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In this paper, we derive the generalized Bayesian shrinkage estimator of parameter of Burr XII distribution under three loss
functions: squared error, LINEX, and weighted balance loss functions. 'erefore, we obtain three generalized Bayesian shrinkage
estimators (GBSEs). In this approach, we find the posterior risk function (PRF) of the generalized Bayesian shrinkage estimator
(GBSE) with respect to each loss function.'e constant formula of GBSE is computed by minimizing the PRF. In special cases, we
derive two new GBSEs under the weighted loss function. Finally, we give our conclusion.

1. Introduction

'e Burr type XII distribution was first introduced in the
literature [1] and has gained special attention in the last two
decades or so due to its broad applications in different fields
including the area of reliability, failure time modeling, and
acceptance sampling plan.'e failure of optimum properties
of the natural estimator in certain special problems with the
risk usually measured by the mean squared error or, in the
case of several parameters, by a quadratic function of the
estimators, is introduced in [2]. 'e exact definition of
shrinkage estimators is hard to come by, and in [3],
shrinkage estimators are characterized as the ones obtained
through modification of some standard estimators.

'e statistical properties and prediction analysis of some
estimators are studied in [4–6], and they suggested that the
use of symmetric loss function may not be appropriate in
some estimation and prediction problems. 'e LINEX loss
function is introduced in [7] that it is approximately ex-
ponential on one side of zero and approximately linear on
the other side. In most of the available literature, the LINEX
loss function has been considered as a comparison criterion
for comparing competing estimators in the linear regression
model. 'e performance of the least-square estimator of the
regression coefficient in a regression model is examined in
[8], using the Bayesian approach under asymmetric loss

function. 'e performance properties of some conventional
estimators of error variance are studied in [9], under
asymmetric loss function. 'e approach in [7] was modified
in [10]. Also, a modified version of the LINEX loss function
exists, which is the general entropy loss function proposed in
[11]. A minimum mean square error (MMSE) estimator of
parameter in the exponential distribution is obtained in [12].
Searls’s estimator has been used in [13], and it was inad-
missible under the LLF. 'e optimal shrinkage estimations
in [14] are derived for the parameters of exponential dis-
tribution based on recorded values. 'e shrinkage estima-
tion of the parameter of exponential type-II censored data in
[15] is presented under LLF. A new methodology for
Bayesian analysis of mixture models in [16] has been con-
sidered under doubly censored samples. In [17], some
Bayesian estimators and Bayesian shrinkage estimators for a
family of probability density functions are suggested, and the
properties of the suggested estimators in terms of relative
efficiencies under two different loss functions are studied. A
Bayesian estimate of reliability for the exponential case is
developed which utilizes the basic notion of loss in esti-
mation theory [18]. In [19], it is investigated that whether the
dominance of the OLS-based estimator of the disturbance
estimator over the Stein rule-based estimator still holds
when compared under the LINEX loss function using small-
sigma asymptotics. A shrinkage estimator is derived for the
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parameter of exponential distribution contaminated with
outliers and in the presence of LINEX loss function in [20].
In this case, an admissible estimator based on the LINEX loss
function is also compared with different methods of esti-
mations. In [21], a multivariate normal mean under natural
modifications of balanced loss functions is estimated. In
[22], explicit expressions for the quantiles, moments, mo-
ment-generating function, conditional moments, hazard
rates, mean residual lifetime, mean past lifetime, mean
deviation about mean and median, the stochastic ordering,
various entropies, stress-strength parameters, Bonferroni
and Lorenz curves, and order statistics are found. 'e
properties of the SE of the parameter of the simple linear
regression model are investigated in [23] under the LINEX
loss function.

In this paper, we study the generalized Bayesian
shrinkage estimator of the Burr XII distribution under three
special loss functions: squared error, LINEX, and weighted
balance loss functions. We obtain a new class of Bayesian
shrinkage estimators (GBSEs) under SELF, LLF, and WBLF.
Under WBLF, we find a special GBSE.

Our work is divided into six sections. In Section 2, we
derive the posterior risk function with respect to the squared
error loss function (SELF); in this case, we calculate the
generalized Bayesian estimator (GBE) and the generalized
Bayesian shrinkage estimator (GBSE) under SELF. In Sec-
tion 3, we find the posterior risk function with respect to the
LINEX loss function (LLF); in this case, we compute the GBE
and GBSE under LLF. In Section 4, the posterior risk
function with respect to the weighted balance loss function
(WBLF) is derived, and GBE and GBSE are derived under
WBLF. In Section 5, the GBSE under WBLF has two special
cases: if ω � 0, then we calculate a new GBSE; if ω � 1, then
we obtain another new GBSE. Finally, we give our con-
clusion in Section 6.

