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*is paper proposes an effective and robust method for image alignment and recovery on a set of linearly correlated data via
Frobenius and L2,1 norms. *e most popular and successful approach is to model the robust PCA problem as a low-rank matrix
recovery problem in the presence of sparse corruption. *e existing algorithms still lack in dealing with the potential impact of
outliers and heavy sparse noises for image alignment and recovery.*us, the new algorithm tackles the potential impact of outliers
and heavy sparse noises via using novel ideas of affine transformations and Frobenius and L2,1 norms. To attain this, affine
transformations and Frobenius and L2,1 norms are incorporated in the decomposition process. As such, the new algorithm is more
resilient to errors, outliers, and occlusions. To solve the convex optimization involved, an alternating iterative process is also
considered to alleviate the complexity. Conducted simulations on the recovery of face images and handwritten digits demonstrate
the effectiveness of the new approach compared with the main state-of-the-art works.

1. Introduction

Image alignment and recovery [1] has found applications in
a variety of areas such as medical imaging, wireless sensor
networks, surveillance, batch image denoising, and com-
putational imaging. Image recovery can also be used in
background extraction, where the low-rank component
corresponds to the background and the sparse component
captures the foreground. However, this problem faces some
severe challenges such as illumination variation, occlusion,
outliers, and heavy sparse noises. It is thus important to
develop robust image recovery algorithms to tackle the
abovementioned adverse effects.

A variety of algorithms have been reported for image
alignment and recovery problem. For example, Peng et al. [2]
considered a robust algorithm for sparse and low-rank de-
composition (RASL) to remove the potential impact of outliers
and sparse errors incurred by corruption and occlusion, but it
still lacks to perform well when the potential impact of outliers

and heavy sparse noise is large in a large number of images. To
tackle this problem, Likassa et al. [3] addressed a modified
RASL via incorporating affine transformation with rank prior
information which boosted the performance of the algorithm.
Ebadi and Izquierdo [4] proposed an efficient robust principal
component analysis by using some approximation for image
recovery. However, they do not have the potential to remove
the impact of outliers in big data. A robust principal com-
ponent analysis (RPCA) algorithm was addressed in [5] based
on convex program, which is guaranteed to recover the low-
rank matrix despite gross sparse errors; however, the existing
RPCAmethod is known to be extremely fragile to the presence
of gross corruptions. To tackle this dilemma, Chen et al. [6]
proposed a nonconvex plus quadratic penalized low-rank and
sparse decomposition (NQLSD) method to fit the low-rank
model and then used a robust fitting function to reduce the
influence of corruption and occlusion on image alignment,
where it is still questionable due to large time complexity. Song
et al. [7] addressed an online robust image alignment approach
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that incorporates geometric transformations which directly
linearize the objective function by warping update and take the
advantage of closed form solution and stochastic gradient
descent updating scheme, which corresponds to an efficient
inverse composition algorithm, beside tackling the perfor-
mance problem of image alignment faced by Wu et al. [8]. Liu
et al. [9] considered an amendment algorithm based on convex
program to mitigate the subspace clustering problem which is
guaranteed to exactly recover the row space of the original data
and perform robust subspace clustering and error correction in
an efficient and effective way. Oh et al. [10] proposed an ef-
fective algorithm which uses partial sum of singular values
(PSSV) instead of the nuclear norm to recover the image. *is
new approach, inspired by modification of the objective
function, guarantees for better low rank and convergence and is
more robust to outliers even when the number of observations
is small. *is approach lacks to perform well when the total
number of observations is large. He et al. [11] considered a
similar convex relaxation algorithmwith guaranteed efficiently.
*ough several RPCA algorithms exist to deal with the po-
tential impact of outliers and heavy sparse noises, effective and
efficient algorithms need to be developed. Tomitigate this issue,
the authors of [12, 13] developed robust algorithms, which can
well handle the grossly corrupted data. However, in very high-
dimensional cases such as image feature extraction, recovery,
and alignment, it lacks better performance and low compu-
tational complexity.

In this paper, we propose a novel robust algorithm for
image recovery and alignment via affine transformations,
Frobenius norm, and L2,1 norm. To be robust against
miscellaneous adverse effects such as occlusions, outliers,
and heavy sparse noises, the new algorithm integrates affine
transformations with low-rank plus sparse decomposition,
where the low-rank component lies in a union of disjoint
subspaces, so the distorted or misaligned images can be
rectified to render more faithful image representation.
However, inspired by [2, 14], an extra concept of the Fro-
benius norm and the L2,1 norm is now incorporated in the
decomposition process so as to be more resilient to errors,
outliers, and occlusions in recovery of images. As such, the
parameters to be iteratively updated in our algorithm during
the decomposition process are different from those in
[2, 6, 10]. In addition, the L2,1 norm and the Frobenius norm,
which enjoy the advantages of the L1 and L2 norms, are
employed to remove the correlated samples across the
images, enabling the new approach to be more resilient to
outliers and large variations in the images. *e determi-
nation of the variables involved and the affine transfor-
mations are cast as a convex optimization problem.
Consequently, the distorted or misaligned images can be
rectified by affine transformations, Frobenius norm, and L2,1
norms to render more accurate image decomposition.

