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In the last few decades, a lot of generalizations of the Banach contraction principle had been introduced. In this paper, we present
the notion of θ-contraction and θ − ϕ-contraction in generalized asymmetric metric spaces to study the existence and uniqueness
of the fixed point for them. We will also provide some illustrative examples. Our results improve many existing results.

1. Introduction

+e problem of the existence of the solution of many
mathematical models is equivalent to the existence of a
fixed-point problem for a certain map. +e study of fixed
points, therefore, has a central role in many disciplines of
applied sciences. +e most essential and key part of the
theory of fixed points is the existence of the solution of
operator equations satisfying certain conditions, for ex-
ample, Fredholm integral equations, Volterra integral
equations, and two-point boundary-value problems in dif-
ferential equations, as well as some eigenvalue problems
[1–3]. A beautiful blend of analysis, topology, and geometry
has laid down the foundation of the theory of fixed points.

+e Banach contraction principle [4] has become a
powerful tool in modern analysis, and it is an important tool
for solving existence problems in mathematics and physics.
Many authors have established the theory of fixed points
particularly in two directions: one by stating the conditions
on the mapping T and second, taking the set X as a more
general structure [5–8].

Many generalizations of the concept of metric spaces are
defined, and some fixed-point theorems are proved in these
spaces. In particular, asymmetric metric spaces were

introduced by Wilson [9] as metric spaces, but without the
requirement that the asymmetric metric d has to satisfy
d(x, y) � d(y, x).

Asymmetric metric spaces have numerous recent ap-
plications both in pure and applied mathematics, for ex-
ample, in rate-independent models for plasticity [10], shape-
memory alloys [11], models for material failure [12], and the
questions of the existence and uniqueness of Hamil-
ton–Jacobi equations [13].

Many mathematicians worked on this interesting space.
For more details, refer [14, 15].

A. Branciari in [16] initiated the notions of a gener-
alized metric space as a generalization of a metric space,
where the triangular inequality of metric spaces
was replaced by d(x, y)≤ d(x, u) + d(u, v) + d(v,

y)(quadrilateral inequality). Various fixed-point results
were established on such spaces, see [4, 17–21] and ref-
erences therein.

Combining conditions used for definitions of asym-
metric metric and generalized metric spaces, Piri et al. [22]
announced the notions of the generalized asymmetric metric
space.

In this paper, we introduce the notion of θ-contraction
and θ − ϕ-contraction and establish some new fixed-point
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theorems for mappings in the setting of complete general-
ized asymmetric metric spaces. Our result generalizes, im-
proves, and extends the corresponding results due to
Kannan and Reich. Moreover, illustrative examples are
presented to support the obtained results.

2. Preliminaries

In the following, we recollect some definitions which will be
useful in our main results.

Definition 1 (see [16]). Let X be a nonempty set and d: X ×

X⟶ R+ be a mapping such that, for all x, y ∈ X and for all
distinct points u, v ∈ X, each of them different from x and y,
one has

(i) d(x, y) � 0 if and only if x � y

(ii) d(x, y) � d(y, x) for all distinct points x, y ∈ X

(iii) d(x, y)≤d(x, u) + d(u, v) + d(v, y) (quadrilateral
inequality)

+en, (X, d) is called a generalized metric space.

Definition 2 (see [22]). Let X be a nonempty set and d: X ×

X⟶ R+ be a mapping such that, for all x, y ∈ X and for all
distinct points u, v ∈ X, each of them different from x and y,
one has

(i) d(x, y) � 0 if and only if x � y

(ii) d(x, y)≤d(x, u) + d(u, v) + d(v,

y) (quadrilateral inequality)

+en, (X, d) is called a generalized asymmetric metric
space.

Definition 3 (see [22]). Let (X, d) be a generalized asym-
metric metric space and xn n∈N be a sequence in X, and
x ∈ X. +en,

(i) We say that xn n∈N forward (backward) converges to
x if and only if

lim
n⟶+∞

d x, xn(  � lim
n⟶+∞

d xn, x(  � 0. (1)

(ii) We say that xn n∈N forward (backward) Cauchy if

lim
n,m⟶+∞

d xn, xm(  � lim
n,m⟶+∞

d xm, xn(  � 0. (2)

Example 1. Let X � A∪B, where A � 0, 2{ } and
B � (1/n), n ∈ N∗{ } and d: X × X⟶ [0, +∞[ defined by

d(0, 2) � d(2, 0) � 1,

d
1
n

, 0  �
1
n

,

d 0,
1
n

  � 1,

d
1
n

, 2  � 1,

d 2,
1
n

  �
1
n

,

d
1
n

,
1
m

  � d
1
m

,
1
n

  � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

for all n, m ∈ N∗, n≠m. +en, (X, d) is a generalized
asymmetric metric space. However, we have the following:

(1) (X, d) is not a metric space as
d((1/n), 0)≠d(0, (1/n)), for all n> 1

(2) (X, d) is not a asymmetric metric space as
d(2, 0) � 1> (1/2) � d(2, (1/4)) + d((1/4), 0)

(3) (X, d) is not a rectangular metric space as
d((1/n), 2)≠d(2, (1/n)), for all n> 1

Remark 1. Let (X, d) be as in Example 1 and 1/n{ }n∈N∗ be a
sequence in X. However, we have the following:

(i) limn⟶+∞d((1/n), 0) � 0, limn⟶+∞d((1/n), 2) � 1
and limn⟶+∞d(0, (1/n)) � 1, limn⟶+∞d(2,

(1/n)) � 0. +en, the sequence 1/n{ } forward con-
verges to 2 and backward converges to 0, so the limit
is not unique.

(ii) limn⟶+∞d((1/m), (1/n)) � limn⟶+∞d((1/m), (1/
n)) � 1. So, forward (backward) convergence does
not imply forward (backward) Cauchy.

Lemma 1 (see [22]). Let (X, d) be a generalized asymmetric
metric space and xn n be a forward (or backward) Cauchy
sequence with pairwise disjoint elements in X. If xn n

forward converges to x ∈ X and backward converges to
y ∈ X, then x� y.

Definition 4 (see [22]). Let (X, d) be a generalized asym-
metric metric space. X is said to be forward (backward)
complete if every forward (backward) Cauchy sequence
xn n in X forward (backward) converges to x ∈ X.

Definition 5 (see [22]). Let (X, d) be a generalized asym-
metric metric space. X is said to be complete if X is forward
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and backward complete.+e following definition was given
by Jleli and Samet in [23].

Definition 6 (see [23]). LetΘ be the family of all functions θ:
]0, +∞[⟶ ]1, +∞[ such that

(θ)1 θ is increasing,
(θ)2 for each sequence xn ∈ ]0, +∞[,

lim
n⟶0

xn � 0 if and only if lim
n⟶∞

θ xn(  � 1. (4)

(θ)3 θ is continuous.