2. Baysian Shrinkage Estimator under Squared
Error Loss Function

In this section, we derive the generalized Bayesian shrinkage
estimator (GBSE) under the squared error loss function
(SELF). 'e first step to find GBSE is to compute the
generalized Bayesian estimator for the parameter b under the
assumption that the parameter c is known. 'e Burr XII
distribution, Burr(b, c), has the following pdf and cdf [24],
respectively:

f(x; b; c) �
bcxc− 1

1 + xc( )b+1,

F(x; b; c) � 1 − 1 + x
c

( 􏼁
− b

.

(1)

'e MLE of Burr(b, c) is defined as

􏽢b �
n

􏽐
n
i�0 ln 1 + xc

i( 􏼁
. (2)

'e posterior distribution of the parameter b is the
gamma distribution G(n, t) which has pdf:

f
b

x
􏼠 􏼡 �

tnbn− 1 exp[− tb]

Γ(n)
, (3)

where t � 􏽐
n
i�0 ln(1 + xc

i ) and the improper prior distribu-
tion 1/b. 'e squared error loss function (SELF) is defined as

L1 b, 􏽢bs􏼐 􏼑 � b − 􏽢bs􏽨 􏽩
2
. (4)

'e posterior risk function (PRF) of b can be calculated
as

ρ1 b, 􏽢bs1􏼐 􏼑 � Eb
􏽢bs1 − b􏽨 􏽩

2
� 􏽢b

2
s1 − 2􏽢bs1

n

t
+

n(n + 1)

t2
, (5)

where b ∼ gamma(n, t). Taking the derivative of the pos-
terior risk function (PRF) with respect to 􏽢bs1, we obtain

zρ1 b, 􏽢bs1􏼐 􏼑

z􏽢bs1
� 2􏽢b

2
s1 − 2

n

t
. (6)

By minimizing the posterior risk function (PRF) with
respect to 􏽢bs1, we obtain

􏽢bs1 �
n

􏽐
n
i�1 log 1 + xc

i( 􏼁
. (7)

Equation (7) is the generalized Bayesian estimator of the
parameter b under the squared error loss function. Now, we
will calculate the GBSE under SELF, and the shrinkage
estimator is defined as

􏽢bsh1 � k 􏽢bs1 − b0􏼐 􏼑 + b0, (8)

where 􏽢bs1 is the generalized Bayesian estimator. 'e risk
function of 􏽢bsh1 is defined as

ρ1 b, 􏽢bsh1􏼐 􏼑

� E 􏽢bsh1 − b􏽨 􏽩
2

� Eb k 􏽢bs1 − b0􏼐 􏼑 + b0 − b􏽨 􏽩
2

� k
2􏽢b

2
s1 + 2k + 2k

2
􏼐 􏼑b0

􏽢bs1 +(1 − k)
2
b
2
0 − 2k􏽢bs1

n

t

+(2k − 2)
n

t
b0 +

n(n + 1)

t2
.

(9)

Equation (9) is the posterior risk function with respect to
the shrinkage estimator. To calculate the constant k, we take
the derivative w.r.t. k, so we have

zρ1 b, 􏽢bsh1􏼐 􏼑

zk
� 2k􏽢b

2
s1 +(2 − 4k)b0

􏽢bs1 − 2(1 − k)b
2
0 −

2n 􏽢bs1 + b0􏼐 􏼑

t
.

(10)

We minimize ρ1(b, 􏽢bsh1) by assuming zρ1(b, 􏽢bsh1)/
zk � 0; thus, one can obtain

k �
t b20 − b0 n/􏽐

n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃( 􏼁 + n n/􏽐
n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃 + b0( 􏼁

t n/􏽐
n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃 − b0( 􏼁
2 .

