R0 is computed and summarized in
Table 3.

Sensitivity analysis shows that human infection rates due
to consumption of dairy products β3 and contact rate with
infected animals β2, animal infection rates due to contact
with infectious animals β5, and consumption of diary
product β6 drive the dynamics of bTB. Generally, the most
sensitive parameter is the rate of producing dairy products ρ.
As dairy products increases by 10%, the basic reproduction
number R0 increases by 3.89%. However, when animal
mortality rate due to disease αa, natural death rate for an-
imals μa, human disease-induced death rate αH, natural
death rate for humans μH, and dairy products decaying rate
ω increases, and the basic reproduction number R0 decrease
consequently.

3.4. Stability Analysis for Disease-Free Equilibrium (DFE).
To determine local stability of disease-free equilibrium, we
use the linearization method where trace and determinant
are used. Disease-free equilibrium is said to be locally as-
ymptotically stable if the eigenvalues of matrix (22) are
negative or have a negative real part. Linearization of the
model system (3) gives the matrix

J �

−μH 0 −β1 0 0 −β2 −β3
0 −μH − cH β1 0 0 β2 β3
0 cH −μH − αH 0 0 0 0

0 0 −β4 −μa 0 −β5 −β6
0 0 β4 0 −μa − ca β5 β6
0 0 0 0 ca −μa − αa 0

0 0 0 0 0 ρ −ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)
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Matrix (22) has negative eigenvalues −μH and −μa.
Matrix (22) now reduces to

K �

−μH − cH β1 0 β2 β3
cH −μH − αH 0 0 0

0 β4 −μa − ca β5 β6
0 0 ca −μa − αa 0

0 0 0 ρ −ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

We analyze matrix K by using trace tr and determinant
det. Disease-free equilibrium is locally stable if trace is
negative tr(K) < 0 and determinant is positive det(K) > 0.
From (23), trace of the matrix K is given by

tr(K) � − μH + cH( 􏼁 + μH + cH( 􏼁 + μa + ca( 􏼁(

+ μa + αa( 􏼁 + ω􏼁, tr(K)< 0,
(24)

and det(K) is given by

det(K) � cH + μH( 􏼁 αH + μH( 􏼁ωβ5ca + cH + μH( 􏼁

· μH + αH( 􏼁ρβ6ca + ca + μa( 􏼁 αa + μa( 􏼁ωβ1cH

+ ωβ2β4cHca + ρβ3β4cHca − ρβ1β6cHca

− cH + μH( 􏼁 αH + μH( 􏼁 ca + μa( 􏼁 αa + μa( 􏼁ω

− ωβ1β5cHca,

(25)

det(K) > 0 if
β1cH

μH + cH( 􏼁 μH + αH( 􏼁
+

ca ωβ5 + ρβ6( 􏼁

ω ca + μa( 􏼁 μa + αa( 􏼁

+
β4cH ωβ2ca + ρβ3ca( 􏼁

ω cH + μH( 􏼁 αH + μH( 􏼁 ca + μa( 􏼁 αa + μa( 􏼁

−
cHcaβ1 ωβ5 + ρβ6( 􏼁

ω cH + μH( 􏼁 αH + μH( 􏼁 ca + μa( 􏼁 αa + μa( 􏼁
> 1.

(26)

Theorem 1. �e disease-free equilibrium is locally asymp-
totically stable if condition (26) holds and R0 < 1.

However, the disease-free equilibrium may not be
globally asymptotically stable due to the possibility of model
(3) to undergo backward bifurcation when R0 � 1. We
analyze backward bifurcation in Section 3.5.