Recently, Zheng et al. [24] introduced the new type of
contractive mappings as follows:

Definition 7 (see [24]). LetΦ be the family of all functions ϕ:
[1, +∞[⟶ [1, +∞[ such that

ϕ )1 ϕ is increasing
ϕ )2 for each t ∈ ]1, +∞[, limn⟶+∞ϕ

n(t) � 1
ϕ )3 ϕ is continuous

Lemma 2 (see [24]). If ϕ ∈ Φ, then ϕ(1) � 1, and ϕ(t)< t for
all t ∈ ]1, +∞[.

Definition 8 (see [24]). Let (X, d) be a metric space and
T: X⟶ X be a mapping.

T is said to be a θ − ϕ-contraction if there exist θ ∈ Θ and
ϕ ∈ Φ such that, for any x, y ∈ X,

d(Tx, Ty)> 0⟹ θ[d(Tx, Ty)]≤ϕ(θ[N(x, y)]), (5)

where

N(x, y) � max d(x, y), d(x, Tx), d(y, Ty) . (6)

Theorem 1 (see [22]). Let (X, d) be a generalized asym-
metric metric space and T: X⟶ X be a mapping. Suppose
that there exist θ ∈ Θ and k ∈ ]0, 1[ such that, for any
x, y ∈ X,

max d(Tx, Ty), d(Ty, Tx) > 0⇒θ
d(Tx, Ty) + d(Ty, Tx)

2
 

≤ θ
d(x, y) + d(y, x)

2
 

k

.

(7)

+en, T has a unique fixed point.

3. Main Result

Motivated and inspired by Piri et al. [22] and Zheng et al.
[24], we define the notions of θ-contraction and
θ − ϕ-contraction on the generalized asymmetric metric
space, and we give some results on such space.

Definition 9 Let (X, d) be a generalized asymmetric metric
space and T: X⟶ X be a mapping.

(1) T is said to be a θ-contraction if there exist θ ∈ Θ and
r ∈ ]0, 1[ such that, for any x, y ∈ X, we have

max d(x, y), d(y, x) > 0⇒θ
d(Tx, Ty) + d(Ty, Tx)

2
 

≤ (θ[M(x, y)])
r
,

(8)

where

M(x, y) � max
d(x, y) + d(y, x)

2
,
d(x, Tx) + d(Tx, x)

2
,
d(y, Ty) + d(Ty, y)

2
 . (9)

(2) T is said to be a θ − ϕ-contraction if there exist θ ∈ Θ
and ϕ ∈ Φ such that, for any x, y ∈ X, we have

max d(x, y), d(y, x) > 0⟹ θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ϕ(θ[M(x, y)]), (10)

where

M(x, y) � max
d(x, y) + d(y, x)

2
,
d(x, Tx) + d(Tx, x)

2
,
d(y, Ty) + d(Ty, y)

2
 . (11)
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(3) T is said to be a θ − ϕ-Kannan-type contraction if
there exist θ ∈ Θ and ϕ ∈ Φ such that

max d(Tx, Ty), d(Ty, Tx) > 0, (12)

for any x, y ∈ X, we have

θ
d(Tx, Ty) + d(Ty, Tx)

2
 

≤ϕ θ
d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

4
  .

(13)

(4) T is said to be a θ − ϕ-Reich-type contraction if there
exist θ ∈ Θ and ϕ ∈ Φ such that

max d(Tx, Ty), d(Ty, Tx) > 0, (14)

for any x, y ∈ X, we have

θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ ϕ θ

d(x, y) + d(y, x) + d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

6
  . (15)

Theorem 2. Let (X, d) be a complete generalized asymmetric
metric space, and let T: X⟶ X be a θ-contraction, i.e.,
there exist θ ∈ Θ and r ∈ ]0, 1[ such that, for any

x, y ∈ X, max d(Tx, Ty), d Ty,Tx  > 0⟹ θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ (θ[M(x, y)])

r
. (16)

9en, T has a unique fixed point.

Proof. Let x0 ∈ X be a fixed point, and define a sequence
xn  by xn+1 � Txn � Tn+1x0, for all n ∈ N. If there exists

n0 ∈ N such that d(xn0
, xn0+1) � 0 or d(xn0+1, xn0

) � 0, then
proof is finished.

We can suppose that d(xn, xn+1)> 0 and d(xn+1,xn)> 0
for all n ∈ N; then, we have

max d xn, xn+1( , d xn+1,xn  > 0. (17)

Substituting x � xn−1 and y � xn, from (16), for all
n ∈ N, we have

θ
d xn, xn+1(  + d xn+1,xn 

2
⎡⎣ ⎤⎦≤ θ M xn− 1, xn( (  

r
, ∀n ∈ N,

(18)

where

M xn−1, xn(  � max
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn, xn+1(  + d xn+1, xn( 

2
 

� max
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn, xn+1(  + d xn+1, xn( 

2
 .

(19)
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Now, we set D(xn, xm) � d(xn, xm) + d(xm, xn).
+erefore,

M xn−1, xn(  � max
D xn−1, xn( 

2
,
D xn, xn+1( 

2
 . (20)

If M(xn−1, xn) � D(xn, xn+1)/2 , then from the as-
sumption of the theorem, we have

θ
D xn, xn+1( 

2
 ≤ θ

D xn, xn+1( 

2
  

r

< θ
D xn, xn+1( 

2
 ,

(21)

which is a contradiction. Hence, M(xn−1, xn) � D{

(xn−1, xn)/2}.
+us,

θ
D xn, xn+1( 

2
 ≤ θ

D xn− 1, xn( 

2
  

r

< θ
D xn−1, xn( 

2
 .

(22)

Repeating this step, we conclude that

θ
D xn, xn+1( 

2
 ≤ θ

D xn− 1, xn( 

2
  

r

< θ
D xn−1, xn( 

2
 

< · · · < θ
D x0, x1( 

2
 

rn

.

(23)

From (θ1), we get

D xn, xn+1( <D xn−1, xn( . (24)

+erefore, D(xn, xn+1) n∈N is a monotone strictly de-
creasing sequence of nonnegative real numbers. Conse-
quently, there exists α≥ 0 such that

lim
n⟶∞

D xn, xn+1(  � α. (25)

Now, we claim that α � 0. Arguing by the contraction,
we assume that α> 0. Since D(xn, xn+1) n∈N is a nonnegative
decreasing sequence, we have

D xn, xn+1( ≥ α, ∀n ∈ N. (26)

From the property of θ, we get

1< θ
λ
2

 ≤ θ
D x0, x1( 

2
 

rn

. (27)

By letting n⟶∞ in inequality (27), we obtain

1< θ
λ
2

 ≤ 1. (28)

It is a contradiction. +erefore,

lim
n⟶∞

D xn, xn+1(  � 0. (29)

Next, we shall prove that

lim
n⟶∞

d xn, xn+2(  � 0,

lim
n⟶∞

d xn+2, xn(  � 0.
(30)

We assume that xn ≠xm for every n, m ∈ N, n≠m. In-
deed, suppose that xn � xm for some n � m + k with k> 0, so
we have xn+1 � Txn � Txm � xm+1.