(11)
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Substituting equations (7) and (11) in equation (8), we
get

􏽢bsh1 �
t b20 − b0 n/􏽐

n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃( 􏼁 + n n/􏽐
n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃 + b0( 􏼁

t n/􏽐
n
i�1 log 1 + xc

i( 􏼁􏼂 􏼃 − b0( 􏼁
2

⎡⎣ ⎤⎦
n

􏽐
n
i�1 log 1 + xc

i( 􏼁
􏼢 􏼣 − b0􏼠 􏼡 + b0. (12)

Equation (12) is the generalized Bayesian shrinkage
estimator (GBSE) under the squared error loss function
(SELF).

3. Bayesian Shrinkage Estimator under LINEX
Loss Function

In this section, we calculate the generalized Bayesian
shrinkage estimator (GBSE) under the LINEX loss function
(LLF); in this case, we find the posterior risk function (PRF)
of GBSE. To prove the above approach, first we must prove
the generalized Bayesian estimator GBE under LLF; so, the
LINEX loss function is defined as

L2(Δ) � exp[aΔ] − a(Δ) − 1, (13)

where, in general, Δ � 􏽢θ/θ, but in our theory, Δ � 􏽢bs2/b. 'e
posterior risk function of the parameter b under LLF can be
found as

ρ2 b, 􏽢bs2􏼐 􏼑 � Eb exp a
􏽢bs2

b
− 1􏼠 􏼡 − a

􏽢bs2

b
− 1􏼠 􏼡 − 1􏼢 􏼣

� exp[a]Eb exp a
􏽢bs2

b
􏼢 􏼣􏼢 􏼣 − a􏽢bs2Eb

1
b

􏼔 􏼕 + a − 1.

(14)

Since b ∼ gamma(n, t)and then 1/b ∼ inversegamma
(n, t), so the pdf of 1/b is

f
1
b

􏼒 􏼓 �
tn

Γ(n)
b

− n− 1 exp −
t

b
􏼔 􏼕. (15)

We calculate the quantities E[exp a􏽢bs2/b] and E[1/b] in
equation (14) as

E exp a
􏽢bs2

b
􏼢 􏼣􏼢 􏼣 �

tn

Γ(n)
􏽚
∞

0
exp −

t − a􏽢bs2􏼐 􏼑

b
⎡⎢⎣ ⎤⎥⎦b

− n− 1db

�
t

t − a􏽢bs2
􏼢 􏼣

n

,

E
1
b

􏼔 􏼕 �
t

n − 1
.

(16)

'en, equation (14) becomes

ρ2 b, 􏽢bs2􏼐 􏼑 � exp[a]
t

t − a􏽢bs2
􏼢 􏼣

n

− a􏽢bs2
t

n − 1
+ a − 1, (17)

where t> a􏽢bs2. Taking the derivative of the posterior risk
function ρ2(b, 􏽢bs2) w.r.t 􏽢bs2, we have

zρ2 b, 􏽢bs2􏼐 􏼑

z􏽢bs2
� ant

n exp[− a] t − a􏽢bs2􏼐 􏼑
− n− 1

−
at

n − 1
. (18)

By minimizing ρ2(b, 􏽢bs2) with respect to 􏽢bs2, which
means zρ2(b, 􏽢bs2)/z􏽢bs2 � 0, one can obtain

􏽢bs2 �
1
a

t − nt
n− 1 exp[− a]􏼐 􏼑

1/(n+1)
􏼔 􏼕. (19)

Equation (19) is the generalized Bayesian estimator
under the LINEX loss function (LLF). Now, to find the
generalized Bayesian shrinkage estimator 􏽢bsh2 under LLF, we
must define the posterior risk function ρ2(b, 􏽢bsh2) w.r.t 􏽢bsh2
as

ρ2 b, 􏽢bsh2􏼐 􏼑 � Eb exp a
􏽢bsh2

b
− 1􏼠 􏼡􏼢 􏼣􏼢 􏼣 − a􏽢bsh2Eb

1
b

􏼔 􏼕 + a − 1

� exp[− a]
t

t − a􏽢bsh2
􏼢 􏼣

n

− a􏽢bsh2
t

n − 1
+ a − 1.

(20)

'e generalized Bayesian shrinkage 􏽢bsh2 can be defined as
􏽢bsh2 � k 􏽢bs2 − b0􏼐 􏼑 + b0, (21)

where 􏽢bs2 � 1/a[t − (ntn− 1 exp[− a])1/(n+1)]. We substitute
equation (21) in equation (20), and then we get

ρ2 b, 􏽢bsh2􏼐 􏼑 � exp[− a]
t

t − a􏽢bsh2
􏼢 􏼣

n

− a􏽢bsh2
t

n − 1
+ a − 1

� exp[− a]t
n

t − ak 􏽢bs2 − b0􏼐 􏼑 − ab0􏼐 􏼑
− n

− a
t

n − 1
k 􏽢bs2 − b0􏼐 􏼑 − ab0

t

n − 1
.