3.5. Bifurcation Analysis. To determine the possibility of
model (3) to undergo backward bifurcation, we rename the
state variables SH, EH, IH, Sa, Ea, Ia, and D to be x1, x2, x3, x4,
x5, x6, and x7, respectively, where NH � x1 + x2 + x3
and Na � x4 + x5 + x7. By introducing the vector notations
X � (x1, x2, x3, x4, x5, x6, x7)

T, the model system (3) is now
written as (dX/dt) � F(X), where F(X) � (f1, f2, f3, f4,

f5, f6, f7)
T. �e model system (3) is then rewritten as

follows:

dx1

dt
� f1 � ΛH −

β1x3 + β2x6 + β3x7

x1 + x2 + x3
􏼠 􏼡x1 − μHx1,

dx2

dt
� f2 �

β1x3 + β2x6 + β3x7

x1 + x2 + x3
􏼠 􏼡x1 − cH + μH( 􏼁x2,

dx3

dt
� f3 � cHx2 − μH + αH( 􏼁x3,

dx4

dt
� f4 � Λa −

β4x3 + β5x6 + β6x7

x4 + x5 + x6
􏼠 􏼡x4 − μax4,

dx5

dt
� f5 �

β4x3 + β5x6 + β6x7

x4 + x5 + x6
􏼠 􏼡x4 − ca + μa( 􏼁x5,

dx6

dt
� f6 � cax5 − μa + αa( 􏼁x6,

dx7

dt
� f7 � ρx6 − μDx7.

(27)

�e Jacobian of system (27) at disease-free equilibrium is
given by

J �

−μH 0 −β1 0 0 −β2 −β3
0 −μH − cH β1 0 0 β2 β3
0 cH −μH − αH 0 0 0 0

0 0 −β4 −μa 0 −β5 −β6
0 0 β4 0 −μa − ca β5 β6
0 0 0 0 ca −μa − αa 0

0 0 0 0 0 ρ −ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(28)

To determine whether system (27) undergoes backward
bifurcation at R0 � 1, we adopt�eorem 1 in Castillo-Chavez
and Song [28], and it is restated as follows.

Table 3: Sensitivity indices for R0.

Parameter Index value
β1 0.0271
β2 0.0530
β3 0.1177
β4 0.1708
β5 0.3601
β6 0.2713
cH 0.0892
μH −0.2728
αH −0.0144
ca 0.1671
αa −0.5793
μa −0.3898
ρ 0.3890
ω −0.3890
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Theorem 2. Consider the following general system of ordi-
nary differential equations with a parameter
β∗.(dx/dt) � f(x, β∗), f: R × Rn↦Rn, and f ∈ C2(Rn ×

R), where 0 is an equilibrium point of the system (that is, f(0,
β∗) ≡ 0 ∀β∗ and

(1) A � Dxf(0, 0) � (zfi/zxj)(0, 0) is a linearization
matrix of the system around the equilibrium 0 with β∗
at 0.

(2) Zero is a simple eigenvalue of A and all other ei-
genvalues of A have negative real parts.

(3) Matrix A has a right eigenvectors w and left eigen-
vectors v corresponding to the zero eigenvalues.

Let fk be the kth component of f and

a � 􏽘
n

k,i,j�1
vkwiwj

z2fk

zxizxj

(0, 0),

b �� 􏽘
n

k,i�1
vkwi

z2fk

zxizβ
∗ (0, 0).

(29)

�en, the local dynamics of the system around the
equilibrium point is totally determined by the signs of a and
b. Particularly, if a > 0 and b > 0 then a backward bifurcation
occurs at β∗ � 0.

�e local dynamics at (27) around 0 are totally deter-
mined by signs of a and b.

(i) a > 0 and b > 0. When β∗ < 0 with |β∗| << 1, 0 is
locally asymptotically stable, and there exists a
positive unstable equilibrium; when 0 < β∗ << 1, 0 is
unstable and there exists a negative and locally
asymptotically stable equilibrium.

(ii) a < 0 and b < 0. When β∗ < 0 with |β∗| << 1, 0 is
unstable; when 0 < β∗ << 1, 0 is locally asymp-
totically stable, and there exists a positive unstable
equilibrium.

(iii) a > 0 and b < 0. When β∗ < 0 with |β∗| << 1, 0 is
unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < β∗ << 1, 0 is
stable, and a positive unstable equilibrium appears.