So, from the assumption of the theorem, we get

θ
D xm, xm+1( 

2
  � θ

D xn, xn+1( 

2
 ≤ θ

D xn− 1, xn( 

2
 

r

< θ
D xn−1, xn( 

2
 .

(31)

Since θ is increasing, we have

D xn, xn+1( <D xn−1, xn( . (32)

Continuing this process, we can say that

D xm, xm+1( <D xm, xm+1( . (33)

It is a contradiction. +erefore,

max d xm, xn( , d xn, xm(  > 0, (34)

for every n, m ∈ N, n≠m.
Substituting x � xn and y � xn+2,

max d xn, xn+2( , d xn+2, xn(  > 0. (35)

Applying (16) with x � xn−1 and y � xn+1, we have

θ
d xn, xn+2(  + d xn+2,xn 

2
⎡⎣ ⎤⎦≤ θ M xn− 1, xn+1( (  

r
,

(36)

where

M xn−1, xn+1(  � max
D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
,
D xn+1, xn+2( 

2
 

� max
D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
 .

(37)

So, we get

θ
D xn, xn+2( 

2
 ≤ θ max

D xn− 1, xn( 

2
,
D xn− 1, xn+1( 

2
   

r

.

(38)

Take an � D(xn, xn+2) and bn � D(xn, xn+1). +us, by
(38), one can write

θ
an

2
 ≤ θ max

an− 1

2
,
bn− 1

2
   

r

. (39)

By (θ1), we get

an <max an−1, bn−1 . (40)
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By (24), we have

bn ≤ bn−1 ≤max an−1, bn−1 , (41)

which implies that

max an, bn ≤max an−1, bn−1 , ∀n ∈ N. (42)

+erefore, the sequence max an−1, bn−1  n∈N is mono-
tone nonincreasing. +us, there exists λ≥ 0 such that

lim
n⟶∞

max an, bn  � λ. (43)

By (29), we assume that λ> 0; then, we get

lim
n⟶∞

sup an � lim
n⟶∞

supmax an, bn  � lim
n⟶∞

max an, bn .

(44)

Taking lim supn⟶∞ in (38) and using the properties
of θ3, we obtain

θ lim
n⟶∞

sup
an

2
 < θ lim

n⟶∞
max

an−1

2
,
bn−1

2
  . (45)

+erefore,

θ
λ
2

 < θ
λ
2

 . (46)

By (θ1), we get

λ< λ. (47)

It is a contradiction. +erefore,

lim
n⟶∞

D xn+2,xn  � 0. (48)

Next, we shall prove that xn n∈N is a Cauchy sequence,
i.e., limn⟶∞D(xn,xm) � 0, for all n, m ∈ N. Suppose to the
contrary.+en, there is ε> 0 such that, for an integer k, there
exist two sequences n(k)  and m(k) m(k) > n(k) > k such
that

D xm(k)
, xn(k)

 ≥ ε,

D xm(k)−1
, xn(k)

 < ε.
(49)

Now, using (29), (48), (49), and the quadrilateral in-
equality, we find

ε≤D xm(k)
, xn(k)

 ≤D xm(k)
, xm(k)+1

 

+ D xm(k)+1
, xm(k)−1

  + D xm(k)−1
, xn(k)

 

≤D xm(k)
, xm(k)+1

  + D xm(k)+1
, xm(k)−1

  + ε.

(50)

+en,

lim
k⟶∞

D m(k), n(k)  � ε. (51)

Now, by the quadrilateral inequality, we have

D xm(k)+1
, xn(k)+1

 ≤D xm(k)+1
, xm(k)

  + D xm(k)
, xn(k)

  + D xn(k)
, xn(k)+1

 ,

D xm(k)
, xn(k)

 ≤D xm(k)
, xm(k)+1

  + D xm(k)+1
, xn(k)+1

  + D xn(k)+1
, xn(k)

 .

(52)

Letting k⟶∞ in the above inequalities and using (29),
(48), and (51), we obtain

lim
k⟶∞

D xm(k)+1
, xn(k)+1

  � ε. (53)

+erefore, by (29) and (51), we get that

lim
k⟶∞

M xm(k)
, xn(k)

  �
ε
2
. (54)

By (53), there exists n0 ∈ N such that

D xm(k)+1
, xn(k)+1

  � d xm(k)+1
, xn(k)+1

 

+ d xn(k)+1
, xm(k)+1

 ≥
ε
2
, ∀n≥ n0.

(55)

+erefore,

max d xm(k)+1
, xn(k)+1

 , d xn(k)+1
, xm(k)+1

  ≥
ε
4
, ∀n≥ n0.

(56)

So,

max d Txm(k)
, Txn(k)

 , d xn(k)
, Txm(k)

  ≥
ε
4
, ∀n≥ n0.

(57)

Applying with x � xm(k)
and y � xn(k)

, we have

θ
D xm(k)+1

, xn(k)+1
 

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≤ θ M xm(k)
, xn(k)

   
r

. (58)

Letting k⟶∞ in the above inequality and using (θ3),
(53), and (54), we obtain

θ lim
k⟶∞

D xm(k)+1
, xn(k)+1

 

2
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠≤ θ lim
k⟶∞

M xm(k)
, xn(k)

  
r

.

(59)

+erefore,
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θ
ε
2

 < θ
ε
2

 . (60)

Since θ is increasing, we get

⇒ε< ε, (61)

which is a contradiction. +en,

lim
n,m⟶∞

D xm, xn(  � 0. (62)

Equivalently,

lim
n,m⟶∞

d xm, xn(  � lim
n,m⟶∞

d xn, xm(  � 0. (63)

Hence, xn  is a forward and backward Cauchy sequence
in X. By completeness of (X, d), there exists z, u ∈ X such
that

lim
x⟶∞

d xn, z(  � lim
x⟶∞

d u, xn(  � 0. (64)

So, from Lemma 1, we get z � u.
Now, we show that d(Tz, z) � 0� d(z, Tz). Arguing by

contradiction, we assume that

d(Tz, z)> 0,

d(z, Tz)> 0.
(65)

+erefore,

max d(Tz, z), d(z, Tz){ }> 0. (66)

Now, by the quadrilateral inequality, we get

d Txn, Tz( ≤ d Txn, xn(  + d xn, z(  + d(z, Tz), (67)

d(z, Tz)≤d z, xn(  + d xn, Txn(  + d Txn, Tz( . (68)

By letting n⟶∞ in inequalities (67) and (68), we
obtain

d(z, Tz)≤ lim
n⟶∞

d Txn, Tz( ≤ d(z, Tz). (69)

+erefore,

lim
n⟶∞

d Txn, Tz(  � d(z, Tz). (70)