*e affine transformations are aggregated with the low-
rank plus sparse representation, where the low-rank com-
ponent lies in a union of subspaces instead of one single
subspace. *ese transformations can fix the distortion or
misalignment in a batch of corrupted images to render more
faithful image decomposition, thereby being more robust
against heavy sparse errors and outliers. Because large errors

may happen in images, which will impact the accuracy of
image recovery, the L2,1 norm is utilized. *is new norm
when combined with the affine transformations can further
enhance the performance. *is is used to normalize the
adverse effects of outliers and heavy sparse noises in big data.
*e search of the optimal parameters and affine transfor-
mations is first cast as a convex optimization programming.
Afterwards, the alternating direction method (ADMM)
approach is employed and the newly developed and mod-
ified set of equations is established to update the parameters
involved and the affine transformations iteratively. Con-
ducted simulations show that the new algorithm excels the
state-of-the-art works in terms of accuracy of image
alignment and recovery on some public datasets. *e major
contributions of this paper include the following:

(1) *e affine transformations are incorporated in the
new model to fix the distorted or misaligned images
so as to be robust with heavy sparse errors and
outliers

(2) *e ADMM approach is employed to solve the new
convex optimization problem, and a set of updating
equations is developed to iteratively solve this
problem

(3) In the new method, a set of affine transformations
and Frobenius and L2,1 norms are considered to
boost the performance of the new method

(4) A novel modified RASL based on convex program is
proposed for highly linearly correlated data which
can prune out occlusions and illuminations utilizing
the partial column low rank as a prior information
through adding an extra term during the decom-
position process

(5) To the best of authors’ knowledge, it is the first time
modified robust image alignment sparse low-rank
decomposition is attempted in such a decomposition
process to tackle the image alignment problem in the
wider applications of face recognition, video sur-
veillance, and health care

(6) To solve the problem of convex optimization, an
alternative iterative process is addressed to reduce
the complexity and simultaneously enhance the re-
cover performance in the image alignment problem

2. Related Works

Several considerable research studies have been carried out
in the areas of image alignment and image recovery with
rank minimization. For instance, Waters et al. [15] proposed
a new greedy algorithm via an affine rank minimization to
prune out the potential impact of the sparse errors. Lia and
Fang [16] suggested an image aligning method via explicitly
considering the issue of the spatially varying illumination
multiplication with the error biased factors with low-order
polynomials. However, it does not work well when there are
severe outliers and sparse errors in the data.

To relax the standard nuclear norm, Gu et al. [17]
addressed the weight nuclear norm minimization problem,
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which adaptively assigns the weights on different singular
values that can minimize the final ranks. Moreover, Kang
et al. [18] proposed a nonconvex rank approximation so as to
further reduce the ranks. To tackle the dilemma of over-
estimated ranks, the authors of [19, 20] suggested the RPCA
algorithms, which consider the decomposition of the orig-
inal images into two broad components. Likassa et al.
[12, 13] considered a novel algorithm to tackle the mis-
alignment dilemma, which is designed to find the low-rank
component from the illuminated data. Oh et al. [21] pre-
sented a rank minimization algorithm which simultaneously
aligns the low-input dynamic change images and detects the
outliers. To improve the performance of [21, Erichson et al.
22] addressed a randomized algorithm for finding the low-
rank part after decomposing via rank minimization.
Podosinnikova et al. [23] developed a robust PCA to
minimize the reconstruction error. Shahid et al. [24] in-
volved the RPCA spectral graph through addition of some
regularization terms. Shakeri and Zhang [25] proposed an
online sequential framework to find the clean part via
pruning out the sparse corruptions. Hu et al. [26] introduced
an approximate of the low-rank assumption for the matrix
via a low-rank regularization to solve the face image
denoising problems. Wright et al. [5] proposed a RPCA for
image decomposition as low-rank and sparse errors; how-
ever, it lacks scalability. Kang et al. [18] addressed a robust
method via nonconvex rank approximation. Zhang and
Lerman [27] and Rahmani and Atia [28] addressed a robust
subspace recovery to tackle the influence of annoying effects.
However, its complexity is jeopardized when the outliers and
sparse noises are heavy in the data. *e authors of [29, 30]
addressed a robust subspace learning and RPCA with rank
minimization to tackle the potential impact of occlusions,
illuminations, outliers, and heavy sparse noises. Shang et al.
[31] proposed a novel method for rank minimization using
double nuclear norm with nuclear hybrid norm penalties to
alleviate the adverse dilemmas.