(iv) a < 0 and b > 0. When β∗ changes from negative to
positive, 0 changes its stability from stable to un-
stable. Correspondingly, a negative unstable equi-
librium becomes positive and locally asymptotically
stable.

Let β3 � β∗ be a bifurcation parameter when R0 � 1. Now,
solving for β3 � β∗ when R0 � 1, we obtain

β3 � β∗ � M 2 −
β4cH

cH + μH( 􏼁 αH + μH( 􏼁
−

ca ρβ6 + ωβ2( 􏼁

ca + μa( 􏼁 αa + μa( 􏼁
􏼠 􏼡

2

+ M
β1cH

cH + μH( 􏼁 αH + μH( 􏼁
−

ca ρβ6 + ωβ2( 􏼁

ca + μa( 􏼁 αa + μa( 􏼁
􏼠 􏼡

2

.

(30)

where

M �
ca + μa( 􏼁 αa + μa( 􏼁 cH + μH( 􏼁 αH + μH( 􏼁ω

cHcaρβ4
. (31)

From (28), right eigenvectors w � (wi)
T, where i � 1, 2,

. . ., 7 are

w5 �
ω αa + μa( 􏼁w7

caρ
,

w6 �
ωw7

ρ
,

w3 �
ω ca + μa( 􏼁 αa + μa( 􏼁 − ca ωβ5 + ρβ6( 􏼁

caρβ4
􏼠 􏼡w7,

w4 �
ω ca + μa( 􏼁 αa + μa( 􏼁 − 2 ωβ5 + ρβ6( 􏼁ca

caμaρ
􏼠 􏼡w7,

w1 � −
ωM1 + ωβ5 + ρβ6( 􏼁 + caβ4 ωβ2 + ρβ3( 􏼁

β4caμHρ
􏼠 􏼡w7,

w2 �
ω ca + μa( 􏼁 αa + μa( 􏼁 − ca ωβ5 + ρβ6( 􏼁 αH + μH( 􏼁

cHcaβ4ρ
􏼠 􏼡w7,

for whichw7 > 0 is free right eigenvector,

whereM1 � ca + μa( 􏼁 αa + μa( 􏼁.

(32)

�e left eigenvectors v � (vi)
T, where i � 1, 2, . . ., 7 are

v1 � v4 � 0,

v2 �
cHv3

cH + μH

,

v5 �
cH + μH( 􏼁 αH + μH( 􏼁 − cHβ2

β4 cH + μH( 􏼁
􏼠 􏼡v3,

v6 �
ca + μa( 􏼁 cH + μH( 􏼁 αH + μH( 􏼁 − cHβ2( 􏼁

caβ4 cH + μH( 􏼁
􏼠 􏼡v3,

v7 �
cHβ3β4 + β6 cH + μH( 􏼁 αH + μH( 􏼁 − cHβ2( 􏼁

ω cH + μH( 􏼁β4
􏼠 􏼡v3,

for which v3 > 0 is free left eigenvector.
(33)

3.5.1. Computation of a. From the model system (4), the
associated nonzero partial derivatives of F at disease free
equilibrium are given by
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z2f2

zx2
3

� −
2β1μH

ΛH

,

z2f2

zx2zx3
� −

β1μH

ΛH

,

z2f2

zx2zx6
� −

β2μH

ΛH

,

z2f2

zx2zx7
�

−β∗μH

ΛH

,

z2f2

zx3zx6
� −

β2μH

ΛH

,

z2f2

zx3zx7
�

−β∗μH

ΛH

,

z2f5

zx2
6

� −
2β5μa

Λa

,

z2f5

zx3zx6
� −

β4μa

Λa

,

z2f5

zx5zx6
�

−β5μa

Λa

,

z2f5

zx5zx7
�

−β6μa

Λa

,

z2f5

zx6zx7
�

−β6μa

Λa

,

z2f5

zx3zx5
� −

2β4μa

Λa

.