On the contrary,

d Tz, Txn( ≤d(Tz, z) + d z, xn(  + d xn, Txn( , (71)

d Txn, Tz( ≤d Txn, xn(  + d xn, z(  + d(z, Tz). (72)

By letting n⟶∞ in inequalities (71) and (72), we
obtain

d(Tz, z)≤ lim
n⟶∞

d Tz, Txn( ≤ d(Tz, z). (73)

+erefore,

lim
n⟶∞

d Tz, Txn(  � d(Tz, z). (74)

By (70) and from the definition of the limit, there exists
n1 ∈ N such that

d Txn, Tz( >d(z, Tz)> 0, ∀n≥ n1. (75)

Similarly, by (74), there exists n2 ∈ N such that

d Tz, Txn( >d(Tz, z)> 0, ∀n≥ n2. (76)

Let N � max n1, n2 ; we conclude

max d Tz, Txn( , d Txn, Tz(  > 0, ∀n≥N. (77)

Applying (16) with x � z and y � xn, we have

θ
D Tz, Txn( 

2
 ≤ θ M z, xn( (  

r
, ∀n≥N, (78)

where

M z, xn(  � max
D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
 .

(79)

+erefore,

θ
D Tz, Txn( 

2
 ≤ θ max

D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
   

r

.

(80)

By letting n⟶∞ in inequality (80) and using (θ3), we
obtain

θ lim
n⟶∞

D Tz, Txn( 

2
  � θ

D(z, Tz)

2
 

≤ θ lim
n⟶∞

max
D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
   

r

< θ lim
n⟶∞

max
D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
 .

(81)

By (θ1), we get

D(z, Tz)

2
< lim

n⟶∞
max

D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
 

�
D(z, Tz)

2
,

(82)
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which is a contradiction. Hence, Tz � z.
Uniqueness: now, suppose that z, u ∈ X are two fixed

points of T such that u≠ z. +erefore, we have

d(Tz, Tu) � d(z, u)> 0,

d(Tu, Tz) � d(u, z)> 0.
(83)

+erefore,

max d(Tu, Tz), d(Tz, Tu){ }> 0. (84)

Applying (16) with x � z and y � u, we have

θ
D(Tz, Tu)

2
  � θ

D(z, u)

2
 ≤ [θ(M(z, u))]

r
, (85)

where

M(z, u) � max
D(z, u)

2
,
D(z, Tz)

2
,
D(u, Tu)

2
  �

D(z, u)

2
.

(86)
+erefore, we have

θ
D(z, u)

2
 ≤ θ

D(z, u)

2
  

r

< θ
D(z, u)

2
 . (87)

+erefore,

D(z, u)<D(z, u), (88)

is a contradiction. +erefore, u � z. □

Corollary 1 (Theorem 2; see [22]). Let (X, d) be a complete
generalized asymmetric metric space and T: X⟶ X be a
given mapping. Suppose that there exist θ ∈ Θ and k ∈ ]0, 1[

such that, for any x, y ∈ X, we have max d(Tx,{

Ty), d(Ty, Tx)} > 0⟹ θ[(d(Tx, Ty) + d(Ty, Tx))/2] ≤
[θ((d(x, y) + d(y, x))/2)]k.

+en, T has a unique fixed point.

Example 2. Consider X � 0, 1, 2, 3{ }. Let d: X × X⟶ [0,

+∞[ be a mapping defined by the following:

(i) d(x, y) � 0 if and only x � y

(ii) d(0, 1) � d(1, 0) � d(2, 1) � d(2, 0) � d(3, 0) �

d(2, 3) � d(3, 1) � 1
(iii) d(1, 2) � d(0, 2) � 2
(iv) d(0, 3) � 3, and d(3, 2) � 4
(v) d(1, 3) � 2

Clearly, (X, d) is not an asymmetric metric space. In-
deed, d(3, 2) � 4>d(3, 0) + d(0, 2) � 3.

However, it is a complete generalized asymmetric metric
space.

Let T: X⟶ X be given by

T(0) � T(1) � 0,

T(2) � 1,

T(3) � 2.

⎧⎪⎪⎨

⎪⎪⎩
(89)

Suppose θ(t) �
�
t

√
+ 1 and k � 12/13. +erefore, θ ∈ Θ

and k ∈ ]0, 1[. First, observe that max d(Tx, Ty),

d(Ty, Tx)}> 0⟺ x � 0, y � 2 , x � 1, y � 2 , x � 0,{

y � 3}, x � 1, y � 3 , or x � 2, y � 3 .
For x � 0, y � 2, we have

d(T(0), T(2)) + d(T(2), T(0))

2
�

d(0, 1) + d(1, 0)

2
� 1,

M(0, 2) � max
d(0, 2) + d(2, 0)

2
,
d(0, T(0)) + d(T(0), 0)

2
,
d(2, T(2)) + d(T(2), 2)

2
 

� max
d(0, 2) + d(2, 0)

2
,
d(0, 0) + d(0, 0)

2
,
d(2, 1) + d(1, 2)

2
  �

3
2
.

(90)

+erefore,

θ
d(T(0), T(2)) + d(T(2), T(0))

2
  � 2,

θ max
3
2
, 0,

3
2

   
k

� 2.08.

(91)

So,

θ
d(T(0), T(2)) + d(T(2), T(0))

2
 ≤ [θ(M(0, 2))]

k
.

(92)

For x � 1, y � 2, we have
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θ
d(T(1), T(2)) + d(T(2), T(1))

2
  � θ

d(0, 1) + d(1, 0)

2
  � 2,

M(1, 2) � max
d(1, 2) + d(2, 1)

2
,
d(1, T(1)) + d(T(1), 1)

2
,
d(2, T(2)) + d(T(2), 2)

2
  �

3
2
,

(93)

which implies that

θ max
3
2
, 1,

3
2

  
k

�

�
3
2



+ 1 

12/13

� 2.08. (94)

+erefore,

θ
d(T(1), T(2)) + d(T(2), T(1))

2
 ≤ [θ(M(1, 2))]

k
.

(95)

For x � 0, y � 3, we have

θ
d(T(0), T(3)) + d(T(3), T(0))

2
  � θ

d(0, 2) + d(2, 0)

2
  �

�
3
2



+ 1 � 2.22,

M(0, 3) � max
d(0, 3) + d(3, 0)

2
,
d(0, T(0)) + d(T(0), 0)

2
,
d(3, T(3)) + d(T(3), 3)

2
 

� max 2, 0,
5
2

  �
5
2
.

(96)

On the contrary,

θ max 2, 0,
5
2

  
k

�

�
5
2



+ 1 

k

� 2.39. (97)

+en,

θ
d(T0, T3) + d(T3, T0)

2
 ≤ [θ(M(0, 3))]

k
. (98)

For x � 1, y � 3, we have

θ
d(T(1), T(3)) + d(T(3), T(1))

2
  � θ

d(0, 2) + d(2, 0)

2
  �

�
3
2



+ 1 � 2.22,

M(1, 3) � max
d(1, 3) + d(3, 1)

2
,
d(1, T(1)) + d(T(1), 1)

2
,
d(3, T(3)) + d(T(3), 3)

2
 

� max
3
2
, 1,

5
2

 , θ max
3
2
, 1,

5
2

  
k

� 2.39.