(22)

Taking the derivative of ρ2(b, 􏽢bsh2) with respect to k, we
obtain

zρ2 b, 􏽢bs2􏼐 􏼑

zk
� an 􏽢bs2 − b0􏼐 􏼑exp[− a]t

n
t − ak 􏽢bs2 − b0􏼐 􏼑 − ab0􏼐 􏼑

− n− 1

−
at 􏽢bs2 − b0􏼐 􏼑

n − 1
.

(23)

By minimizing ρ2(b, 􏽢bs2), which means taking
zρ2(b, 􏽢bs2)/zk � 0, we have
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k �
t − ab0( 􏼁 − n(n − 1)tn− 1 exp[− a]􏼂 􏼃

1/(n+1)

a (1/a) t − ntn− 1 exp[− a]( 􏼁
1/(n+1)

􏽨 􏽩􏽨 􏽩 − b0􏼐 􏼑
. (24)

Substituting equations (19) and (24) in equation (21),
one can obtain

􏽢bsh2 �
t − ab0( 􏼁 − n(n − 1)tn− 1 exp[− a]􏼂 􏼃

1/n+1

a (1/a) t − ntn− 1 exp[− a]( 􏼁
1/n+1

􏽨 􏽩􏽨 􏽩 − b0􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

·
1
a

t − nt
n− 1 exp[− a]􏼐 􏼑

1/n+1
􏼔 􏼕 − b0􏼔 􏼕 + b0,

(25)

where t � 􏽐
n
i�1 log(1 + xc

i ). Equation (25) is the generalized
Bayesian shrinkage estimator (GBSE) under the LINEX loss
function (LLF).

4. Bayesian Shrinkage Estimator under
Weighted Balance Loss Function

In this section, we derive the generalized Bayesian shrinkage
estimator (GBSE) under the weighted balance loss function
(WBLF). To prove the above theory, first we must derive the
generalized Bayesian estimator (GBE) under WBLF; so, we
consider the posterior loss function with respect to the
weighted balance loss function which is defined as

L3 b, 􏽢bs3􏼐 􏼑 �
ω􏽐

n
i�1 xi − 􏽢bs3􏼐 􏼑

2

b2
+(1 − ω)

􏽢bs3

b
− 1􏼠 􏼡

2

, (26)

where 0≤ω≤ 1. 'e posterior risk function with respect to
WBLF is

ρ3 b, 􏽢bs3􏼐 􏼑 �
ω
n

􏽘

n

i�1
xi − 􏽢bs3􏼐 􏼑

2
]Eb

1
b2

􏼒 􏼓 +(1 − ω)Eb

􏽢bs3

b
− 1􏼠 􏼡

2
⎡⎢⎣ ⎤⎥⎦.⎡⎢⎣

(27)

We take the derivative of ρ3(b, 􏽢bs3) w.r.t. 􏽢bs3 and assume
zρ3/z􏽢bs3, thus one can obtain

􏽢bs3 � ωX +(1 − ω)
E b− 1􏼂 􏼃

E b− 2[ ]
, (28)

where X � [1/n] 􏽐
n
i�1 xi and b− 1 ∼ inversegamma(n, t),

soE(1/b2) � t2/(n − 1)(n − 2) and E(1/b) � t/(n − 1); then,
equation (28) becomes

􏽢bs3 � ωX +(1 − ω)
n − 2

t
, (29)

where t � 􏽐
n
i�1 log(1 + xc

i ). Equation (29) is the generalized
Bayesian estimator under the weighted balance loss func-
tion. Now, we have two special cases with respect to 􏽢bs3: first
case: if ω � 0, then equation (29) becomes

􏽢bs31 �
n − 2

t
. (30)

Equation (30) is the special generalized Bayesian esti-
mator 􏽢bs31 under WBLF, when ω � 0. Second case: if ω � 1,
then equation (29) becomes

􏽢bs32 � X. (31)

Equation (31) is the special generalized Bayesian esti-
mator 􏽢bs32 under WBLF, when ω � 1. 'e posterior risk
function of the shrinkage estimator 􏽢bsh3 is calculated as

ρ3 b, 􏽢bsh3􏼐 􏼑 �
ω
n

􏽘

n

i�1
xi − k 􏽢bs3 − b0􏼐 􏼑 − b0􏼑􏼐 􏼑

2
⎡⎣ ⎤⎦Eb b

− 2
􏽨 􏽩

+(1 − ω)Eb

k 􏽢bs3 − b0􏼐 􏼑 + b0

b
− 1⎡⎢⎣ ⎤⎥⎦

2

.