Extensive approaches have also been proposed to solve
the low-rank subspace decomposition problems. Zhang and
Yang [32] addressed the linear subspace clustering method
via the low-rank decomposition. Zhao et al. [33] addressed a
robust discriminant low-rank representation to obtain the
multiple subspace structures. Ma et al. [34] addressed a
generalized algorithm from which the information lying in
the high information data is taken from the low-dimensional
subspaces. Lerman and Maunu [35] addressed the subspace
recovering approach to get the low-rank part from the large
data. Liu et al. [9] addressed the representation of images to
pinpoint the low-rank structures from the illuminated data.
Recently, Rao et al. [36] introduced a compressed sensing
technique for subspace segmentation. Elhamifar and Vidal
[37] considered sparse subspace slustering (SSC) which used
the image sparse produced by L1 reduction [5] to represent
the weight and the matrix which is called as an affinity. *e
subspace segmentation is done via subspace clustering
method for instance [38] and subspace clustering [39]. *ey,
however, are not robust against occlusions and illumina-
tions. To tackle these setbacks, Li et al. [40] proposed a
transformation-dependent approach via joint alignment of

corrupted samples and learning subspace representation.
Shen et al. [41] addressed a subspace clustering approach via
the dictionary pursuit to reduce the complexity yet with
satisfactory performance. Wu et al. [42] suggested a de-
composition relying on a new method to mitigate the po-
tential impact of noises in motion segmentation. Li et al. [43]
considered the original images into a 3-dimensiona-based
tensor; however, there is a serious problem due to the
distortion. It is, however, very time consuming. Ding and Fu
[44] addressed a multiview via subspace information of
methods via the low rank to get the clean low dimensional
which are free of subspaces corrupted from high-dimen-
sional data.

3. Problem Formulation

Given a set of n well-aligned images I01, . . . , I0n ∈ Rw×h of the
same object which are linearly correlated, where w and h

denote the weight and height of each image, respectively.
More precisely, if we let vec: Rw×h⟶ Rm denote the op-
erator that selects an m pixel region of interest (m≫ n) from
an image and stacks it as a vector, then we can create a matrix
L � [vec(I01)| . . . |vec(I0n)] ∈ Rm×n which is a low-rank ma-
trix. If the images are misaligned because of the partial
corruption and occlusions, such errors usually occur in a
small region of an image and have arbitrarily large mag-
nitudes; these errors can bemodelled as sparse errors and are
denoted by S. To tackle the problem of misalignment, we
employ the domain transformations τ1, τ2, . . . , τn. *e
transformed images can be constructed in the form of the
following matrix: Doτ � [vec(I01)| . . . |vec(I0n)] ∈ Rm×n

� L + S, where In
i � Iioτi, i � 1, . . . , n, is a well-aligned

version of image i and the operator o denotes transformation
[2]. *e solution of Doτ � L + S is intractable due to the
nonlinearity and complicated dependence of Doτ on the
transformation τ. *is can be solved by linearizing about the
current estimate of τ when the change in τ is small [2, 6, 45].
For p number of parameters and Δτ � [Δτ1| . . . |

Δτn] ∈ Rp×n, we can write Do(τ+Δτ) ≈ Doτ + 􏽐
n
i�1 JiΔτεiεT

i ,
where Ji � (z/zτi)vec(Iioτi) ∈ Rm×p denotes the Jacobian of
the ith image with regard to the transformations τi and ui

denotes the standard basis for Rn that satisfies.
Doτ + 􏽐

n
i�1 JiΔτεiεT

i � L + S

Each affine transformation τi can be represented by a
vector of p parameters, yielding τ � [τ1| . . . |τn] ∈ Rp×n.
Specifically, if the initial transformations τ are known, we
can change Doτ + 􏽐

n
i�1 JiΔτεiεT

i � L + S. *is allows the
problem to be relaxed to be the following convex optimi-
zation problem in which we seek L, S, and Δτ by incor-
porating a new term of affine transformations and the
Frobenius and L2,1 norms.

To make the new approach more resilient to outliers and
heavy sparse noise, the L2,1 norm, which combines the
advantages of the L1 and L2 norm, is used here. *e L2,1
regularizer is considered as the rotational invariant of the L1
norm and can effectively handle outliers [46]. Also, as ob-
served in [13, 47], the L2,1 regularizer can also achieve better
sparsity promotion than the L1 norm.*e L1 normmay yield
a biased estimation as it ignores the extreme values and
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cannot handle the collinearity of features. In contrast, the
L2,1 norm is more stable and has the ability to better preserve
the spatial information than the L1 regularizer, as demon-
strated in [13, 47]. Additionally, the L2,1 norm is superior to
the nonconvex norms when the signals are not sparse or
when the matrix is not strictly low rank [48, 49]. *e overall
problem can thus be posted as an optimization problem
given by