(99)
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+erefore,

θ
d(T(1), T(3)) + d(T(3), T(1))

2
 ≤ [θ(M(1, 3))]

k
.

(100)

For x � 2, y � 3, we have

θ
d(T(2), T(3)) + d(T(3), T(2))

2
  � 2.22,

M(2, 3) � max
d(2, 3) + d(3, 2)

2
,
d(2, T(2)) + d(T(2), 2)

2
,
d(3, T(3)) + d(T(3), 3)

2
  �

5
2
,

θ
5
2

  
k

� 2.39.

(101)

+en,

θ
d(T(2), T(3)) + d(T(3), T(2))

2
 ≤ [θ(M(2, 3))]

k
.

(102)

Hence, T satisfies the assumption of the theorem, and
z � 0 is the unique fixed point of T.

Example 3. Let X � A∪B, where A � (1/n): n ∈ 3, 4, 5, 6{ }{ }

and B � [(1/2), (3/2)].
Define d: X × X⟶ [0, +∞[ as follows:

d(x, y) � d(y, x) for allx, y ∈ B,

d(x, y) � 0⟺y � x for all x, y ∈ X.

⎧⎪⎨

⎪⎩

d
1
3
,
1
4

  � d
1
5
,
1
6

  � 0.3,

d
1
3
,
1
5

  � d
1
4
,
1
6

  � 0.2,

d
1
5
,
1
3

  � d
1
6
,
1
4

  � 0.35,

d
1
3
,
1
6

  � d
1
3
,
1
6

  � 0.6,

d(x, y) � |x − y|, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(103)

+en, (X, d) is a generalized asymmetric metric space.
However, we have the following:

(1) (X, d) is not a metric space as
d((1/3), (1/6)) � 0.6> 0.5 � d((1/3), (1/4)) +

d((1/4), t(1/6))

(2) (X, d) is not a generalized metric space as
d((1/6), (1/4)) � 0.35≠d((1/4), (1/6)) � 0.2

Define mapping T: X⟶ X by

T(x) �

��
x

√
, if x ∈

1
2
,
3
2

 ,

1, if x ∈ A.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(104)

+en, T(x) ∈ [(1/2), (3/2)]. Let θ(t) � et for all t ∈ ]0,

+∞[, and r � 4/5. It is obvious that θ ∈ Θ and r ∈ ]0, 1[.
Consider the following possibilities:

Case 1: x, y ∈ [(1/2), (3/2)] with x≠y, and assume that
x>y.

D(Tx, Ty) � d(Tx, Ty) + d(Ty, Tx)

� |
��
x

√
−

��
y

√
| + |

��
y

√
−

��
x

√
|

� 2(
��
x

√
−

��
y

√
),

D(x, y) � d(x, y) + d(y, x)

� |x − y| +|y − x|

� 2(x − y).

(105)

+erefore,

θ
D(Tx, Ty)

2
  � e

�
x

√
−

�
y

√

,

θ
D(x, y)

2
  

4/5

� e
x− y

 
4/5

.

(106)

On the contrary,
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θ
D(Tx, Ty)

2
  − θ

D(x, y)

2
  

4/5

� e
�
x

√
−

�
y

√

− e
x− y

 
4/5

≤ 0,

(107)

which implies that

θ
D(Tx, Ty)

2
 ≤ θ

D(x, y)

2
  

4/5

≤ θ max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
   

4/5

.

(108)

Case 2: x ∈ [(1/2), (3/2)], y ∈ A or
y ∈ [(1/2), (3/2)], x ∈ A. +erefore, T(x) �

��
x

√
,

T(y) � 1; then, d(Tx, Ty) � (|
��
x

√
− 1|).

In this case, consider two possibilities:

(i) x≥ 1: then,
��
x

√
≥ 1. +erefore,

D(Tx, Ty) � 2(
��
x

√
− 1). (109)

So, we have

θ
D(Tx, Ty)

2
  � e

�
x

√
− 1

,

M(x, y) � max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
 

≥
D(y, Ty)

2
� (1 − y)

≥ 1 −
1
3

  �
2
3

 ,

θ
2
3

  
4/5

� e
2/3

 
4/5

� e
8/15

.

(110)

On the contrary,

θ
D(Tx, Ty)

2
  − θ

2
3

  
4/5

� e
�
x

√
− 1

− e
8/15

. (111)

Since x ∈ [1, (3/2)],

e
�
x

√
− 1

− e
8/15 ≤ 0, (112)

which implies that

θ
D(Tx, Ty)

2
 ≤ θ

D(y, Ty)

2
  

4/5

≤ θ max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
   

4/5

.

(113)

(ii) x< 1: then,
��
x

√
< 1. +erefore,

D(Tx, Ty) � 2(1 −
��
x

√
). (114)

So, we have

θ
D(Tx, Ty)

2
  � e

1−
�
x

√

,

M(x, y) � max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
 

≥
D(y, Ty)

2

� (1 − y)

≥ 1 −
1
3

  �
2
3

 ,

θ
2
3

  
4/5

� e
2/3

 
4/5

� e
8/15

.

(115)

On the contrary,

θ
D(Tx, Ty)

2
  − θ

2
3

  
4/5

� e
1−

�
x

√

− e
8/15

. (116)

Since x ∈ [(1/2), 1],

e
1−

�
x

√
/2

− e
8/15 ≤ 0, (117)

which implies that

θ
D(Tx, Ty)

2
 ≤ θ

D(y, Ty)

2
  

4/5

≤ θ max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
   

4/5

.

(118)

Hence, T satisfies the assumption of the theorem, and
z � 1 is the unique fixed point of T.

Theorem 3. Let (X, d) be a complete generalized asymmetric
metric space and T: X⟶ X be a mapping. Suppose that
there exist θ ∈ Θ and ϕ ∈ Φ such that, for any x, y ∈ X,
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max d(Tx, Ty), d(Ty, Tx) > 0⟹ θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ϕ(θ[M(x, y)]), (119)

where

M(x, y) � max
d(x, y) + d(y, x)

2
,
d(x, Tx) + d(Tx, x)

2
,
d(y, Ty) + d(Ty, y)

2
 . (120)

+en, T has a unique fixed point.

Proof. Let x0 ∈ X be a fixed point, and define a sequence
xn  by

xn+1 � Txn � T
n+1

x0, for all n ∈ N. (121)

If there exists n0 ∈ N such that d(xn0
, xn0+1) � 0 or

d(xn0+1,xn0
) � 0, then proof is finished.