(32)

Taking the derivative of ρ3(b, 􏽢bsh3) with respect to k and
assuming zρ3/zk � 0, one can obtain

k �
ωX − b0

[ωX +(1 − ω)(n − 2)/t] − b0

+(1 − ω)
(n − 2)

t [ωX +(1 − ω)(n − 2)/t] − b0􏼂 􏼃
.

(33)

'e shrinkage estimator is defined as
􏽢bsh3 � k 􏽢bs3 − b0􏼐 􏼑 + b0. (34)

Substituting equations (29) and (33) in equation (34), we
get

􏽢bsh3 �
ωX − b0

[ωX +(1 − ω)(n − 2)/t] − b0
􏼢

+(1 − ω)
(n − 2)

t [ωX +(1 − ω)(n − 2)/t] − b0􏼂 􏼃
􏼣

× ωX +(1 − ω)
n − 2

t
− b0􏼒 􏼓 + b0.

(35)

Equation (35) is the generalized Bayesian shrinkage
estimator 􏽢bsh3 under the weighted balance loss function.

5. Special Cases of Bayesian Shrinkage
Estimator under Weighted Balance
Loss Function

In this section, we derive special generalized Bayesian and
shrinkage estimators under the weighted balance loss
function, by depending on the value of ω. 'e first case: if
ω � 0, we have the generalized Bayesian estimator 􏽢bs31 as in
equation (30); to calculate the special generalized Bayesian
shrinkage estimator 􏽢bsh31, we substitute equation (30) in
equation (35), then we get

􏽢bsh31 �
− b0

[(n − 2)/t] − b0
+

(n − 2)

t [(n − 2)/t] − b0􏼂 􏼃
􏼢 􏼣

n − 2
t

− b0􏼒 􏼓 + b0.

(36)

Equation (36) is first special generalized Bayesian
shrinkage estimator 􏽢bsh31 under WBLF when ω � 0. 'e
second case: if ω � 1, then we have the generalized Bayesian
estimator 􏽣bs32 as in equation (31); the special generalized
Bayesian shrinkage estimator 􏽢bsh32 can be found by
substituting equation (31) in equation (35), so we have
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􏽢bsh32 � X + b0. (37)

Equation (37) is the second special generalized Bayesian
shrinkage estimator 􏽢bsh32 under WBLF when ω � 0.

6. Conclusion

In this paper, we discussed the generalized Bayesian and
Bayesian shrinkage estimators of parametric Burr XII dis-
tribution under three special loss functions: squared error,
LINEX, and weighted balance loss functions. Because we
have that Jeffrey’s prior is improper, we obtained the gen-
eralized Bayesian estimator and the generalized Bayesian
shrinkage estimator. In this approach, we derived PRF with
respect to SELF, LLF, and WBLF. 'e main results are
derived from the generalized Bayesian estimators 􏽢bs1, 􏽢bs2,
and 􏽢bs3 with respect to SELF, LLF, and WBLF, respectively.
'e generalized Bayesian shrinkage estimators 􏽢bsh1, 􏽢bsh2, and
􏽢bsh3 are calculated by using the above generalized Bayesian
estimators, and the constant k in the formula expression of
shrinkage estimators was found by minimizing theposterior
risk functions of the GBSEs with respect to k. 'e PRFs are
considered with respect to the squared error loss function L1,
LINEX loss function L2, and weighted balance loss function
L3, respectively. 'e generalized Bayesian shrinkage esti-
mator 􏽢bsh3 under WBLF has two special cases: first case: we
derived a new GBE 􏽢bs31 when ω � 0 and another new GBE
􏽢bs32 when ω � 1. By substituting 􏽢bs31 and 􏽢bs32 in the
shrinkage estimator formula and computing the constant k

in this formula, we obtain two new special generalized
Bayesian shrinkage estimators 􏽢bsh31 and 􏽢bsh32.
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