(34)

Since v1 � v2 � 0, it follows that

a � v2 􏽘

n

i,j�1
wiwj

z2f2

zxizxj

+ v5 􏽘

n

i,j�1
wiwj

z2f5

zxizxj

. (35)

To compute a, we substitute the partial derivatives into
(35) to obtain

a �
2μHΛHw3M2β1ca ωβ5 + ρβ6( 􏼁

ΛHcHΛacaρβ4
􏼠 􏼡w7v2

−
2μHΛaw3M1β1ωM1 + caβ4 ωβ2 + ρβ3( 􏼁

ΛHcHΛacaρβ4
􏼠 􏼡w7v2

−
2ΛHcHωβ4μa w5 + w6( 􏼁M1

ΛHcHΛacaρβ4
􏼠 􏼡w7v5,

where M2 � αH + μH + cH.

(36)

To analyze the sign of a, we consider two cases.

Case I:
a < 0 if

ca ωβ5 + ρβ6( 􏼁

ω ca + μa( 􏼁 αa + μa( 􏼁
< 1

ΛHcHμaωβ4 w5 + w6( 􏼁M1v5 + ΛaμHw3 ωM1β1 + ωβ2 + ρβ3( 􏼁caβ4( 􏼁M1v2

ΛHcaμHM2β1 ωβ5 + ρβ6( 􏼁w3v2
> 1.

(37)

Case II: a > 0 if

ca ωβ5 + ρβ6( 􏼁

ω ca + μa( 􏼁 αa + μa( 􏼁
> 1

ΛHcHμaωβ4 w5 + w6( 􏼁M1v5 + ΛaμHw3 ωM1β1 + ωβ2 + ρβ3( 􏼁caβ4( 􏼁M1v2

ΛHcaμHM2β1 ωβ5 + ρβ6( 􏼁w3v2
< 1.

(38)
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3.5.2. Computation of b. Recall from (33), since v1 � v4 � 0
b becomes

b � v2 􏽘

n

i�1
wi

z2fk

zxizβ
∗ (0, 0),

b � v2w7
z2f2

zx7zβ
∗,

b �
cHw7v3
cH + μH

> 0.

(39)

From the computation of a and b, we can establish the
following results.

Theorem 3. If condition (38) holds, bTB undergoes back-
ward bifurcation at R0 � 1. �is implies that if a> 0, b> 0

when β∗ < 0, DFE is locally asymptotically stable and there
exist a positive unstable equilibrium and when β∗ > 0, and
DFE is unstable and there exist a negative and locally as-
ymptotically stable equilibrium.

4. Numerical Simulation

In this section, we discuss the dynamics of bTB in humans
and animal population by considering parameters which
drive the transmission dynamics of bTB. We use estimated
parameters and some from the related literature as sum-
marized in Table 4.

Susceptible humans and animals decrease after acquiring
bTB when they come into contact with infectious humans
and animals and after consuming infectious dairy products,
as shown in Figure 2. However, infectious classes increase as

Table 4: Parameter values of the model system 3.1.

Parameter Interpretation Value yr−1 Source
ΛH Human recruitment rate 36 [16]
β1 Human infection rate from infected human 0.35 Estimated
β2 Human infection rate from infected animals 0.55 [29]
β3 Human infection rate from infected dairy products 0.999 Estimated
β4 Rate of cow infected via human 0.25 Estimated
β5 Rate of cow infected via animal 0.6 [15]
Λa Animal recruitment rate 200 [15]
β6 Rate of animals infected via dairy products 0.34 Estimated
μH Human natural death rate 0.01 [16]
αH Human death rate due to disease induced 0.139 [16]
ca Progression rate from Ea to Ia 0.18 [30]
αa Animal death due to disease induced 0.0304 [15]
cH Progression rate from EH to IH 0.18 Estimated
μa Animal natural death rate 0.05 Estimated
ρ Dairy production rate 0.69 Estimated
ω Rate of decaying dairy products 0.4 Estimated
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Figure 2: Dynamics of bTB in (a) human population and (b) animal population.
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individuals from susceptible class acquire bTB and move to
exposed class and then to infectious class.