We can suppose that d(xn, xn+1)> 0 and d(xn+1,xn)> 0
for all n ∈ N; then, we have

max d xn, xn+1( , d xn+1,xn  > 0. (122)

Substituting x � xn−1 and y � xn, from (119), for all
n ∈ N, we have

θ
d xn, xn+1(  + d xn+1,xn 

2
⎡⎣ ⎤⎦≤ ϕ θ M xn−1, xn( (  , ∀n ∈ N,

(123)

where

M xn−1, xn(  �
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn, xn+1(  + d xn+1, xn( 

2
 

�
d xn−1, xn(  + d xn, xn−1( 

2
,
d xn, xn+1(  + d xn+1, xn( 

2
 .

(124)

Now, we set D(xn, xm) � d(xn, xm) + d(xm, xn).
+erefore,

M xn−1, xn(  �
D xn−1, xn( 

2
,
D xn, xn+1( 

2
 , (125)

if for some n, M(xn−1, xn) � (D(xn, xn+1))/2 .
From (123), (θ1), and using Lemma 2, we get

θ
D xn, xn+1( 

2
 ≤ϕ θ

D xn, xn+1( 

2
  , (126)

which implies that

D xn, xn+1( <D xn, xn+1( , (127)

which is contradiction. Hence, M(xn−1, xn) �

(D(xn−1, xn))/2 .
+erefore,

θ
D xn, xn+1( 

2
 ≤ ϕ θ

D xn−1, xn( 

2
  < θ

D xn−1, xn( 

2
 .

(128)

As θ is increasing,

D xn, xn+1( <D xn−1, xn( . (129)

+erefore, D(xn, xn+1) n∈N is a monotone strictly de-
creasing sequence of nonnegative real numbers. Conse-
quently, there exists α≥ 0 such that

lim
n⟶∞

D xn+1,xn  � α. (130)

Now, we claim that α � 0. Arguing by contradiction, we
assume that α> 0. Since D(xn, xn+1) n∈N is a nonnegative
decreasing sequence, we have

D xn+1,xn ≥ α, ∀n ∈ N. (131)

+us, we have

1< θ
λ
2

 ≤ ϕ θ
D xn, xn+1( 

2
  ≤ · · · ≤ϕn θ

D x0, x1( 

2
  .

(132)

By letting n⟶∞ in inequality (132) and using (θ3)
and (ϕ3), we obtain

1< θ
λ
2

 ≤ 1. (133)

It is a contradiction. +erefore,
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lim
n⟶∞

D xn+1,xn  � 0. (134)

Next, we shall prove that

lim
n⟶∞

d xn, xn+2(  � 0,

lim
n⟶∞

d xn+2, xn(  � 0.
(135)

We assume that xn ≠ xm for every n, m ∈ N, n≠m. In-
deed, suppose that xn � xm for some n � m + k with k> 0, so
we have xn+1 � Txn � Txm � xm+1.

So, from the assumption of the theorem, we get

θ
D xm, xm+1( 

2
  � θ

D xn, xn+1( 

2
 

≤ ϕ θ
D xn−1, xn( 

2
  < θ

D xn−1, xn( 

2
 .

(136)

Since θ is increasing,

D xn, xm+1( <D xn−1, xn( . (137)

Continuing this process, we can get that

D xm, xn+1( <D xm, xm+1( , (138)

which is a contradiction. +erefore,

max d xm, xn( , d xn, xm(  > 0, for every n, m ∈ N, n≠m.

(139)

Substituting x � xn and y � xn+2,

max d xn, xn+2( , d xn+2,xn  > 0. (140)

Applying (119) with x � xn−1 and y � xn+1, we have

θ
d xn, xn+2(  + d xn+2,xn 

2
⎡⎣ ⎤⎦≤ϕ θ M xn−1, xn+1( (  ,

(141)

where

M xn−1, xn+1(  � max
D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
,
D xn+1, xn+2( 

2
 

� max
D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
 .

(142)

+erefore,

θ
D xn, xn+2( 

2
 ≤ϕ θ max

D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
   .

(143)

So, from Lemma 2, we have

θ
D xn, xn+2( 

2
 < θ max

D xn−1, xn( 

2
,
D xn−1, xn+1( 

2
  .

(144)

Take an � D(xn, xn+2) and bn � D(xn, xn+1). +us, from
(144) and (θ1), we have

an <max an−1, bn−1 . (145)

Again by (137),

bn ≤ bn−1 ≤max an−1, bn−1 . (146)

+erefore,

max an, bn ≤max an−1, bn−1 , ∀n ∈ N. (147)

+en, the sequence (max an, bn )n is monotone non-
increasing, so it converges to some β≥ 0 such that

lim
n⟶∞

max an, bn  � β. (148)

By (134) and assuming that β> 0, we have

lim
n⟶∞

sup an � lim
n⟶∞

supmax an, bn  � lim
n⟶∞

max an, bn .

(149)

Taking lim supn⟶∞ in (144) and using θ3, we obtain

θ lim
n⟶∞

sup an < θ lim
n⟶∞

max an−1, bn−1  . (150)

+erefore,

θ
β
2

 < θ
β
2

 . (151)

From (θ1), we get

β< β, (152)

which is a contradiction. +erefore,

lim
n⟶∞

D xn+2,xn  � 0. (153)

Next, We shall prove that xn n∈N is a Cauchy sequence,
i.e., limn⟶∞D(xn,xm) � 0, for all n, m ∈ N. Suppose to the
contrary.+en, there is ε> 0 such that, for an integer k, there
exist two sequences n(k)  and m(k) , m(k) > n(k) > k, such
that

D xm(k)
, xn(k)

 ≥ ε,

D xm(k)−1
, xn(k)

 < ε.
(154)

As in the proof of +eorem 2, we conclude that

lim
k⟶∞

D xm(k)
, xn(k)

  � ε,

lim
k⟶∞

D xm(k)+1
, xn(k)+1

  � ε.
(155)

Hence, there exists n0 ∈ N such that

max d Txm(k)
, Txn(k)

 , d Txn(k)
, Txm(k)

  ≥
ε
4
, ∀n≥ n0.