minimize
L,S,Δτ

‖L‖2F + λ‖S‖2,1

subject to Doτ + 􏽐
n

i�1
JiΔτεiεT

i � L + S,
(1)

where D ∈ Rm×n represents the original data matrix,
L ∈ Rm×n is the low-rank component and S ∈ Rm×n is the
sparse error matrix. *e L2,1 norm of S is denoted by
‖S‖2,1 � 􏽐

m
i�1

�������
􏽐

n
j�1 S

2
ij

􏽱
. To solve the problem of nonlinearity

of the constraint arises due to the complicated dependence
of Doτ on the transformations τ, a linearization procedure is
summarized in Algorithm 1, [2].

4. Proposed Algorithm

To solve the constraint optimization problem in (1), we used
the augmented Lagrangian multiplier [2, 50], which itera-
tively estimates both the Lagrangemultiplier and the optimal
solution by minimizing the augmented Lagrangian function.
*e basic idea of the ADMM method [51] is to search for a
saddle point of the augmented Lagrangian function instead
of directly solving the original constrained optimization
problem.

L(L, S, Z,Δτ) � argmin
L,S,Δτ,Z

‖L‖
2
F + λ‖S‖1 +〈Z, h(L, S,Δτ)〉

+
μ
2
‖h(L, S,Δτ)‖

2
F,

(2)

where, for simplicity, we denote h(L, S,Δτ) � Doτ + 􏽐
n
i�1

JiΔτεiεT
i − L − S, in which B � Doτ + 􏽐

n
i�1 JiΔτεiεT

i , Z is a
Lagrangian multiplier matrix, μ is a positive penalty pa-
rameter, 〈., .〉 denotes the matrix inner product, and ‖.‖2F is
the Frobenius norm. Directly solving (2) in the first iteration
is difficult, so as in [2, 50], we solve the problem iteratively in
an alternating manner. In the augmented Lagrangian
multiplier method, the unknowns in the augmented La-
grangian function are iteratively minimized one by one.

First, to update L in (3), we fix all S, Δτ, and Z as
constant. It is difficult to solve the above function directly, so
we choose to minimize the augmented Lagrange function
approximately by adopting an alternating strategy: minimize
the function against only one of the four unknowns L, S, Δτ,
and Z at a time:

L
k+1

� argmin
L

L L, S
k
,Δτk

, Z
k

􏼐 􏼑. (3)

We note that the problem in (3) is completely separable
and involves solving a convex program. *us, following
[31, 52–54] and using the procedures of [55] and the concept

of soft thresholding operator that can be solved efficiently
using augmented Lagrangian multiplier, the update can be
given as

L
k+1
k+1 �

1
1/μj

k+1􏼐 􏼑 + 1
Doτ + 􏽘

n

i�1
JiΔτεiε

T
i +

1
μj

k+1

Z
k

− E
k+1
k

⎛⎝ ⎞⎠.

(4)

So, S(k+1) can be determined by

S(k+1)
� argmin

S
L L(k+1), S,Δτ(k)􏽮 􏽯. (5)

Again, by ignoring all irrelevant terms of S, it can be
simplified as

S(k+1)
� argmin

S
λ2‖S‖2,1 +

μ(k)
1
2

B(k)
�����􏼨 −L(k)

− S +
Z(k)
1

μ(k)
1

���������

2

F

⎫⎬

⎭.

(6)

By using lemma [56], the update of the ith column of
E(k+1), E(k+1)

i , is given by

E(k+1)
i �

V(k)
i

�����

�����2
− λ2/μ

(k)
1

V(k)
i

�����

�����2

V(k)
i , if V(k)

i

�����

�����2
≥

λ2
μ(k)
1

,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where ‖·‖2 denotes the Euclidean norm and
V(k) � (B(k) − A(k) + (Z(k)

1 /μ(k)
1 )).

Finally, we need to update Δτ, so we have to keep all
other parameters in (8) as constant and employ the aug-
mented Lagrangian multiplier to the following:

Δτk+1
� argmin
Δτ

L L
k+1

, S
k+1

,Δτ, Z
k

􏼐 􏼑. (8)

To update the parameter Δτ in (8), we keep all other
parameters constant to obtain the optimal solution of the
required parameters. By applying the augmented Lagrangian
function and singular-value threshold, we can get the final
update of Δτ as follows:

Δτk+1
� 􏽘

n

i�1
J

+
i ∗ L

k+1
+ S

k+1
− Doτ − μk− 1

Z
k

􏼐 􏼑􏽨 􏽩εiε
T
i , (9)

where J+
i denotes Moore–Penrose pseudoinverse of Ji.