Figures 3(a) and 3(b) show the variations of susceptible
humans and animals as rates of consuming dairy products
increase. As dairy products from infectious animals increase,
their consumption increases thus increasing the bTB in-
fection rate for susceptible humans and animals.

As we increase the rate of producing infectious dairy
products, susceptible classes decrease and infectious classes
increase. �is is due to the fact that the more dairy products

are produced the more susceptible humans and animals
consume the products and get infection, thus replenish
infectious classes, as demonstrated in Figure 4.

Figure 5 shows the effects of varying human and animal
transmission rates from infectious animals. If effective
control measures are not taken to contain the transmission,
infectious class increases as humans and animals come in
contact with infectious animals. When the rate of contact
increases, susceptible human and animal classes decrease, as
shown in Figure 5.

ρ = 0.1
ρ = 0.2
ρ = 0.3

ρ = 0.4
ρ = 0.5

0

100

200

300

400

500

600

700

800

900
Su

sc
ep

tib
le

 h
um

an
s

5 10 15 20 25 300
Time (years)

(a)

ρ = 0.1
ρ = 0.2
ρ = 0.3

ρ = 0.4
ρ = 0.5

0

100

200

300

400

500

600

700

Su
sc

ep
tib

le
 an

im
al

s

5 10 15 20 25 300
Time (years)

(b)

Figure 3: Variation of the dairy production rate into susceptible (a) humans and (b) animals with change in time.
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Figure 4: Variation of the dairy production rate into infected (a) humans and (b) animals with change in time.
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Infectious human and animals classes increase over time
as we vary infection rates.�is is due to the fact that themore
interaction between susceptible humans and animals with
infectious animals increases infection rate, as shown in
Figure 6.

Figure 7 shows the impacts of transmission rates from
infectious dairy products β3 and β6 to susceptible human and

animal classes. �e graphs show that the increase in pro-
duction of infectious dairy products increases proportionally
to the transmission rates. As rates of transmission β3 and β6
increase, susceptible humans and animals decrease, as
shown in Figure 7.

Figures 8(a) and 8(b) show how the increase in the
transmission rate from dairy products to susceptible humans
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Figure 5: Variation of humans and animals infection rates from infectious animals to susceptible humans and animals classes.
(a) Susceptible humans. (b) Susceptible animals.
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Figure 6: Variation of humans and animals infection rates from infectious animals to infectious human and animals classes, respectively.
(a) Infected humans. (b) Infected animals.
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β3 and animals β6 decrease susceptible classes, which then
increase infectious classes.

5. Conclusion and Recommendations

A deterministic model for transmission dynamics of bTB is
developed and analyzed to determine parameters that drive
the disease. We computed basic reproduction number R0
and compute the sensitivity index of each parameter with

respect to R0. Analysis shows that the animal infection rate
from infectious animals β5, production of infectious dairy
products ρ, human infection rate from dairy products β3,
and humans infection rate from infectious animals β2 drive
the dynamics of bTB. Stability of equilibrium states was
investigated, disease-free equilibrium DFE is locally as-
ymptotically stable when the basic reproduction number R0
< 1. However, both disease-free and endemic equilibria are
not globally stable due to possibility of the model to undergo
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Figure 7: �e impact of rates of transmission form dairy products to susceptible (a) humans and (b) animals.
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Figure 8: �e impact of rates of transmission form dairy products to infected (a) humans and (b) animals.
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backward bifurcation when the basic reproduction number
R0 � 1. To contain the disease, control strategies should
target to reduce animal infection rate, production of in-
fectious dairy products, infection rate from dairy products,
and infection rate from infectious animals. We recommend
quarantine of infected animals, inspection of meat, pas-
teurizing of milk, and education campaign to reduce contact
between humans and animals.
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