(156)

Since T is a θ − ϕ-contraction, we derive
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θ
D xm(k)+1

, xn(k)+1
 

2
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠≤ϕ θ M xm(k)
, xn(k)

   , (157)

where

M xm(k)
, xn(k)

  � max
D xm(k)

, xn(k)
 

2
,
D xm(k)

, xm(k)+1
 

2
,
D xn(k)

, xn(k)+1
 

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (158)

As in the proof of +eorem 2, we have

lim
k⟶∞

M xm(k)
, xn(k)

  �
ε
2
. (159)

Applying (119) with x � xm(k)
and y � xn(k)

, we have

θ
D xm(k)+1

, xn(k)+1
 

2
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠≤ ϕ θ max
D xm(k)

, xn(k)
 

2
,
D xm(k)

, xm(k)+1
 

2
,
D xn(k)

, xn(k)+1
 

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (160)

By letting k⟶∞ in inequality (160) and using
(θ1), (θ3), (ϕ3), and Lemma 2, we obtain

θ lim
k⟶∞

D xm(k)+1
, xn(k)+1

 

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≤ ϕ θ lim
k⟶∞

max
D xm(k)

, xn(k)
 

2
,
D xm(k)

, xm(k)+1
 

2
,
D xn(k)

, xn(k)+1
 

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (161)

which implies that

ε< ε, (162)

which is a contradiction. +erefore,

lim
n,m⟶∞

D xm, xn(  � 0. (163)

+us,

lim
n,m⟶∞

d xm, xn(  � lim
n,m⟶∞

d xn, xm(  � 0. (164)

Hence, xn  is a forward and backward Cauchy sequence
in X. By completeness of (X, d), there exists z, u ∈ X such
that

lim
n⟶∞

d xn, z(  � lim
n⟶∞

d u, xn(  � 0. (165)

So, from Lemma 1, we get z � u.
Now, we show that d(Tz, z) � 0� d(z, Tz). Arguing by

contradiction, we assume that

d(Tz, z)> 0,

d(z, Tz)> 0.
(166)

+erefore,

max d(Tz, z), d(z, Tz){ }> 0. (167)

As in the proof of +eorem 2, we conclude that

lim
n⟶∞

d Tz, Txn(  � d(Tz, z), (168)

lim
n⟶∞

d Txn, Tz(  � d(z, Tz). (169)

By (168) and (169), there exists q ∈ N such that

max d Tz, Txn( , d Txn, Tz(  > 0, ∀n≥ q. (170)

Since T is a θ − ϕ-contraction, we derive

θ
D Tz, Txn( 

2
 ≤ϕ θ M z, xn( (  ( , ∀n≥ q, (171)

where

M z, xn(  � max
D z, xn( 

2
D(z, Tz)

2
,
D xn, Txn( 

2
 , (172)

which implies that

θ
D Tz, Txn( 

2
 ≤ϕ θ max

D z, xn( 

2
D(z, Tz)

2
,
D xn, Txn( 

2
    .

(173)
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By letting n⟶ ∞ in inequality (172) and using
(θ1), (θ3), (ϕ3), and Lemma 2, we obtain

θ lim
n⟶∞

D Tz, Txn( 

2
 ≤ϕ θ lim

n⟶∞
max

D z, xn( 

2
D(z, Tz)

2
,
D xn, Txn( 

2
   

< θ lim
n⟶∞

max
D z, xn( 

2
,
D(z, Tz)

2
,
D xn, Txn( 

2
   .

(174)

+erefore,

D(z, Tz)<D(z, Tz), (175)

which is a contradiction. +us, z � Tz. +us, T has a fixed
point.

Uniqueness: let z, u ∈ Fix(T), where z≠ u. +en,

d(Tz, Tu) � d(z, u)> 0,

d(Tu, Tz) � d(u, z)> 0.
(176)

+erefore,

max d(Tz, Tu), d(Tu, Tz){ }> 0. (177)

From the assumption of the theorem, we get

θ
D(Tz, Tu)

2
  � θ

D(z, u)

2
 ≤ϕ[θ(M(z, u))], (178)

where

M(z, u) � max
D(z, u)

2
,
D(z, Tz)

2
,
D(u, Tu)

2
  �

D(z, u)

2
.

(179)

+erefore, we have

θ
D(z, u)

2
 ≤ ϕ θ

D(z, u)

2
  

< θ
D(z, u)

2
 ,

(180)

which implies that D(z, u)<D(z, u). It is a contradiction.
+erefore, u � z.

From +eorem 3, we obtain the following fixed-point
theorems for θ − ϕ-Reich-type contraction and
θ − ϕ-Kannan-type contraction. □

Theorem 4. Let (X, d) be a complete generalized asymmetric
space and T: X⟶ X be a θ − ϕ-Kannan-type contraction;
then, T has a unique fixed point.

Proof. Since T is a θ − ϕ-Kannan-type contraction, there
exist θ ∈ Θ and ϕ ∈ Φ such that

θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ϕ θ

d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

4
  

≤ϕ θ max
d(x, Tx) + d(Tx, x)

2
,
d(y, Ty) + d(Ty, y)

2
   

≤ϕ θ max
d(x, y) + d(y, x)

2
,
d(Tx, x) + d(x, Tx)

2
,
d(y, Ty) + d(Ty, y)

2
   .

(181)

+erefore, T is a θ − ϕ-contraction. As in the proof of
+eorem 3, we conclude that T has a unique fixed point. □

Theorem 5. Let (X, d) be a complete generalized asymmetric
space and T: X⟶ X be a θ − ϕ-Reich-type contraction.
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+en, T has a unique fixed point. Proof. Since T is a θ − ϕ-Reich-type contraction, there exist
θ ∈ Θ and ϕ ∈ Φ such that

θ
d(Tx, Ty) + d(Ty, Tx)

2
 ≤ϕ θ

d(x, y) + d(y, x) + d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

6
  

≤ϕ θ max
d(x, y) + d(y, x)

2
,
d(Tx, x) + d(x, Tx)

2
,
d(y, Ty) + d(Ty, y)

2
   .

(182)

+erefore, T is a θ − ϕ-contraction. As in the proof of
+eorem 3, we conclude that T has a unique fixed point. □

Corollary 2. Let (X, d) be a complete metric space and
T: X⟶ X be a Kannan-type mapping. i.e., there exists
α ∈ ]0, (1/2)[ such that, for all x, y ∈ X,

max d(Tx, Ty), d Ty,Tx  > 0⟹
d(Tx, Ty) + d(Ty, Tx)

2
≤ α

d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

2
 . (183)

+en, T has a unique fixed point. Proof. Let θ(t) � et for all t ∈ ]0, +∞[ and ϕ(t) � t2α for all
t ∈ [1, +∞[. We prove that T is a θ − ϕ-Kannan-type con-
traction. Indeed,

θ
d(Tx, Ty) + d(Ty, Tx)

2
  � e

(d(Tx,Ty)+d(Ty,Tx))/2 ≤ e
α((d(Tx,x)+d(x,Tx)+d(Ty,y)+d(y,Ty))/2)

� e
2α((d(Tx,x)+d(x,Tx)+d(Ty,y)+d(y,Ty))/4)

� e
((d(Tx,x)+d(x,Tx)+d(Ty,y)+d(y,Ty))/4)

 
2α

� ϕ θ
d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

4
  .

(184)

+erefore, as in the proof of +eorem 4, T has a unique
fixed point x ∈ X. □

Corollary 3. Let (X, d) be a complete metric space and
T: X⟶ X be a Reich-type mapping, i.e., there exists
λ ∈ ]0, (1/3)[ such that, for all x, y ∈ X,

max d(Tx, Ty), d Ty,Tx  > 0, (185)

and we have

d(Tx, Ty) + d(Ty, Tx)

2
≤ λ

d(x, y) +( d(y, x) + d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

2
 . (186)
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+en, T has a unique fixed point. Proof. Let θ(t) � et for all t ∈ ]0, +∞[ and ϕ(t) � t3λ for all
t ∈ [1, +∞[.