*e Lagrangian multiplier is updated by using the fol-
lowing equation:

Z
k+1

� Z
k

+ μkh L
k+1

, S
k+1

,Δτk+1
􏼐 􏼑. (10)

For easy references about the updates of optimal pa-
rameters, Algorithm 2 is summarized.

5. Simulations and Discussions

*is section conducts some simulations to demonstrate the
effectiveness of our approach for the recovery of face images
and handwritten digits. Four baselines are employed, in-
cluding RASL [2], NQLSD [6], PSSV [10], and MRASL [3].
Firstly, we emphasized on examining the effectiveness of our
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newly proposed method both visually in removing occlu-
sions and illuminations from highly linearly correlated data.
Secondly, we further checked the image similarity quanti-
tatively to describe the performance of our algorithm using
the statistical measures of similarity, mainly the peak signal-
to-noise ratio. *is can be done using the peak signal-to-
noise ratio (PSNR) [57], which is defined as

PSNR(f, g) � 10 log

2552/ (1/m×n) 􏽘

m

i�1
􏽘

n

i�1
fij − gij􏼐 􏼑

2⎛⎝ ⎞⎠

10 ,

(11)

where both the original image f and the recovered image g

are of size m × n.

Datasets. To implement the new method, we considered two
different public dataset handwritten digits taken from the
MINST database [58] and dummy face images taken from
the wild database [59].

5.1. Face Image Recovery Alignment. First, we consider the
dataset which contains 30 face images of sizes 49 × 49 taken
from 100 images of a dummy head that are perturbed and
occluded from the labeled faces in the wild database [59]. *ese
are real-world face images with uncontrolled misalignment,
under varying illuminations. Figure 1 shows the recovered
image based on our algorithm and the other three baselines.
Again, as an illustration, some recovered dummy images based
on the proposed method and the aforementioned baselines are
given in Figure 1, where the dummy face images with different
corruptions are depicted in Figure 1(a).*e recovered images by
the aforementioned algorithms are shown in Figures 1(b)–1(e),

from which we can see that the visual quality of the proposed
method is better than all of the baselines. *is is consistent with
the numerical results in Table 1. We can see from Figure 1 that
the new method provides more clear visual quality compared
with the other three baselines. *is justifies the effectiveness of
our new algorithm in removing the perturbed, occluded, and
illuminated data from a highly linearly correlated data.

5.2. Handwritten Digit Image Recovery Alignment. Next, we
conduct simulations on the handwritten digits. 30 29 × 29
images of “3” taken from MINSTdatabase are used to verify
the effectiveness of our algorithm. *e simulation results
based on the performance of our proposed method shown in
Figure 2(f ) along with the other baselines are given in
Figures 2(b)–2(e). *e results achieved by our method are
better than those of the previous work to recover image
because of including an extra term in the form of partial
column low rank as a rank prior information. *e low-rank
component of four different approaches are depicted and
compared with the original. Our method performs better
than NQLSD, PSSV, and RASL, showing its effectiveness on
the result of the recovered images shown in Figure 2. *is
can also be justified, and as an illustration, some visual
images of the recovered handwritten digits based on the
aforementioned methods are shown in Figure 2(f ), from
which we can see that the proposed method provides better
alignment and recovers the corrupted handwritten images
better compared with the other four baselines. As shown in
Figure 2(e), the recovered handwritten images provide
clearer visual quality by properly removing the adverse ef-
fects such as outliers and heavy sparse noise. *is is in
agreement with the results in Table 1 and further justifies
that the proposed approach is more resilient to outliers and

Input: images I1, I2, . . . , In ∈ Rw×h initial transformations,τ1, τ2, . . . , τn and λ
0: while Not Converged do

(1) Step 1: normalize the images
Doτ � (vec(I1oτ1)/‖vec(I1oτ1)‖) (vec(I2oτ2)/‖vec(I2oτ2)‖ · · ·) (vec(Inoτn)/‖vec(Inoτn)‖)􏼂 􏼃

(2) Step 2: solve the Linearized Convex Optimization
minimize

Lnew,S,Δτ
‖Lnew‖∗ + λ‖S‖1

s.t Doτ + 􏽐
n
i�1 JiΔτuiu

T
i � L + S

(3) Step 3: compute the Jacobian matrices with respect to τ
Ji � (z/zτi)(vec(Iioτi)/‖vec(Iioτi)‖2), i � 1, 2, . . . , n

ALGORITHM 1: Iterative linearization.

Input: L ∈ Rm×n, S ∈ Rm×n, Z ∈ Rm×n, Δτ ∈ Rp×n, Ji, μ, ρ, tol,
Maximum iteration and λ
0: while Not Converged

(1) Step 1: update L by (4) and (5)
(2) Step 2: update S by (7)
(3) Step 4: update Δτ by (9)
(4) Step 5: update Z by (10)
(5) μk+1 � ρμk

ALGORITHM 2: New RPCA algorithm.

International Journal of Mathematics and Mathematical Sciences 5



(a) (b)

(c) (d)

(e) (f )

Figure 1: Comparison of algorithms in recovering images. (a) Original; (b) RASL; (c) NQLSD; (d) PSSV; (e) MRASL; (f ) ours.

Table 1: Results of mean peak signal-to-noise ratio.

Approaches Face images Handwritten digits
RASL [2] 18.98 19.55
NQLSD [6] 19.08 19.78
PSSV [10] 18.99 19.64
MRASL [3] 19.23 20.23
Ours 19.83 21.03

(a)

(b)

(c)

Figure 2: Continued.
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heavy sparse noise. To further validate the performance of
our method, we also compare the PSNRs of the afore-
mentionedmethods, as shown in Table 1, fromwhich we can
find that the new algorithm indeed provides the largest
PSNR compared with the other three baselines.

We can observe that, by adding an extra term in the form
of affine transformations and Frobenius and L2,1 norms, our
approach attained a larger mean PSNR compared with the
approaches proposed in [2, 3, 6, 10], indicating better image
recovery and having a capability to remove errors. Relatively
speaking, adding a new term in the form of partial column
low rank as a rank prior information to our model enhanced
the performance of our newly proposed algorithm because
the mean peak signal-to-noise ratio value obtained is better
than the other three baselines. *e advantage of our method
is that it obtains more stable estimations of image recovery,
which is more robust for errors, outliers, and occlusions.

6. Conclusions

In this work, we considered a new algorithm for robust
image alignment and recovery with rank minimization via
the Frobenius and the L2,1 norms. *e search of the affine
transformations and the Frobenius and L2,1 norms are
considered in the optimization formulation as a convex
constrained optimization problem. *en, this is used to
alleviate the potential impact of annoying effects by cor-
recting the distorted images. *e ADMM approach is then
employed, and a new set of equations is established to al-
ternatively update the optimization parameter and the affine
transformations. Moreover, the convergence of these new

updating equations is scrutinized as well. Conducted sim-
ulations show that the new method performs better than
other methods in terms of precision on five public databases.

Data Availability

*e data used in this article are freely available for the user.

Conflicts of Interest

*e author declares that there are no conflicts of interest.

References

[1] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On
the applications of robust pca in image and video processing,”
Proceedings of the IEEE, vol. 106, no. 8, pp. 1427–1457, 2018.

[2] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL:
robust alignment by sparse and low-rank decomposition for
linearly correlated images,” in Proceedings of the 2010 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 34, no. 11, pp. 2233–2246, Providence, RI,
USA, June 2012.

[3] H. T. Likassa, W.-H. Fang, and Y.-A. Chuang, “Modified
robust image alignment by sparse and low rank decompo-
sition for highly linearly correlated data,” in Proceedings of the
2018 3rd International Conference on Intelligent Green
Building and Smart Grid (IGBSG), Piscataway, NJ, USA, April
2018.

[4] S. Ebadi and E. Izquierdo, “Approximated RPCA for fast and
efficient recovery of corrupted and linearly correlated images
and video frames,” in Proceedings of the 2015 International

(d)

(e)

(f )

Figure 2: Comparison of algorithms in recovering handwritten digits. (a) Original; (b) RASL; (c) NQLSD; (d) PSSV; (e) MRASL; (f) ours.

International Journal of Mathematics and Mathematical Sciences 7



Conference on Systems, Signals and Image Processing (IWS-
SIP), IEEE, London, UK, pp. 49–52, September 2015.

[5] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust
principal component analysis: exact recovery of corrupted
low-rank matrices via convex optimization,” in Advances in
Neural Information Processing Systems, pp. 2080–2088, MIT
Press, Cambridge, MA, USA, 2009.

[6] X. Chen, Z. Han, Y. Wang, Y. Tang, and H. Yu, “Nonconvex
plus quadratic penalized low-rank and sparse decomposition
for noisy image alignment,” Science China Information Sci-
ences, vol. 59, no. 5, Article ID 052107, 2016.

[7] W. Song, J. Zhu, Y. Li, and C. Chen, “Image alignment by
online robust PCA via stochastic gradient descent,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 26, no. 7, pp. 1241–1250, 2016.

[8] Y. Wu, B. Shen, and H. Ling, “Online robust image alignment
via iterative convex optimization,” in Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, Providence, RI, USA, pp. 1808–1814, 2012.

[9] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust
recovery of subspace structures by low-rank representation,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 1, pp. 171–184, 2013.

[10] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon,
“Partial sum minimization of singular values in robust pca:
algorithm and applications,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 4, pp. 744–758,
2016.

[11] J. He, D. Zhang, L. Balzano, and T. Tao, “Iterative Grass-
mannian optimization for robust image alignment,” Image
and Vision Computing, vol. 32, no. 10, pp. 800–813, 2014.