We prove that T is a θ − ϕ-Reich-type contraction.

θ
d(Tx, Ty) + d(Ty, Tx)

2
  � e

(d(Tx,Ty)+d(Ty,Tx))/2 ≤ e
λ((d(x,y)+( d(y,x)+d(Tx,x)+d(x,Tx)+d(Ty,y)+d(y,Ty))/2)

� e
3λ((d(x,y)+( d(y,x)+d(Tx,x)+d(x,Tx)+d(Ty,y)+d(y,Ty))/6)

� ϕ θ
d(x, y) +( d(y, x) + d(Tx, x) + d(x, Tx) + d(Ty, y) + d(y, Ty)

6
  .

(187)

+erefore, as in the proof of +eorem 5, T has a unique
fixed point x ∈ X. □

Corollary 4 (Theorem 2). Let (X, d) be a complete gen-
eralized asymmetric space and T: X⟶ X be a given
mapping. Suppose that there exist θ ∈ Θ and r ∈ ]0, 1[ such
that, for any x, y ∈ X,

max d(Tx, Ty), d(Ty, Tx) > 0⟹ θ
d(Tx, Ty) + d(Ty, Tx)

2
 

≤ (θ[M(x, y)])
r
,

(188)

where

M(x, y) � max
d(x, y) + d(y, x)

2
,
d(x, Tx) + d(Tx, x)

2
,
d(y, Ty) + d(Ty, y)

2
 . (189)

+en, T has a unique fixed point.

Proof. If ϕ(t) � tr, with r ∈ ]0, 1[, we prove that T is a
θ − ϕ-contraction.+erefore, as in the proof of+eorem 3, T
has a unique fixed point. □

Example 4. Consider X � 1, 2, 3, 4{ }. Let d: X × X⟶ [0,

+∞[ be a mapping defined by the following:

(i) d(x, y) � 0⟺x � y.
(ii) d(1, 2) � 3, d(2, 1) � 1.
(iii) d(2, 3) � d(3, 2) � d(1, 3) � d(3, 1) � 1.
(iv) d(1, 4) � d(4, 1) � d(4, 2) � d(2, 4) � d(3, 4) � 4.
(v) d(4, 3) � 3.

Clearly, (X, d) is not an asymmetric metric space, from
d(1, 2) � 3>d(1, 3) + d(3, 2) � 2.

However, it is a complete generalized asymmetric metric
space. Let T: X⟶ X be given by

T(1) � T(2) � T(3) � 1,

T(4) � 3.
 (190)

Suppose θ(t) �
�
t

√
+ 1 and φ(t) � 2t + 1/3. +erefore,

θ ∈ Θ and ϕ ∈ Φ.
First, observe that max d(Tx, Ty), d(Ty, Tx) >

0⟺ x � 4, y � 1 , x � 4, y � 2 , or x � 4, y � 3 ; for
x � 4, y � 1, we have

d(T4, T1) + d(T1, T4)

2
�

d(3, 1) + d(1, 3)

2
� 1. (191)

On the contrary,

max
d(4, T(4)) + d(T(4), 4)

2
,
d(1, T(1)) + d(1, T(1))

2
,
d(4, 1) + d(1, 4)

2
  � 4. (192)
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+erefore,

θ
d(T(4), T(1)) + d(T(1), T4)

2
  � 2,

ϕ[θ(4)] � 2.33.

(193)

So,

θ
D(T(4), T(1))

2
 ≤ ϕ[θ(M(4, 1))]. (194)

For x � 4, y � 2, we have

θ
d(T(4), T(2)) + d(T(2), T(4))

2
  � 2,

max
d(4, T(4)) + d(T(4), 4)

2
,
d(2, T(2)) + d(2, T(2))

2
,
d(4, 2) + d(2, 4)

2
  � 4.

(195)

+erefore,

φ[θ(4)] � 2.33. (196)

So,

θ
D(T(4), T(2))

2
 ≤ ϕ[θ(M(4, 2))]. (197)

For x � 4, y � 3, we have

θ
d(T(4), T(3)) + d(T(3), T(4))

2
  � θ

d(3, 1) + d(1, 3)

2
  � 2,

max
d(4, T(4)) + d(T(4), 4)

2
,
d(3, T(3)) + d(3, T(3))

2
,
d(4, 3) + d(3, 4)

2
  �

7
2
.

(198)

+erefore,

ϕ θ
7
2

   � 2.24. (199)

So,

θ
D(T(4), T(3))

2
 ≤ ϕ[θ(M(4, 3))]. (200)

Hence, T satisfies the assumption of the theorem, and
z � 1 is the unique fixed point of T.

Example 5. Let X � [1, +∞[ and d: X × X⟶ [0, +∞[

defined by

d(x, y) � y − x if y≥x,

d(x, y) �
1
2

(x − y) if y<x.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(201)

Clearly, (X, d) is not metric, asymmetric metric, but it is
a complete generalized asymmetric metric space.

Let T: X⟶ X be given by

T(x) �
��
x

√
. (202)

Let θ(t) �
�
t

√
+ 1 and ϕ(t) � ((t + 1)/2). It is obvious

that θ ∈ Θ and ϕ ∈ Φ.
Consider the following possibilities:

Case 1: y≥ x. We have

d(x, y) � y − x,

d(y, x) �
1
2

(y − x).

(203)

+en,

D(x, y)

2
�
3
4

(y − x),

θ
D(x, y)

2
  �

�
3

√

2


�����
y − x

√
 + 1.

(204)

So,

ϕ θ
D(x, y)

2
   �

�
3

√

4


�����
y − x

√
 + 1,

θ
D(Tx, Ty)

2
  �

�
3

√

2


���������
��
y

√
−

��
x

√

 + 1.

(205)

On the contrary,
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θ
D(x, y)

2
  − ϕ θ

D(Tx, Ty)

2
  

�

�
3

√

2


���������
��
y

√
−

��
x

√

 −

�
3

√

4


�����
y − x

√


�

�
3

√

4
2

���������
��
y

√
−

��
x

√

 −
�����
y − x

√


�

�
3

√

4


���������
��
y

√
−

��
x

√

2 −

���������
��
y

√
+

��
x

√

.

(206)

Since x, y ∈ [1, +∞[,

2 −

��������
��
y

√
+

��
x

√

≤ 0, (207)

which implies that

θ
D(Tx, Ty)

2
 ≤ϕ θ

D(x, y)

2
  

≤ϕ θ max
D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
   .

(208)

Case 2: y<x. Similar to case 1, we conclude that

θ
D(Tx, Ty)

2
 ≤ ϕ θ max

D(x, y)

2
,
D(x, Tx)

2
,
D(y, Ty)

2
   .

(209)

Hence, T satisfies the assumption of the theorem, and
z � 1 is the unique fixed point of T.
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