[12] H. T. Likassa and W.-H. Fang, “Robust regression for image
alignment via subspace recovery techniques,” in Proceedings
of the 2018 VII International Conference on Network, Com-
munication and Computing—ICNCC 2018, pp. 288–293,
Taipei, Taiwan, December 2018.

[13] H. T. Likassa, W.-H. Fang, and J.-S. Leu, “Robust image
recovery via affine transformation and l_{2,1} norm,” IEEE
Access, vol. 7, pp. 125011–125021, 2019.

[14] J. Zhan and N. Vaswani, “Robust PCA with partial subspace
knowledge,” in Proceedings of the 2014 IEEE International
Symposium on Information=eory, IEEE, Honolulu, HI, USA,
pp. 2192–2196, June 2014.

[15] A. E. Waters, A. C. Sankaranarayanan, and R. Baraniuk,
“SpaRCS: Recovering low-rank and sparse matrices from
compressive measurements,” in Advances in Neural Infor-
mation Processing Systems, pp. 1089–1097, MIT Press,
Cambridge, MA, USA, 2011.

[16] S.-H. Lai and M. Fang, “Robust and efficient image alignment
with spatially varying illumination models,” in Proceedings of
the 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149), vol. 2,
IEEE, Fort Collins, CO, USA, pp. 167–172, 1999.

[17] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang,
“Weighted nuclear normminimization and its applications to
low level vision,” International Journal of Computer Vision,
vol. 121, no. 2, pp. 183–208, 2017.

[18] Z. Kang, C. Peng, and Q. Cheng, “Robust PCA via nonconvex
rank approximation,,” in Proceedings of the 2015 IEEE In-
ternational Conference on Data Mining, IEEE, Atlantic City,
NJ, USA, pp. 211–220, November 2015.

[19] D. Hsu, S. M. Kakade, and T. Zhang, “Robust matrix de-
composition with sparse corruptions,” IEEE Transactions on
Information =eory, vol. 57, no. 11, pp. 7221–7234, 2011.

[20] M. Rahmani and G. K. Atia, “Randomized subspace learning
approach for high dimensional low rank plus sparse matrix
decomposition,” in Proceedings of the 2015 49th Asilomar
Conference on Signals, Systems and Computers, IEEE, Pacific
Grove, CA, USA, pp. 1796–1800, November 2015.

[21] T.-H. Oh, J.-Y. Lee, Y.-W. Tai, and I. S. Kweon, “Robust high
dynamic range imaging by rank minimization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 6, pp. 1219–1232, 2014.

[22] N. B. Erichson, L. Mathelin, S. L. Brunton, and J. N. Kutz,
“Randomized dynamic mode decomposition,” 2017, https://
arxiv.org/abs/1702.02912.

[23] A. Podosinnikova, S. Setzer, and M. Hein, “Robust pca: op-
timization of the robust reconstruction error over the stiefel
manifold,” in Proceedings of the German Conference on
Pattern Recognition, Springer, Munster, Germany, pp. 121–
131, September 2014.

[24] N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and
P. Vandergheynst, “Fast robust PCA on graphs,” IEEE Journal
of Selected Topics in Signal Processing, vol. 10, no. 4,
pp. 740–756, 2016.

[25] M. Shakeri and H. Zhang, “Corola: a sequential solution to
moving object detection using low-rank approximation,”
Computer Vision and Image Understanding, vol. 146,
pp. 27–39, 2016.

[26] Z. Hu, F. Nie, L. Tian, and X. Li, “A comprehensive survey for
low rank regularization,” 2018, https://arxiv.org/abs/1808.
04521.

[27] T. Zhang and G. Lerman, “A novel m-estimator for robust
PCA,” =e Journal of Machine Learning Research, vol. 15,
no. 1, pp. 749–808, 2014.

[28] M. Rahmani and G. K. Atia, “A decentralized approach to
robust subspace recovery,” in Proceedings of the 2015 53rd
Annual Allerton Conference on Communication, Control, and
Computing (Allerton), IEEE, Monticello, IL, USA, pp. 802–
807, 2015.

[29] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy,
“Robust subspace learning: robust PCA, robust subspace
tracking, and robust subspace recovery,” IEEE Signal Pro-
cessing Magazine, vol. 35, no. 4, pp. 32–55, 2018.

[30] J. Lee and Y. Choe, “Robust PCA based on incoherence with
geometrical interpretation,” IEEE Transactions on Image
Processing, vol. 27, no. 4, pp. 1939–1950, 2018.

[31] F. Shang, J. Cheng, Y. Liu, Z.-Q. Luo, and Z. Lin, “Bilinear
factor matrix norm minimization for robust PCA: algorithms
and applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 9, pp. 2066–2080, 2018.

[32] F. Zhang and J. Yang, “A linear subspace learning approach
via low rank decomposition,” in Proceedings of the 2011
Second International Conference on Innovations in Bio-In-
spired Computing and Applications, IEEE, Shenzhen, China,
pp. 81–84, December 2011.

[33] X. Zhao, G. An, Y. Cen, H. Wang, and R. Zhao, “Robust
discriminant low-rank representation for subspace cluster-
ing,” Soft Computing, vol. 23, no. 16, pp. 7005–7013, 2018.

[34] Y. Ma, A. Y. Yang, H. Derksen, and R. Fossum, “Estimation of
subspace arrangements with applications in modeling and
segmenting mixed data,” SIAM Review, vol. 50, no. 3,
pp. 413–458, 2008.

[35] G. Lerman and T. Maunu, “An overview of robust subspace
recovery,” Proceedings of the IEEE, vol. 106, no. 8,
pp. 1380–1410, 2018.

[36] S. Rao, R. Tron, R. Vidal, and Y. Yi Ma, “Motion segmentation
in the presence of outlying, incomplete, or corrupted

8 International Journal of Mathematics and Mathematical Sciences

https://arxiv.org/abs/1702.02912
https://arxiv.org/abs/1702.02912
https://arxiv.org/abs/1808.04521
https://arxiv.org/abs/1808.04521


trajectories,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 10, pp. 1832–1845, 2010.

[37] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in
Proceedings of the 2009 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, Miami, FL, USA, pp. 2790–
2797, June 2009.

[38] J. Shi and J. Malik, “Normalized cuts and image segmenta-
tion,” Departmental Papers (CIS), vol. 22, p. 107, 2000.

[39] Y.-X. Wang and H. Xu, “Noisy sparse subspace clustering,”
=e Journal of Machine Learning Research, vol. 17, no. 1,
pp. 320–360, 2016.

[40] Q. Li, Z. Sun, Z. Lin, R. He, and T. Tan, “Transformation
invariant subspace clustering,” Pattern Recognition, vol. 59,
pp. 142–155, 2016.

[41] J. Shen, P. Li, and H. Xu, “Online low-rank subspace clus-
tering by basis dictionary pursuit,” in Proceedings of the In-
ternational Conference on Machine Learning, pp. 622–631,
New York, NY, USA, June 2016.

[42] Y. Wu, Z. Zhang, T. S. Huang, and J. Y. Lin, “Multibody
grouping via orthogonal subspace decomposition,” in Pro-
ceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and PATTERN recognition, vol. 2, Kauai, HI,
USA, December 2001.

[43] Y. Li, C. Chen, F. Yang, and J. Huang, “Deep sparse repre-
sentation for robust image registration,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4894–4901, Boston, MA, USA, 2015.

[44] Z. Ding and Y. Fu, “Robust multi-view subspace learning
through dual low-rank decompositions,” in Proceedings of the
=irtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, February 2016.

[45] Y. Ma, S. Soatto, J. Koseckaa, and S. S. Sastry, An Invitation to
3-d Vision: From Images to Geometric Models, Vol. 26,
Springer Science & Business Media, Berlin, Germany, 2012.

[46] C. Ding, D. Zhou, X. He, and H. Zha, “R1-PCA: rotational
invariant l 1-norm principal component analysis for robust
subspace factorization,” in Proceedings of the 23rd Interna-
tional Conference onMachine Learning, ACM, Pittsburgh, PA,
USA, pp. 281–288, 2006.

[47] R. Li, X. Wang, L. Lei, and Y. Song, “.l 2, 1{ }-norm based loss
function and regularization extreme learning machine,” IEEE
Access, vol. 7, pp. 6575–6586, 2018.

[48] F.Wen, L. Chu, P. Liu, and R. C. Qiu, “A survey on nonconvex
regularization-based sparse and low-rank recovery in signal
processing, statistics, and machine learning,” IEEE Access,
vol. 6, pp. 69883–69906, 2018.

[49] Y. Li, Y. Lin, X. Cheng, Z. Xiao, F. Shu, and G. Gui, “Non-
convex penalized regularization for robust sparse recovery in
the presence of,” IEEE Access, vol. 6, pp. 25474–25485, 2018.

[50] Z. Lin, M. Chen, and Y. Ma, “*e augmented lagrange
multiplier method for exact recovery of corrupted low-rank
matrices,” 2010, https://arxiv.org/abs/1009.5055.

[51] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.

[52] S. M. Kahaki, S.-L. Wang, and A. Stepanyants, “Accurate
registration of in vivo time-lapse images,” inMedical Imaging
2019: Image Processing, Vol. 10949, International Society for
Optics and Photonics, Bellingham, WA, USA, 2019.

[53] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of
sparse representation: algorithms and applications,” IEEE
Access, vol. 3, pp. 490–530, 2015.

[54] A. Dutta, F. Hanzely, and P. Richtárik, “A nonconvex pro-
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